Investigation of the Pre- and Co-Seismic Ionospheric Effects from the 6 February 2023 M7.8 Turkey Earthquake by a Doppler Ionosonde
Abstract
:1. Introduction
2. Material and Methods
2.1. The Doppler Sounding Technique
2.2. Geomagnetic Conditions
3. Ionospheric Effects of the Earthquake
3.1. Seismoacoustic Effect in the Ionosphere
3.1.1. Calculation of the Trajectory and Reflection Height of the Sounding Radio Wave
- -
- The geographical coordinates of the sub-ionospheric point at the first hop of the radio path are N33.951, E54.709, with the corresponding distance between this point and the epicenter of the Turkey earthquake along the earth’s surface being km;
- -
- The height of radio wave reflection at the first hop of the radio path is km;
- -
- The distance of the radio wave reflection point in the ionosphere from the transmitter is 827.4 km;
- -
- The distance between the transmitter and the point of radio wave reflection from the earth’s surface is 1504.1 km;
- -
- The azimuth of the radio path trajectory in the direction from the transmitter to the receiver is 51.74, and the elevation angle of the trajectory at the point of the transmitter is 20.6;
- -
- The azimuth of the vector of the geomagnetic field in the reflection point is 4.89, and the angle between this vector and the vertical Z axis is 52.85.
3.1.2. Calculation of the Arrival Time of the Surface Seismic Wave to the Sub-Ionospheric Point
3.1.3. The Propagation Time of Infrasonic Wave Up to the Reflection Point of the Sounding Radio Wave
3.1.4. Comparison of the Doppler Frequency Shift Variation with the Seismic Waveform
3.2. Pre-Seismic Ionospheric Effects
3.2.1. The Variation in the Critical Frequency
3.2.2. The Doppler Frequency Shift of Ionospheric Signal
4. Conclusions
- 1.
- On 6 February 2023, at 01:34:12 UTC, ∼17 min (988 s) after the main shock, a co-seismic disturbance was detected in the variation in the Doppler frequency shift of ionospheric signal. The total duration of the effect was 160 s and its double amplitude was above 2 Hz, which considerably exceeds the background fluctuation of Doppler frequency. The effect observed on the variation in Doppler frequency was a result of penetration into the ionosphere of the acoustic waves, which were generated by the surface seismic Rayleigh wave. The sequence of the disturbance propagation includes the time necessary for the Rayleigh wave to cover the distance from the epicenter to the first sub-ionospheric point and the spreading time of acoustic waves from the surface of the Earth up to the reflection point of the sounding radio wave in the ionosphere.
- 2.
- A considerable correlation degree () was revealed between the registered waveforms of the Doppler frequency shift and of the surface seismic Rayleigh wave. The correlation diminishes when increasing the number of compared waveform periods.
- 3.
- Evaluation, by the two independent methods, of the height reached by the acoustic waves in the ionosphere and of the reflection height of the sounding radio wave demonstrates a good coincidence between the experimental and calculated data, and gives close estimates that differ only by 0.4 km.
- 4.
- Above the preparation region of the earthquake, as defined by the Dobrovolsky radius, the anomalous effects were found in the ionosphere among the variations of the Doppler frequency and of the critical frequency . Thus, 8 days before the earthquake, the Doppler ionosonde registered a noticeable rise in Doppler frequency, which continued to grow until the main shock; a decrease in the critical frequency was detected simultaneously by the ionogram of the ionospheric station NI135 at Cyprus island.
- 5.
- An appearance of pre-seismic ionospheric anomalies detected before the earthquake in Turkey by the two independent methods may be considered in accordance with the concept of lithospheric–atmospheric–ionospheric coupling.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- SAGE—Seismological Facility for the Advancement of Geoscience. Available online: https://ds.iris.edu (accessed on 1 June 2023).
- Davies, K.; Baker, D. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. 1965, 70, 2251–2253. [Google Scholar] [CrossRef]
- Watts, Y.M.; Davies, K. Rapid frequency analysis of fading radio signals. J. Geophys. Res. 1960, 65, 2295–2301. [Google Scholar] [CrossRef]
- Leonard, R.S.; Barnes, R.A. Observation of ionospheric disturbances following the Alaskan earthquake. J. Geophys. Res. 1965, 70, 1250–1253. [Google Scholar] [CrossRef]
- Blank, E. Observations in the upper atmosphere of infrasonic waves from natural or artificial sources–A summary. Ann. Geophys. 1985, 3, 673–687. [Google Scholar]
- Artru, J.; Farges, T.; Lognonne, P. Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal-mode modelling. J. Int. 2004, 158, 1067–1077. [Google Scholar] [CrossRef]
- Liu, Y.; Tsai, Y.B.; Chen, S.W.; Lee, C.P.; Chen, Y.C.; Yen, H.Y.; Chang, W.Y.; Liu, C. Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophys. Res. Lett. 2004, 33, L02103. [Google Scholar] [CrossRef]
- Astafyeva, E. Ionospheric detection of natural hazards. Rev. Geophys. 2019, 57, 1265–1288. [Google Scholar] [CrossRef]
- Laštovička, J.; Base, J.; Hruska, F.; Chum, J.; Sindelarova, T.; Horalek, J.; Zednik, J.; Krasnov, V. Simultaneous infrasonic, seismic, magnetic, and ionospheric observations in an earthquake epicenter. J. Atmos. Sol.-Terr. Phys. 2010, 72, 1231–1240. [Google Scholar] [CrossRef]
- Krasnov, V.M.; Drobzheva, Y.V.; Chum, J. Infrasonic waves in the ionosphere generated by a weak earthquake. J. Atmos. Sol.-Terr. Phys. 2011, 73, 1930–1939. [Google Scholar] [CrossRef]
- Salikhov, N.; Shepetov, A.; Pak, G.; Nurakynov, S.; Ryabov, V.; Saduyev, N.; Sadykov, T.; Zhantayev, Z.; Zhukov, V. Monitoring of gamma radiation prior to earthquakes in a study of lithosphere-atmosphere-ionosphere coupling in Northern Tien Shan. Atmosphere 2022, 13, 1667. [Google Scholar] [CrossRef]
- Chum, J.; Hruska, F.; Zednik, J.; Laštovička, J. Ionospheric disturbances (infrasound waves) over the Čzech Republic excited by the 2011 Tohoku earthquake. J. Geophys. Res. 2012, 117, A08319. [Google Scholar] [CrossRef]
- Chum, J.; Liu, J.Y.; Laštovička, J.; Fišer, J.; Mošna, Z.; Baše, J.; Sun, Y.Y. Ionospheric signatures of the April 25, 2015 Nepal earthquake and the relative role of compression and advection for Doppler sounding of infrasound in the ionosphere. Earth Planets Space 2016, 68, 24. [Google Scholar] [CrossRef]
- Drobzhev, V.I.; Krasnov, V.M.; Salikhov, N.M. Ionospheric disturbances accompanying earthquakes and explosions. Radiophys. Quant. Electr. 1978, 21, 1295–1296. [Google Scholar] [CrossRef]
- Drobzhev, V.I.; Zheleznyakov, E.V.; Idrisov, I.K.; Kaliev, M.Z.; Kazakov, V.V.; Krasnov, V.M.; Pelenitsyn, G.M.; Savel’ev, V.L.; Salikhov, N.M.; Shingarkin, A.D. Ionospheric effects of the acoustic wave above the epicenter of an industrial explosion. Radiophys. Quant. Electr. 1987, 30, 1047–1051. [Google Scholar] [CrossRef]
- Krasnov, V.M.; Drobzheva, Y.V.; Laštovička, J. Recent advances and difficulties of infrasonic wave investigation in the ionosphere. Surv. Geophys. 2006, 27, 169–209. [Google Scholar] [CrossRef]
- Laštovička, J. Lower ionosphere response to external forcing: A brief review. Adv. Space Res. 2009, 43, 1–14. [Google Scholar] [CrossRef]
- Chum, J.; Urbář, J.; Laštovička, J. Continuous Doppler sounding of the ionosphere during solar flares. Earth Planets Space 2018, 70, 198. [Google Scholar] [CrossRef]
- Chum, J.; Liu, J.Y.; Podolska, K.; Šindelářová, T. Infrasound in the ionosphere from earthquakes and typhoons. J. Atm. Sol.-Terr. Phys. 2018, 171, 72–82. [Google Scholar] [CrossRef]
- Pulinets, M.S.; Budnikov, P.A.; Pulinets, S.A. Global ionospheric response to intense variations of solar and geomagnetic activity according to the data of the GNSS global networks of navigation receivers. Geomagn. Aeron. 2023, 63, 175–185. [Google Scholar] [CrossRef]
- Salikhov, N.M.; Pak, G.D. Ionospheric effects of solar flares and earthquake according to Doppler frequency shift on an inclined radio path. Bull. Nat. Acad. Sci. Kazakhstan Repub. 2020, 331, 108–115. [Google Scholar] [CrossRef]
- Kikuchi, T.; Chum, J.; Tomizawa, I.; Hashimoto, K.K.; Hosokawa, K.; Ebihara, Y.; Supnithi, P. Penetration of the electric fields of the geomagnetic sudden commencement over the globe as observed with the HF Doppler sounders and magnetometers. Earth Planets Space 2021, 73, 10. [Google Scholar] [CrossRef]
- Salikhov, N.; Shepetov, A.; Pak, G.; Saveliev, V.; Nurakynov, S.; Ryabov, V.; Zhukov, V. Disturbances of Doppler frequency shift of ionospheric signal and of telluric current caused by atmospheric waves from explosive eruption of Hunga Tonga volcano on January 15, 2022. Atmosphere 2023, 14, 245. [Google Scholar] [CrossRef]
- Oyama, K.I.; Devi, M.; Ryu, K.; Chen, C.H.; Liu, J.Y.; Liu, H.; Bankov, L.; Kodama, T. Modifications of the ionosphere prior to large earthquakes: Report from the Ionosphere Precursor Study Group. Geosci. Lett. 2016, 3, 6. [Google Scholar] [CrossRef]
- Conti, L.; Picozza, P.; Sotgiu, A. A critical review of ground based observations of earthquake precursors. Front. Earth Sci. 2021, 9, 676766. [Google Scholar] [CrossRef]
- Picozza, P.; Conti, L.; Sotgiu, A. Looking for earthquake precursors from space: A critical review. Front. Earth Sci. 2021, 9, 676775. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwivedi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient effects in atmosphere and ionosphere preceding the 2015 M7.8 and M7.3 Gorkha-Nepal earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, X.; Du, X. Analysis of ionospheric perturbations possibly related to Yangbi Ms6.4 and Maduo Ms7.4 earthquakes on 21 May 2021 in China using GPS TEC and GIM TEC data. Atmosphere 2022, 13, 1725. [Google Scholar] [CrossRef]
- Chen, C.H.; Sun, Y.Y.; Xu, R.; Lin, K.; Wang, F.; Zhang, D.; Zhou, Y.; Gao, Y.; Zhang, X.; Yu, H.; et al. Resident waves in the ionosphere before the M6.1 Dali and M7.3 Qinghai earthquakes of 21–22 May 2021. Earth Space Sci. 2022, 9, e2021EA002159. [Google Scholar] [CrossRef]
- Heki, K. Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, L17312. [Google Scholar] [CrossRef]
- Heki, K.; Enomoto, Y. Preseismic ionospheric electron enhancements revisited. J. Geophys. Res. Space Phys. 2013, 118, 6618–6626. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, S.W.; Chen, Y.C.; Yen, H.Y.; Chang, C.P.; Chang, W.Y.; Tsai, L.C.; Chen, C.H.; Yang, W.H. Seismo-ionospheric precursors of the 26 December 2006 M7.0 Pingtung earthquake doublet. Terr. Atmos. Ocean. Sci. 2008, 19, 751–759. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O.A.; Ondoh, T.; Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Commun. Res. Lab. Tokyo 1996, 43, 169–180. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Ghosh, S.; Palit, S.; Chakrabarti, S.K.; Ray, S. Numerical modeling of possible lower ionospheric anomalies associated with Nepal earthquake in May, 2015. Adv. Space Res. 2017, 60, 1787–1796. [Google Scholar] [CrossRef]
- Politis, D.Z.; Potirakis, S.M.; Sasmal, S.; Malkotsis, F.; Dimakos, D.; Hayakawa, M. Possible pre-seismic indications prior to strong earthquakes that occurred in southeastern Mediterranean as observed simultaneously by three VLF/LF stations installed in Athens (Greece). Atmosphere 2023, 14, 673. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Nickolaenko, A.P.; Hobara, Y. Seismogenic ULF/ELF wave phenomena: Recent advances and future perspectives. Open J. Earthq. Res. 2023, 12, 45–113. [Google Scholar] [CrossRef]
- Pulinets, S.; Davidenko, D. Ionospheric precursors of earthquakes and Global Electric Circuit. Adv. Space Res. 2014, 53, 709–723. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.P.; Karelin, A.V.; Davidenko, D.V. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. 2015, 55, 521–538. [Google Scholar] [CrossRef]
- Parrot, M.; Tramutoli, V.; Liu, T.J.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Salikhov, N.M.; Somsikov, V.M. The program- and hardware complex for registration of the Doppler frequency shift of ionosphere radio-signal over earthquake epicenters (in Russian). Bull. Nat. Acad. Sci. Kazakhstan Repub. 2014, 296, 115–121. [Google Scholar]
- BBC Frequencies and Sites. Available online: https://www.short-wave.info (accessed on 1 June 2023).
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Kurkin, V.I.; Polekh, N.M.; Zolotukhina, N.A. Effect of weak magnetic storms on the propagation of HF radio waves. Geomagn. Aeron. 2022, 62, 104–115. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Yang, X.; Yang, M.; Zhang, T.; Bao, Z.; Wu, W.; Qiu, G.; Yang, X.; Lu, Q. The Analysis of lithosphere-atmosphere-ionosphere coupling associated with the 2022 Luding Ms6.8 earthquake. Remote Sens. 2023, 15, 4042. [Google Scholar] [CrossRef]
- World Data Center for Geomagnetism, Kyoto. Available online: https://wdc.kugi.kyoto-u.ac.jp (accessed on 1 June 2023).
- Community Coordinated Modeling Center. Available online: https://ccmc.gsfc.nasa.gov (accessed on 1 June 2023).
- Laboratory of X-ray Astronomy of the Sun. Available online: https://tesis.xras.ru/en/ (accessed on 1 June 2023).
- Global Ionosphere Radio Observatory. Available online: https://giro.uml.edu/ (accessed on 1 June 2023).
- Krasnov, V.M.; Drobzheva, Y.V. Nonlinear acoustics in the in homogeneous atmosphere within the limits of analytical solutions. In The printeryKROM; KROM: St. Petersburg, Russia, 2018; p. 172. [Google Scholar]
- Krasnov, V.M.; Kuleshov, Y.V. Variation of infrasonic signal spectrum during wave propagation from Earth’s surface to ionospheric altitudes. Acoust. Phys. 2014, 60, 19–28. [Google Scholar] [CrossRef]
- Haralambous, H.; Guerra, M.; Chum, J.; Verhulst, T.G.W.; Barta, V.; David, A.; Cesaroni, C.; Galkin, I.; Marta, K.; Mielich, J.; et al. Multi-instrument observations of various ionospheric disturbances caused by the 6 February 2023 Turkey earthquake. In ESS Open Archive; 2023; Available online: https://essopenarchive.org/users/617934/articles/643145-multi-instrument-observations-of-various-ionospheric-disturbances-caused-by-the-6-february-2023-turkey-earthquake (accessed on 25 July 2023).
- Krasnov, V.M.; Drobzheva, Y.V.; Chum, J. Far-field coseismic ionospheric disturbances of Tohoku earthquake. J. Atmos. Sol.-Terr. Phys. 2015, 135, 12–21. [Google Scholar] [CrossRef]
- Sharma, K.; Dabas, R.S.; Sarkar, S.K.; Das, R.M.; Ravindran, S.; Gwal, A.K. Anomalous enhancement of ionospheric F2 layer critical frequency and total electron content over low latitudes before three recent major earthquakes in China. J. Geophys. Res. Space Phys. 2010, 115, A11313. [Google Scholar] [CrossRef]
- Khan, M.M.; Ghaffar, B.; Shahzad, R.; Khan, M.R.; Shah, M.; Amin, A.H.; Eldin, S.M.; Naqvi, N.A.; Ali, R. Atmospheric anomalies associated with the 2021 Mw7.2 Haiti earthquake using machine learning from multiple satellites. Sustainability 2022, 14, 14782. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Chen, C.S. A statistical investigation of pre-earthquake ionospheric anomaly. J. Geophys. Res. 2006, 111, 5304. [Google Scholar] [CrossRef]
Station | Coordi- nates | Epicenter Distance, km | , km·s | , km·s | , km·s | Propa-gation Time, t, s | |
---|---|---|---|---|---|---|---|
SIMI: Simiganj, Tajikistan | N38.66 E69.01 | 2801 | 8.618 | 4.739 | 1.818 | 3.704 | 429.5 |
KBL: Kabul, Afghanistan | N34.54 E69.04 | 2890 | 8.704 | 4.764 | 1.819 | 3.696 | 430.5 |
MV06: Guzdek, Azerbaijan | N40.37 E49.68 | 1153 | 7.790 | 4.350 | 1.790 | 3.731 | 426.4 |
TRLT: Trialeti, Georgia | N41.57 E44.15 | 785 | 7.696 | 4.289 | 1.794 | 3.504 | 454.1 |
sub-ionospheric reflection point | N33.54 E54.00 | 1591 | – | – | – | 3.700 | 430.0 |
Correlation Coefficients, r, in Dependence on the Number of Wave Periods (1–4) Participating in Comparison of Waveforms | ||||
---|---|---|---|---|
Seismological Station | 1 | 2 | 3 | 4 |
KBL: Kabul, Afghanistan | 0.859 | 0.785 | 0.611 | 0.546 |
SIMI: Simiganj, Tajikistan | 0.855 | 0.742 | 0.497 | 0.456 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salikhov, N.; Shepetov, A.; Pak, G.; Nurakynov, S.; Kaldybayev, A.; Ryabov, V.; Zhukov, V. Investigation of the Pre- and Co-Seismic Ionospheric Effects from the 6 February 2023 M7.8 Turkey Earthquake by a Doppler Ionosonde. Atmosphere 2023, 14, 1483. https://doi.org/10.3390/atmos14101483
Salikhov N, Shepetov A, Pak G, Nurakynov S, Kaldybayev A, Ryabov V, Zhukov V. Investigation of the Pre- and Co-Seismic Ionospheric Effects from the 6 February 2023 M7.8 Turkey Earthquake by a Doppler Ionosonde. Atmosphere. 2023; 14(10):1483. https://doi.org/10.3390/atmos14101483
Chicago/Turabian StyleSalikhov, Nazyf, Alexander Shepetov, Galina Pak, Serik Nurakynov, Azamat Kaldybayev, Vladimir Ryabov, and Valery Zhukov. 2023. "Investigation of the Pre- and Co-Seismic Ionospheric Effects from the 6 February 2023 M7.8 Turkey Earthquake by a Doppler Ionosonde" Atmosphere 14, no. 10: 1483. https://doi.org/10.3390/atmos14101483
APA StyleSalikhov, N., Shepetov, A., Pak, G., Nurakynov, S., Kaldybayev, A., Ryabov, V., & Zhukov, V. (2023). Investigation of the Pre- and Co-Seismic Ionospheric Effects from the 6 February 2023 M7.8 Turkey Earthquake by a Doppler Ionosonde. Atmosphere, 14(10), 1483. https://doi.org/10.3390/atmos14101483