Reponses of Land Surface Albedo to Global Vegetation Greening: An Analysis Using GLASS Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Vegetation-Induced LSA Change Model
2.2.2. Calculation of Annual Mean Values
2.2.3. Trend Analysis
3. Results
3.1. Annual Mean and Trends of LSA, LAI, and FPAR
3.2. Albedo Differences between Vegetation and Soil Backgrounds
3.3. Responses of LSA to Vegetation Changes
4. Discussion
- (1)
- The vegetation-induced LSA change model used in this study is relatively simple, and can be improved by consideration of the temporal cycle of vegetation and soil background albedo values, as well as the effect of snow cover. In this study, the vegetation and soil background albedo values were assumed to be temporally invariant, which is not consistent with the true situation, and can result in an estimation error of the albedo difference between vegetation and soil background. Although the effect of snow cover can be simply presented by the variation of soil background albedo values, the role of snow cover in LSA changes, such as the vegetation masking effect on snow cover [40], still need to be explored in the future.
- (2)
- The spatiotemporal trends of the LSA derived in this study may not be perfectly consistent with former studies at regional scales [17,18,31], mainly because of the differences in temporal ranges and datasets. Our previous [18] study suggested that the temporal span is critically important for analyzing LSA trends, and the trend results can be significantly affected by the temporal spans and selection of the datasets. Therefore, longer temporal spans and more robust LSA datasets are still needed for this purpose [41].
- (3)
- In this study, the responses of LSA to global vegetation greening were investigated using the long-term remote sensing datasets and a vegetation-induced LSA change model. Although the accuracies of these satellite-derived datasets have been validated and evaluated by various in situ observations [29,30], the findings of these studies still need to be further validated with ground measurements in the future.
- (4)
- In addition, the vegetation-induced LSA change model can be used for projecting future LSA changes in different shared socioeconomic pathway (SSP) and representative concentration pathway (RCP) scenarios, and the climatic effect of vegetation-induced LSA changes can also be evaluated.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Wang, T.; Wang, L.; Liu, X.; Zheng, K.; Huang, X. Large discrepancies of global greening: Indication of multi-source remote sensing data. Glob. Ecol. Conserv. 2022, 34, e02016. [Google Scholar] [CrossRef]
- Cortés, J.; Mahecha, M.D.; Reichstein, M.; Myneni, R.B.; Chen, C.; Brenning, A. Where Are Global Vegetation Greening and Browning Trends Significant? Geophys. Res. Lett. 2021, 48, e2020GL091496. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Forzieri, G.; Alkama, R.; Miralles, D.G.; Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 2017, 356, 1180–1184. [Google Scholar] [CrossRef] [Green Version]
- Bright, R.M.; Zhao, K.; Jackson, R.B.; Cherubini, F. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob. Change Biol. 2015, 21, 3246–3266. [Google Scholar] [CrossRef]
- Lee, X.; Goulden, M.L.; Hollinger, D.Y.; Barr, A.; Black, T.A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef] [Green Version]
- Jiao, T.; Williams, C.A.; Ghimire, B.; Masek, J.; Gao, F.; Schaaf, C. Global climate forcing from albedo change caused by large-scale deforestation and reforestation: Quantification and attribution of geographic variation. Clim. Change 2017, 142, 463–476. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- He, T.; Liang, S.; Song, D. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981–2010 from multiple satellite products. J. Geophys. Res. Atmos. 2014, 119, 10281–10298. [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, G.; Dong, J.; Ge, Q.; Tao, J.; Zhang, X.; Qi, Y.; Doughty, R.B.; Xiao, X. Spatial, temporal, and spectral variations in albedo due to vegetation changes in China’s grasslands. ISPRS J. Photogramm. Remote Sens. 2019, 152, 1–12. [Google Scholar] [CrossRef]
- Hu, Y.; Hou, M.; Zhao, C.; Zhen, X.; Yao, L.; Xu, Y. Human-induced changes of surface albedo in Northern China from 1992–2012. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 184–191. [Google Scholar] [CrossRef]
- Zhai, J.; Liu, R.; Liu, J.; Zhao, G.; Huang, L. Radiative forcing over China due to albedo change caused by land cover change during 1990–2010. J. Geogr. Sci. 2014, 24, 789–801. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Kvalevåg, M.M.; Schaaf, C.B. Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data. Geophys. Res. Lett. 2005, 32, L21410. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Lv, M.; Wang, M.; Li, X.; Qu, Y. Reconstruction of Historical Land Surface Albedo Changes in China From 850 to 2015 Using Land Use Harmonization Data and Albedo Look-Up Maps. Earth Space Sci. 2021, 8, e2021EA001799. [Google Scholar] [CrossRef]
- Li, Q.; Ma, M.; Wu, X.; Yang, H. Snow Cover and Vegetation-Induced Decrease in Global Albedo From 2002 to 2016. J. Geogr. Sci. Atmos. 2017, 123, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, H.; Qu, Y. Land Surface Albedo Variations in Sanjiang Plain from 1982 to 2015: Assessing with GLASS Data. Chin. Geogr. Sci. 2020, 30, 876–888. [Google Scholar] [CrossRef]
- Zhai, J.; Liu, R.; Liu, J.; Huang, L.; Qin, Y. Human-Induced Landcover Changes Drive a Diminution of Land Surface Albedo in the Loess Plateau (China). Remote Sens. 2015, 7, 2926–2941. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wang, S.; Dai, J.; Wang, J.; Chen, J.; Shugart, H.H. Forest Greening Increases Land Surface Albedo During the Main Growing Period Between 2002 and 2019 in China. J. Geogr. Sci. Atmos. 2021, 126, e2020JD033582. [Google Scholar] [CrossRef]
- Zhou, L.; Dickinson, R.E.; Tian, Y.; Zeng, X.; Dai, Y.; Yang, Z.-L.; Schaaf, C.B.; Gao, F.; Jin, Y.; Strahler, A.; et al. Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model. J. Geophys. Res. Atmos. 2003, 108, 4488. [Google Scholar] [CrossRef]
- Rechid, D.; Raddatz, T.J.; Jacob, D. Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor. Appl. Climatol. 2008, 95, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Bright, R.M.; Myhre, G.; Astrup, R.; Antón-Fernández, C.; Strømman, A.H. Radiative forcing bias of simulated surface albedo modifications linked to forest cover changes at northern latitudes. Biogeosciences 2015, 12, 2195–2205. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X.; et al. The Global Land Surface Satellite (GLASS) Product Suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Yuan, W.; Liu, S.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A Long-term Global LAnd Surface Satellite (GLASS) Dataset for Environmental Studies. Int. J. Digit. Earth 2013, 6 (Suppl. S1), 69–95. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; Li, X.; Feng, Y.; Liu, S. Estimating shortwave Arctic sea-ice albedo from MODIS data. Remote Sens. Environ. 2016, 186, 32–46. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 907–919. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Q.; Wang, L.; Liang, S.; Wen, J.; Qu, Y.; Liu, S. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci. 2013, 17, 2121–2129. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wang, L.; Qu, Y.; Liu, N.; Tang, H.; Liang, S.; Liu, S. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 2013, 6 (Suppl. S1), 5–33. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Li, X.; Qu, Y. Evaluation of Vegetation Responses to Climatic Factors and Global Vegetation Trends using GLASS LAI from 1982 to 2010. Can. J. Remote Sens. 2018, 44, 357–372. [Google Scholar] [CrossRef]
- He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Global clumping index map derived from the MODIS BRDF product. Remote Sens. Environ. 2012, 119, 118–130. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; He, T.; Liu, S.; Li, X. Mapping surface broadband albedo from satellite observations: A review of literatures on algorithms and products. Remote Sens. 2015, 7, 990–1020. [Google Scholar] [CrossRef] [Green Version]
- Lv, M.; Song, Y.; Li, X.; Wang, M.; Qu, Y. Spatiotemporal characteristics and driving factors of global planetary albedo: An analysis using the Geodetector method. Theor. Appl. Climatol. 2021, 147, 737–752. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Maeirsperger, T.K.; Gower, S.T.; Kirschbaum, A.A.; Running, S.W.; Zhao, M.; Wofsy, S.C.; Dunn, A.L.; et al. Site-level Evaluation of Satellite-based Global Terrestrial Gross Primary Production and Net Primary Production Monitoring. Glob. Change Biol. 2005, 11, 666–684. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Conley, A.; Vitt, F.M. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data 2018, 10, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Theil, H. A rank-invariant method of linear and polynominal regression analysis. Indag. Math. 1950, 1, 467–482. [Google Scholar]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.; Lobell, D.; Delire, C.; Mirin, A. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Qu, Y.; Lv, M.; Song, Y.; Zhao, X. The driving factors of global land surface albedo: An analysis with the GLASS and MERRA-2 data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; pp. 6661–6664. [Google Scholar]
- Essery, R. Large-scale simulations of snow albedo masking by forests. Geophys. Res. Lett. 2013, 40, 5521–5525. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Fan, X.; Li, X.; Liu, Q.; Qu, Y. Estimation of Land Surface Albedo from MODIS and VIIRS Data: A Multi-Sensor Strategy Based on the Direct Estimation Algorithm and Statistical-Based Temporal Filter. Remote Sens. 2020, 12, 4131. [Google Scholar] [CrossRef]
Modeling Method | Reference |
---|---|
, where and are the black-sky and white-sky albedo, respectively; and are the albedo of canopy and underlying surface, respectively; is the upward scattering fraction, is the cosine of solar zenith angle, and is leaf and stem area index (LSAI). | [21] |
, where is the LSA of a pixel, is the fraction of absorbed photosynthetically active radiation (FPAR), and and are the albedo of soil and vegetation canopy, respectively. | [22] |
, where , and are LSA, leaf area index (LAI), snow depth, and maximum daily temperature, respectively, and are coefficients of the regression model. | [23] |
Month | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Date of year (DOY) | 1 | 33 | 65 | 97 | 129 | 153 | 185 | 217 | 249 | 281 | 305 | 337 |
9 | 41 | 73 | 105 | 137 | 161 | 193 | 225 | 257 | 289 | 313 | 345 | |
17 | 49 | 81 | 113 | 145 | 169 | 201 | 233 | 265 | 297 | 321 | 353 | |
25 | 57 | 89 | 121 | 153 | 177 | 209 | 241 | 273 | 305 | 329 | 361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Qu, Y.; Xiao, Z. Reponses of Land Surface Albedo to Global Vegetation Greening: An Analysis Using GLASS Data. Atmosphere 2023, 14, 31. https://doi.org/10.3390/atmos14010031
Li X, Qu Y, Xiao Z. Reponses of Land Surface Albedo to Global Vegetation Greening: An Analysis Using GLASS Data. Atmosphere. 2023; 14(1):31. https://doi.org/10.3390/atmos14010031
Chicago/Turabian StyleLi, Xijia, Ying Qu, and Zhiqiang Xiao. 2023. "Reponses of Land Surface Albedo to Global Vegetation Greening: An Analysis Using GLASS Data" Atmosphere 14, no. 1: 31. https://doi.org/10.3390/atmos14010031
APA StyleLi, X., Qu, Y., & Xiao, Z. (2023). Reponses of Land Surface Albedo to Global Vegetation Greening: An Analysis Using GLASS Data. Atmosphere, 14(1), 31. https://doi.org/10.3390/atmos14010031