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Abstract: Aerosol optical depth (AOD) is one of the basic characteristics of atmospheric aerosol. A
global ground-based network of sun and sky photometers, the Aerosol Robotic Network (AERONET)
provides AOD data with low uncertainty. However, AERONET observations are sparse in space
and time. To improve data density, we merged AERONET observations with a GEOS-Chem chem-
ical transport model prediction using an optimal interpolation (OI) method. According to OI, we
estimated AOD as a linear combination of observational data and a model forecast, with weighting
coefficients chosen to minimize a mean-square error in the calculation, assuming a negligible error of
AERONET AOD observations. To obtain weight coefficients, we used correlations between model
errors in different grid points. In contrast with classical OI, where only spatial correlations are con-
sidered, we developed the spatial-temporal optimal interpolation (STOI) technique for atmospheric
applications with the use of spatial and temporal correlation functions. Using STOI, we obtained
estimates of the daily mean AOD distribution over Europe. To validate the results, we compared daily
mean AOD estimated by STOI with independent AERONET observations for two months and three
sites. Compared with the GEOS-Chem model results, the averaged reduction of the root-mean-square
error of the AOD estimate based on the STOI method is about 25%. The study shows that STOI
provides a significant improvement in AOD estimates.

Keywords: data assimilation; optimal interpolation; aerosol optical depth; AERONET; chemical
transport model GEOS-Chem

1. Introduction

Aerosol is one of the major pollutants in the atmosphere. Atmospheric aerosol
has a considerable impact on air quality, which is crucial for human health and the
environment [1–4]. Aerosol particles play an important role in the radiation budget of
the atmosphere and affect climate [5].

One of the important characteristics of the aerosol burden in the atmosphere is aerosol
optical depth (AOD), which is a measure of light extinction by aerosol. The atmospheric col-
umn integrated aerosol load can be derived from AOD observations. AOD was investigated
by many authors, e.g., [6–10]. Large discrepancies were reported in AOD values retrieved
using different satellite instruments and retrieval techniques [11–13]. A global ground-
based network of sun and sky photometers, the Aerosol Robotic Network (AERONET),
provides AOD data with low uncertainty [10,13–17]. However, AERONET sites are sparse
in space, and observations are limited in time due to weather dependence.
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Chemical transport models can provide values of AOD at all cells of a regular grid over
the domain of interest. A variety of models is used to describe aerosol optical properties,
including AOD [18–22]. The disadvantage of the models is considerable uncertainty [22,23].

To obtain a likely true estimate of the AOD distribution on a regular spatial-temporal
grid, data assimilation was applied. Data assimilation [24–26] is a technique of combining
data from different information sources to produce the best possible estimate of the state
of the system. Information sources usually include observational data and theoretical
knowledge (forecast, model) on the system. Data assimilation is based on the minimum
mean-square error principle of the estimation theory, with the estimate of the state of
the system being chosen to minimize the uncertainty of the estimate. Data assimilation
approaches are commonly divided into optimal interpolation (OI) [24,27–29], Kalman
filtering (KF) [7,30–34], and variational methods [8,35–38]. Each method has advantages
and disadvantages depending on specific applications.

Optimal interpolation, sometimes referred as statistical interpolation, estimates a value
of the interest in a grid point through a weighted linear combination of observational and
modeled data at the point in question and neighboring observational points, according to
the accuracies of the data used. Weighting coefficients are chosen to minimize the mean-
square error in the estimate. To obtain weighting coefficients, correlations between model
errors in the different grid points are used. Weighting coefficients are not determined
anew at each time point. A single correlation function is estimated from available data,
assuming homogeneity and isotropy of the field. The model error statistics are assumed to
be stationary.

KF is a sequential data assimilation scheme. KF is a two-step process: the forecast and
the analysis. The forecast is made using a dynamical model, in which the estimate obtained
in a previous time step is incorporated. The analysis is the same as OI. A forecast error
covariance updated in every time step is used instead of a single model error covariance.
This allows the reduction of the mean-square error in the estimate in comparison with OI.
However, if the temporal gaps are present in the observational data, there is no improve-
ment in comparison with OI, because the values being estimated converge too quickly to
the model trajectory [39].

Variational methods are based on minimizing an objective function proportional to
the square of the distance between the estimate and both the model and the observations.
Under some commonly used assumptions, the three-dimensional variational method (3D-
Var) is equivalent to OI [40]. The difference is only in the method of the solution. In the
four-dimensional variational approach (4D-Var), the minimization of the objective function
is carried out over a time window. The numerical cost of the 4D-Var is very high. OI is
much less computationally expensive than KF and 4D-Var methods.

In the classical OI method, only spatial correlations are considered. The method can
be extended to include time dimension by using spatial and temporal correlations. The
use of spatial-temporal optimal interpolation (STOI) allows for filling in not only spatial,
but also temporal gaps in observations, and improving the accuracy of the method. The
use of a temporal correlation is particularly important for temporally sparse observations.
STOI was used in ocean sciences [41,42]. We developed the STOI method for atmospheric
applications. In our previous study [43], we used STOI combining AERONET observations
and chemical transport model GEOS-Chem [44,45] calculations, for the estimation of the
distribution of AOD at 870 nm over the eastern European region. In that previous study,
we estimated the quality of the assimilation by comparing AOD obtained using STOI with
observations made using the Microtops II portable sun photometer [46].

The present study aims a further investigate the capability of STOI to improve esti-
mates of AOD by validating against independent AERONET observations.

In Section 2, we described the observation dataset and GEOS-Chem model used for
the assimilation and the STOI method. In Section 3, we used STOI to assimilate AERONET
AOD at wavelengths of 440, 675, and 870 nm for obtaining the distribution of total AOD
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over Europe and validated the method for two months and three AERONET sites. In
Section 4, we presented the discussion of the results followed by conclusions.

2. Materials and Methods
2.1. AERONET Observations

One of the widely used sources of atmospheric aerosol data is observations by a
ground-based network of sun and sky photometers, AERONET. This network was founded
by the National Aeronautics and Space Administration (NASA), USA, and Photométrie
pour le Traitement Opérationnel de Normalisation Satellitaire (PHOTONS), France. The
network consists of more than 500 sites located throughout the world. The Cimel multi-
channel, automatic sun, and sky scanning photometers provide measurements of direct
solar and diffused sky radiance at several wavelengths in the range 340–1640 nm with
reporting frequency of 15 min during clear sky daylight hours [10,47]. Since 2015, the latest
version of the sun, sky, and lunar photometers CE318-T was introduced in AERONET that
provides lunar light measurements in addition to sun and sky observations to retrieve
AOD, volume size distribution, refractive index, single scattering albedo, and column
water vapor. The Cimel photometers cannot perform measurements under cloudy weather
conditions, so intervals between measurements can sometimes reach several days. The
AERONET retrieval algorithm [16,48] derives AOD and other integrated aerosol properties
from radiance measurements. The AERONET website provides a database of aerosol
optical, microphysical and radiative properties for aerosol. AERONET observations are
often considered a standard for column aerosol properties. AERONET data are widely used
to validate model simulations and satellite observations. An uncertainty of AERONET
observations of AOD is approximately ±0.01 for wavelengths >440 nm [16,17]. In this
study, we used AERONET Version 3, Level 2.0 daily averaged total AOD data. The
Version 3 processing algorithm provides automatic cloud screening and instrument anomaly
quality controls [48]. Version 3 AOD data presents three levels of data. Level 1.0 data
are unscreened, and Level 1.5 data are cloud-screened and quality controlled. Level
2.0 data are quality-assured. Level 2.0 AOD data are available within several months
after measurement.

2.2. GEOS-Chem Simulation

GEOS-Chem is a global three-dimensional chemical transport model. It also enables
simulations on local scales. The GEOS-Chem model is developed and used by research
groups worldwide as it applies to a broad range of atmospheric composition problems.
The team based at Harvard University and Washington University with support from the
NASA Earth Science Division, the Canadian National Science and Engineering Research
Council, and the Nanjing University of Information Sciences and Technology are providing
the general management of GEOS-Chem [45]. The model input includes meteorological
data and inventories of emissions. The archived meteorological fields are derived from
the Goddard Earth Observing System (GEOS) [49]. The latest version of GEOS Forward
Processing (GEOS-FP) has a horizontal resolution of 0.25◦ latitude × 0.3125◦ longitude and
a temporal resolution of 1 or 3 h, depending on meteorological fields. The GEOS-Chem
Classic configuration uses meteorological data on a rectilinear latitude–longitude grid to
model horizontal and vertical transport. To describe tracer advection, GEOS-Chem Classic
uses a semi-Lagrangian scheme of Lin and Rood [50]. GEOS-Chem simulates detailed
oxidant-aerosol chemistry in the troposphere and stratosphere. Aerosol chemistry was
first included in GEOS-Chem by [51]. GEOS-Chem uses the Harvard–NASA Emissions
Component (HEMCO) [52] to calculate emissions from different databases. Global an-
thropogenic emissions, including shipping emissions, with a monthly resolution, are from
the Community Emissions Data System (CEDS) inventory [53,54]. Annual aircraft emis-
sions are from the Aviation Emissions Inventory Code (AEIC) [55]. Emissions from open
fires are from the Global Fire Emissions Database (GFED) with monthly resolution [56].
Emissions of dust aerosol [57], lightning nitrogen oxides [58], biogenic volatile organic



Atmosphere 2023, 14, 32 4 of 12

compounds [59], soil nitrogen oxides [60], and sea salt aerosol [61] are computed in GEOS-
Chem in dependence on the local meteorological conditions. The model output is a set of
quantities, such as tracer concentrations, in every grid cell and others, including the AOD
of major aerosol components at several wavelengths with a transport time step of 15 min.
The GEOS-Chem model is widely used for estimating the distribution of aerosol species in
the atmosphere [51,62–64].

Aerosol tracers of GEOS-Chem include sulfate, nitrate, ammonium, mineral dust,
sea salt, black carbon, and organic aerosols. AOD is calculated on the basis of aerosol
tracer concentrations, using aerosol optical properties from [65,66]. Hydroscopic growth
of hydrophilic aerosol particles depending on the ambient relative humidity is taken into
account. For calculating AOD, GEOS-Chem combines aerosol species into groups according
to their optical properties: sulfate–nitrate–ammonium; size fractions of mineral dust; sea
salt in accumulation and coarse modes; black carbon; organic aerosols.

In the present work, we used a nested regional application of GEOS-Chem Classic
version v12.1.1. The nested version of GEOS-Chem Classic was first implemented in [67].
Our simulation was performed for the European region at the native GEOS-FP horizontal
resolution of 0.25◦ latitude × 0.3125◦ longitude and 47 vertical σ-layers up to ~80 km. We
calculated daily averaged AOD at 440, 675, and 870 nm as these are standard reference
wavelengths in AERONET products. The optical depths of those mentioned individual
aerosol groups in every 3D grid cell were summarized to obtain the optical depth of the
total aerosol in the cell. Finally, the optical depths of the total aerosol in every vertical layer
for the given horizontal grid cell were summarized to yield the total column AOD.

2.3. Spatial-Temporal Optimal Interpolation

In the OI scheme, an analyzed state is related to the forecast state by the equations:

xa = xb + K[y − H(xb)]. (1)

Here, xa is a vector of estimated values at regular grid points, xb is a vector of values
calculated by a model at regular grid points, and y is a vector of values of observations at the
observational points. H is an observation operator providing the link between the analysis
variables and the observations. H maps the scattered observation sites to the regular grid.
K is a matrix containing weighting coefficients. Thus, the estimate is a weighted average of
the forecast (model results) and observations.

The matrix of weighting coefficients, K, can be determined by minimizing the mean-
square error E in the estimate, which is done by setting the derivative of E relative to each
element K, equal to zero. The solution is

K = BHT(HBHT + R)
−1

, (2)

where B is a covariance matrix of model errors, and R is a covariance matrix of observational errors.
Equations (1) and (2) define the optimal linear estimator assuming that the errors are

unbiased, and the observational errors are uncorrelated. The observational and model
errors also are mutually uncorrelated.

Error covariance matrix B cannot be obtained directly. However, it can be estimated
statistically. In OI, the correlation function is specified a priori assuming homogeneity and
isotropy of the considered field.

We applied STOI to estimate AOD in Europe during the 2015–2016 period. We consid-
ered data from 86 European AERONET sites and the layout of the region and location of
the sites are shown in Figure 1.
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Figure 1. Location of the Aerosol Robotic Network (AERONET) sites (black triangles) considered in
the assimilation scheme. Red triangles are the sites chosen for validation.

Because the model AOD uncertainty [23] is significantly larger than the AERONET
AOD uncertainty, we assumed the AERONET AOD uncertainty to be negligible. Prior to the
implementation of the STOI, we compared GEOS-Chem simulated AOD with AERONET
observations. The comparison revealed a bias of −0.032 for 440 nm, −0.025 for 675 nm,
and −0.024 for 870 nm. Moreover, it was revealed that the dispersion of AERONET
AOD is significantly larger than the dispersion of GEOS-Chem-simulated AOD for each
wavelength. To correct the discrepancy, we used linear regression. After that, the STOI
method was applied using the corrected AOD values simulated by GEOS-Chem.

To implement STOI we should know the spatial and temporal correlation functions.
We obtained error statistics using observations from AERONET European stations, and
simulations by a chemical transport model GEOS-Chem. We calculated spatial correla-
tion coefficients of the model-minus-observation pairs of AOD at two spatial locations
depending on the distance between them. We determined temporal correlation coefficients
of the model-minus-observation pairs of AOD at two temporal locations, depending on
the temporal interval between them. We constructed the correlations curves by fitting to
the points presenting the obtained correlation coefficients. After that, we modeled the
correlation curves by analytical functions. We chose exponential functions because they
guarantee the positive definition of covariance matrices [27]. The exponential functions
were chosen with argument kd, where d is the distance in kilometers or the time interval in
days for the spatial or temporal correlation functions, respectively, and k is a fitting factor.
The best fit was provided by k = 0.002 at 440 nm, 0.0025 at 675 nm, and 0.003 at 870 nm for
the spatial correlation function, and k = 0.4 at 440 nm, 0.45 at 675 nm, and 0.5 at 870 nm for
the temporal correlation function. The obtained spatial and temporal correlation curves are
presented in Figure 2.
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Figure 2. (a) Temporal and (b) spatial correlation coefficients at 440 (violet line), 675 (green), and
870 (red) nm.

Figure 2 shows that the correlation coefficient value slightly decreases with an increase
in the wavelength. A possible reason for such behavior is the larger contribution to AOD at
longer wavelengths by coarse aerosol particles, which have higher spatial and temporal
variability than fine particles.

We used the correlation functions to construct the covariance matrix of model errors.
We calculated the weighting matrix for every spatial-temporal grid cell, using Equation (2),
with a temporal resolution of 1 day. According to OI, not all available observations were
considered: only those lying near the point being updated. We chose the number of
observations using empirical selection criteria. Some tuning of numerical parameters is
a common practice in data assimilation [34]. We accepted the spatial correlation length
of 850 km and the temporal correlation length of 5 days. These are the intervals where
the correlation coefficient is equal to about 0.1. We assumed the separation of spatial and
temporal correlations. We calculated spatial-temporal correlation coefficients for a given
distance and time interval as a product of corresponding spatial and temporal correlation
coefficients. If the resulting correlation coefficient turned out to be less than 0.08, it was
considered zero. The covariance matrix of observational errors was assumed as a zero
matrix. The estimates of AOD at every grid cell were determined from Equation (1).

3. Results

Using the STOI method, we estimated the distribution of the daily averaged AOD
in Europe for 2015–2016. Figure 3 shows an example of the distribution of daily mean
AOD at 870 nm before STOI (modeled by GEOS-Chem) and after STOI (estimated using
assimilated AERONET observations) for 17 July 2015. We chose the date arbitrarily. The
example illustrates the change in AOD distribution over Europe after applying STOI.

Figure 3 shows only individual cases and cannot be used for generalized conclusions.
The statistical processing of obtained estimates will be performed in the future. However,
Figure 3 confirms that the GEOS-Chem simulation underestimates AOD in general.

To validate the results, we compared the daily mean AOD estimated by STOI with
independent AERONET observations. The AERONET sites Granada, Lille, and Minsk (see
Figure 1, red triangles) were excluded from the assimilation scheme, and STOI for July and
November 2015 was performed using data from 83 remaining sites. July is the month with
the most AERONET observations. The number of observations is small in November in
the northern part of Europe because of many cloudy days. We considered only days with
Level 2.0 observations. At the Granada site, there were 29 days with observations in July
2015 and 28 days in November 2015. There were 21 days at the Lille site and 31 days at the
Minsk site in July 2015, and only 6 days at Lille and Minsk sites in November 2015.
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Figure 3. Distribution of daily mean AOD at 870 nm (a) modeled by GEOS-Chem and (b) estimated
with the use of assimilated AERONET observations for 17 July 2015.

The AERONET Granada, Lille, and Minsk sites chosen for validation also differ in the
number of neighboring AERONET sites and the distance between sites. Minsk is located in
the eastern European region, where observations are sparse. The location of AERONET
sites in the Minsk region is shown in Figure 4a. Only six AERONET stations operated in
2015 within the correlation length for the Minsk site, and all of them are at a significant
distance from this AERONET site.

Figure 4. Location of the AERONET sites (black triangles) considered in the assimilation scheme
for the Minsk region (a), Lille region (b), and Granada region (c). Red triangles are the sites chosen
for validation.
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In contrast with the Minsk site, there is a significant amount of AERONET sites close
to the Granada and Lille sites. Nineteen AERONET sites were taken into account in the
Lille region. The location of these sites is shown in Figure 4b. Twenty AERONET sites were
considered in the Granada region. Their location is shown in Figure 4c.

We obtained estimates of daily mean AOD at each of the excluded sites for every
day in November and July 2015. We calculated root-mean-square errors of the estimates
using AOD observations at those sites when Level 2.0 observations existed, assuming a
negligible error of the AERONET AOD observations. The root–mean–square errors (RMSE)
of model-simulated AOD were calculated at the Granada, Lille, and Minsk sites. The
comparison results are shown in Table 1 for July and Table 2 for November. In parentheses,
the reduction in RMSE of the estimate after STOI is shown in tables.

Table 1. Root-mean-square errors of the aerosol optical depth (AOD) calculated using GEOS-Chem
and assimilated using spatial-temporal optimal interpolation (STOI) as compared to AOD observed
by AERONET in July 2015.

Wavelength
nm

Granada
29 Observations

Lille
21 Observations

Minsk
31 Observations

GEOS-Chem STOI GEOS-Chem STOI GEOS-Chem STOI

440 0.127 0.046 (64%) 0.091 0.055 (40%) 0.090 0.068 (24%)

675 0.113 0.034 (70%) 0.057 0.032 (44%) 0.047 0.036 (23%)

870 0.111 0.034 (69%) 0.046 0.023 (50%) 0.032 0.026 (19%)

Table 2. Root-mean-square errors of the aerosol optical depth (AOD) calculated using GEOS-Chem
and assimilated using spatial-temporal optimal interpolation (STOI) as compared to AOD observed
by AERONET in November 2015.

Wavelength
nm

Granada
28 Observations

Lille
6 Observations

Minsk
6 Observations

GEOS-Chem STOI GEOS-Chem STOI GEOS-Chem STOI

440 0.058 0.041 (29%) 0.043 0.034 (21%) 0.053 0.050 (6%)

675 0.030 0.024 (20%) 0.017 0.019 (−12%) 0.039 0.033 (15%)

870 0.025 0.018 (28%) 0.009 0.015 (−67%) 0.034 0.023 (32%)

4. Discussion and Conclusions

In this study, we presented a spatial-temporal optimal interpolation method for eval-
uating atmospheric aerosol load in locations where direct measurements on-site are un-
available. The observations in neighboring AERONET sites and model retrievals were
linearly combined, accounting for their relative errors, to estimate the spatial and temporal
distribution of AOD. The AOD values were calculated with the use of STOI to check the
STOI method applicability. Results were compared with observations at Granada, Lille,
and Minsk AERONET sites in July and November 2015.

In July, the RMSE of the estimate after STOI is significantly less than the RMSE of
model-simulated AOD for every three sites at every three wavelengths. After averaging
over three wavelengths (Table 1), the reduction in RMSE of the estimate after STOI in July
is 68% for the Granada site, 45% for the Lille site, and 22% for the Minsk site. The best
improvement among those three sites is achieved for Granada. This improvement is due to
the presence of a number of AERONET stations located close to the Granada site, and the
significant errors in the GEOS-Chem calculations for the Granada site during the period
under consideration. A relatively poor improvement occurs for the Minsk site because of
insufficient coverage of observations in the eastern European region. The dominant source
of errors in assimilated AOD in this region arises from uncertainties in the model results.

In November, the RMSE of the estimate after STOI for Granada is comparable with
that in July. However, the RMSE of modeled AOD was significantly lower in November
2015 than in July 2015. Accordingly, the reduction in RMSE is lower in November. For the
Minsk site, the RMSE of both modeled and assimilated AOD is approximately the same



Atmosphere 2023, 14, 32 9 of 12

in July and November. Averaged over three wavelengths, the reduction in RMSE of the
estimate after STOI in November (Table 2) is 26% for the Granada site, and 18% for the
Minsk site. For the Lille site, the percentage of STOI RMSE in November is negative: −19%
on average, which is due to a perfect agreement between modeled and observed AOD for
Lille in November, especially for the 870 nm wavelength. That is most likely a rare case.

In [43], we evaluated the correlation between the observed AOD and the modeled by
GEOS-Chem AOD values, using statistics of observations at the 88 European AERONET
sites for the 2015–2016 period. The correlation coefficients obtained in [43] were 0.60, 0.53,
and 0.45 for wavelengths 440, 675, and 870 nm, respectively. Therefore, the discrepancy
between observed and modeled values of AOD is usually significant.

Generally, the reduction of the RMSE averaged over two months, and three sites are
about 25%. The result shows that STOI improves an estimate of AOD compared to model
calculations. In the locations where the AERONET site density is high, STOI expectedly
shows better improvements. In this paper, we assimilated AERONET data only. The
satellite data assimilation will be considered using STOI in future work. Although the
present study is focused on AOD only, the STOI technique can be applied to other aerosol
properties and atmospheric species.
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