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Abstract: The close proximity of crosswinds to airport runways presents great hazards to landing
operations. As a result, an aircraft is susceptible to encountering a loss of control. Elevated levels of
turbulence are commonly linked with strong crosswind speeds over the runway glide path. Therefore,
it is imperative to evaluate the factors that impact crosswind speeds. The susceptibility of the runways
at Hong Kong International Airport (HKIA) to severe crosswinds is well established. This study
aimed to build a scaled model of HKIA, along with its surrounding terrain/buildings, within a TJ-3
ABL wind tunnel to compute the crosswind speeds under different wind directions over the runway
glide path. Subsequently, utilizing the outcomes of the experiment, a cutting-edge local cascade
ensemble (LCE) model was employed in conjunction with a tree-structured Parzen estimator (TPE)
to evaluate the crosswind speed over the north runway glide path. The comparative analysis of
the TPE-LCE model was also conducted with other machine learning models. The TPE-LCE model
demonstrated superior predictive capabilities in comparison to alternative models, as assessed by
MAE (0.490), MSE (0.381), RMSE (0.617), and R2 (0.855). The SHAP analysis, which utilized TPE-LCE
predictions, revealed that two factors, specifically “Effect of Terrain/Buildings” and “Distance from
Runway,” exhibiting noteworthy influence over the probability of encountering elevated crosswind
speeds over the runway glide path. The optimal conditions for high-crosswind speeds were found
to be characterized by the absence of nearby terrain features or structures, a smaller distance from
HKIA’s north runway threshold, and with a wind direction ranging from 125 to 180 degrees.

Keywords: aviation safety; crosswind speed; wind tunnel; local cascade ensemble

1. Introduction

The crosswind refers to a wind vector that is orthogonal to the direction of travel of an
aircraft. The impact of crosswind on air navigation is of the utmost importance, particularly
during takeoff and landing, due to its potential to cause drift [1]. Parallel alignment with
the wind during takeoff and landing procedures results in increased efficiency. The ground-
speed of the aircraft is reduced, a shorter runway is required for takeoff, and the pilot has
more time to make the necessary adjustments for a smooth landing. As the wind direction
shifts to a perpendicular angle with respect to the runway, resulting in a crosswind scenario
as depicted in Figure 1, the aircraft’s directional stability is impacted. In the event that a
pilot neglects to adequately adjust for the presence of a crosswind, it is possible for the
aircraft to deviate from the runway or for the landing gear to encounter a side load.
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Figure 1. Crosswind effect on the aircraft.

The process of safely landing an aircraft is regarded by many as one of the most
challenging assignments within a pilot’s regular flight operations. To accomplish this task,
pilots must skillfully maneuver the aircraft while consistently acknowledging and adjusting
to changes in the immediate surroundings, such as air traffic control (ATC) restrictions
and local weather patterns, among other factors. The second category commonly evokes
considerable concern among pilots within the realm of civil aviation [2]. The occurrence
of landing in a crosswind serves as a prominent illustration of how adverse weather
conditions can intensify the complexity of an already challenging task. As the intensity
of the crosswind increases, the pilot is faced with heightened physical demands and an
increased cognitive workload in carrying out the task. It is not recommended for a pilot
to attempt to perform an aircraft landing under conditions that exceed their personal
limitations or the aerodynamic limitations set by the aircraft manufacturer [3]. As a
component of the pre-landing situational analysis, it is imperative to determine whether
the crosswind component exceeds the maximum capability of the aircraft.

When executing a landing, a significant number of pilots take into account the cross-
wind velocities and the visibility of the runway. However, it is important to note that a
potential danger persists even after the aircraft has made contact with the ground. Accord-
ing to sources [4,5], runway excursions are often influenced by crosswinds. In the context
of crosswind landings, it is important to note that damage to the landing gear can pose
a significant risk on the runway, potentially requiring emergency measures or extensive
runway maintenance [6]. It is probable that the occurrence of stress fractures in the landing
gear during a takeoff under crosswind conditions may serve as a contributing factor to
the complete failure of the landing gear during an attempted touchdown. Under these
conditions, the issue of losing directional control is of substantial significance [7]. If there is
continuous lateral drift during the landing process, the tires of the aircraft may experience
“side loading” [8], resulting in potential occurrences of sliding, fishtailing, or drifting on the
runway. The observation of tire marks on the runway serves as a distinctive indicator of the
occurrence of side loading. Pilots may occasionally respond to side loading by exhibiting
excessive compensatory actions, leading to a potential loss of control [9]. Such excessive
over-correction and side loading can accelerate the wear and tear of even the most durable
aircraft tires. Under certain conditions, the tires could potentially experience excessive
weight and subsequently malfunction.

Although crosswind has a significant effect on the operation of civil aviation aircraft,
it also affects other modes of transportation, including trains (both slow and high speed)
and road vehicles, etc. Several research works have attempted to study the effect of cross-
winds using both numerical simulation and wind tunnel studies. For instance, the study
conducted by Niu et al. [10] employed computational fluid dynamics (CFD) to evaluate the
impact of windbreak walls, both single-sided and double-sided, on the fluctuating aerody-
namic characteristics of a high-speed train when subjected to crosswinds on a double-track
railway. Chen et al. [11] employed a detached-eddy simulation (DES) technique to investi-
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gate the development and progression of the slipstream velocity generated by a high-speed
train in a crosswind. In high-speed rail systems, it is a prevalent occurrence for trains to
undergo an abrupt transition from a tunnel to a level surface. Under such circumstances,
the operational safety of a high-speed train may be significantly jeopardized due to the
existence of strong crosswinds. Deng et al. [12] investigated the turbulent component of
a crosswind in a tunnel-flat ground-tunnel scenario using a CFD approach. One of the
primary factors contributing to traffic accidents on the bridge-tunnel section, which links
bridges and tunnels, is the presence of strong crosswinds. Charuvisit et al. [13] assessed the
impact of a wind barrier on a vehicle traversing the turbulent airflow generated by a bridge
tower in a crosswind. Ding et al. [14] utilized a strategy centered on large eddy simulation
(LES) to evaluate the characteristics of the flow field and the safety of vehicles on a bridge
under the influence of turbulent crosswinds.

Researchers in aviation-related fields have employed numerical simulations and wind
tunnel tests to assess the cross winds, wind shear events and turbulence near airport run-
ways. Lei et al. [15] conducted a simulation of wind shear due to terrain in the vicinity of
Hong Kong International Airport (HKIA) using Reynolds-averaged Navier–Stokes (RANS)
equations as well as LES based on CFD. Chen et al. [16] built a high-resolution LES by
incorporating inputs from the Weather Research and Forecasting (WRF) model. Boilley
and Mahfoud [17] utilized the nonhydrostatic Meso-NH model to perform numerical
simulations in order to estimate the wind shear at an airport in Nice, France. Similarly,
Rasheed and Srl [18] employed CFD analysis to assess the turbulence caused by terrain at
Kristiansand Airport, Kjevik. The CFD model of terrain-induced wind shear was also devel-
oped from Beijing Capital International Airport (BCIA) by Zhang et al. [19]. Furthermore,
turbulence intensity has been assessed by researchers using computational fluid dynamics
(CFD). The study employed both RANS and LES simulations to analyze the transient
nature of flow disturbances caused by terrain over the airport runway glide paths [20].
Shimoyama et al. [21] also employed LES to gain an understanding of the turbulence near
the runway of Shonai airport, Japan. The aforementioned studies demonstrated that the
CFD model successfully replicated wind shear and turbulence in close proximity to the
airport. The utilization of simulation models imposed constraints on the temporal and
spatial extent of these investigations. The RANS equation was utilized by the researchers in
order to simulate and forecast the mean wind properties at the airport. Nevertheless, this
equation lacks the ability to directly assess the true characteristics of the wind field. Wind
tunnel research offers an alternative method to numerical simulation models in evaluating
wind shear and turbulence near airport runways. Wind tunnel experiments are an essential
aspect in assessing the accurateness of computational simulations. Wind tunnel tests have
been conducted by researchers from multiple disciplines in order to evaluate the wind
characteristics in the vicinity of airport runways as well as towers [22–25].

Although wind tunnel experiments were successfully employed by many researchers,
their main limitations are the expensive testing costs and the insufficient availability of
testing facilities and time. In order to achieve the desired outcomes, it is necessary to
conduct multiple experiments in diverse environments. This process incurs costs in terms
of time and financial resources, leading to a decline in productivity. To overcome the
mentioned limitations, it is necessary to substitute experimental work with empirical
modeling strategies, such as machine learning models and deep learning. The engineering
field has recently experienced significant advancements in machine learning approaches,
as demonstrated by several studies [26–29]. This trend can be explained by the increasing
demand for sophisticated computational methods to manage big datasets. A number of
researchers have been using it to couple machine learning algorithms with wind tunnel
experimental outcomes. Weng and Paal [30] built a machine learning model called ML-
WPP to forecast wind pressure for non-isolated low-rise buildings using the wind tunnel
experimenter. Lin et al. [31] used the machine learning model for estimating the crosswind
vibrations of rectangular cylinders. The detection of pressure patterns in buildings was
carried out by Kim et al. [32] through the utilization of an unsupervised machine learning
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technique. Within the field of tall structure engineering, various deep learning techniques
were proposed for the purpose of forecasting wind pressures.

The use of machine learning approaches has led to the creation of various tools
designed to predict the structural response caused by wind. Nevertheless, the efficacy of
its ability to alleviate the influence of crosswinds on the glide paths of airport runways is
considerably limited. The aim of this research was to develop non-parametric models that
can estimate crosswind speed on an airport runway glide path. The study utilizes the local
cascade ensemble (LCE) approach, which is known for its exceptional nonlinear mapping
and predictive abilities [33]. The optimization of the hyperparameters of the LCE approach
is achieved via the utilization of the Tree-Structured Parzen Estimator (TPE) [34]. The data
utilized to train and evaluate the models were acquired from wind tunnel experiments
carried out in the TJ-3 atmospheric boundary layer (ABL) wind tunnel. Following this,
SHAP-based feature importance and interaction analysis was carried out to assess to
importance of different factors. The implementation of a TPE-optimized regression model,
specifically the TPE-LCE, in combination with SHAP, is anticipated to yield a precise and
efficient approach for assessing crosswind speed over the glide path of airport runways.
The study procedure is fully illustrated in Figure 2.

Figure 2. Framework for the prediction and interpretation of crosswind speed over the airport
runway glide path.

The remainder of the article is structured in the following manner: in Section 2, the
wind tunnel experiments are presented along with a description of the LCE model, TPE,
SHAP, and performance metrics. Section 3 illustrates the computed hyperparameters using
the TPE approach, evaluates the performance of the LCE model and other machine learning
algorithms, conducted uncertainty analysis and interprets the results using SHAP. Section 4
is dedicated to presenting the conclusions and recommendations.

2. Materials and Methods
2.1. Effect of Wind at Hong Kong International Airport

The geographical location of the Hong Kong International Airport (HKIA) is situated
on the subtropical island of Lantau, which is positioned off the southeastern coast of the
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Chinese mainland, as illustrated in Figure 3 [35]. Multiple experimental and simulation
investigations have suggested that the intricate topography and significant contrast between
land and sea at HKIA make it vulnerable to the occurrence of harsh weather phenomena.
Based on pilot flight reports collected from the Hong Kong International Airport (HKIA), it
has been noted that wind shear has impacted roughly 1 in 500 flights since the airport’s
opening. Ninety-seven percent of the pilot reports indicated the presence of LLWS ranging
from 20 to 25 knots. As per the pilot reports, it was observed that approximately 70% of
the wind shear was attributed to terrain-induced factors. In addition to the geographical
features, neighboring edifices, as illustrated in Figure 4 [36], are also major sources of
low-altitude wind shear, crosswinds and turbulence [37].

Figure 3. Hong Kong International Airport near Lantau Island.

Figure 4. Buildings near and at Hong Kong International Airport.

2.2. Wind Tunnel Experiments

The current study utilized wind tunnel experiments to assess the crosswind speed over
the glide path of the northern runway at Hong Kong International Airport (HKIA) under
different inflow wind conditions. The testing area included Lantau Island, Hong Kong
International Airport (HKIA), and adjacent structures and terrain, spanning a distance
of 27.2 km and having an average elevation of approximately 425.2 m. The experiments
were carried out at the TJ-3 ABL wind tunnel, located at the State Key Laboratory for
Disaster Reduction in Civil Engineering at Tongji University in Shanghai. The wind tunnel
employed in the study was a closed low-velocity wind tunnel featuring a return-type
configuration. The dimensions of the testing area were reported as follows: a height of 2 m,
a length of 14 m, and a width of 15 m.



Atmosphere 2023, 14, 1561 6 of 21

The intricate topography, encompassing Lantau Island, adjacent structures, and the
northern runway of HKIA, was constructed utilizing a geometric scaling proportion of
1:4000 and a diameter of model as 6.8 m. The process of constructing the terrain model
was carried out through a systematic layer-by-layer technique following the contour lines.
The material used for this purpose was dense foam with a texture of one inch, which
corresponds to a variation in the actual terrain elevation of 40 m, as depicted in Figure 5a.
The reduced-scale model’s surface was coated with paint in order to imitate the rough
texture of a real mountain. The calculation of the blockage ratio of the wind tunnel was
performed through the utilization of Equation (1), which is ratio of the windward or
projected area of the test model by the cross-sectional area of the wind tunnel section. The
resulting value was determined to be 2.402%, falling below the recommended threshold
of 5% for wind tunnel investigations and meeting the necessary criteria for the wind
tunnel tests.

br(%) =
Apm

Act
× 100 =

(
0.106× 6.8

15× 2

)
× 100 = 2.402% (1)

Figure 5. Scaled model with different inflows.

The wind direction was altered in a methodical manner in 15-degree increments,
spanning from 90 to 240 degrees, taking into consideration the established air prevailing
trends of easterly to southeasterly winds and the southwest monsoon that is prevalent in
Hong Kong, which is depicted in Figure 5b. Eleven distinct types of wind conditions were
logged into the data collection system. It was determined that 0 degrees would represent
the north wind, 90 degrees would represent the east wind, 180 degrees would represent the
south wind, and 270 degrees would represent the west wind.

During the final approach phase, it is standard for an aircraft to maintain a glide path
of three degrees over the last three nautical miles prior to landing on the runway. The
trajectory of an approaching airplane is depicted by an imaginary slanted line that originates
from the end of the runway threshold and has a 3-degree inclination. The empirical data
were gathered at multiple locations positioned along the glide slope of the runway 07LA
and 25RA. Two distinct sets of eight measurement locations, denoted by (x1, x2, x3, x4)
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and (y1, y2, y3, y4), were purposefully positioned over the glide paths of runways 07LA
and 25RA, correspondingly, as depicted in Figure 5b. The probes were mounted using
customized stands, and the installation height was adjusted to ensure alignment with
the height of the measurement site. After conducting each operational condition test, the
Cobra probes were positioned in the direction of inflow. The determination of the vertical
distance of the points of measurement was accomplished through the utilization of a
trigonometric expression, as illustrated in Figure 6. The immutability of the glide path set at
a 3-degree inclination and the horizontal distances enabled the aforementioned facilitation.
The duration of 65.54 s was allotted for sampling each operational circumstance, with a
sampling frequency of 1000 Hz.

Figure 6. Computation of vertical distance of measurement points over the glide path.

It is pertinent to mention that none of the tests carried in the wind tunnel simulated
a specific inflow profile. Cobra probes were employed to precisely measure the inflow at
different elevations, owing to the non-slip nature of the earth/ground. This measure was
deemed necessary due to the lack of consistency in the approach flow. The probe registered
a minimum wind speed of 2 m/s. The sample experimental outcomes are provided in
Table A1.

2.3. Theoretical Overview of Local Cascade Ensemble

This study introduces a novel hybrid ensemble technique, namely Local Cascade
Ensemble (LCE), which is trained and tested on the outcomes of wind tunnel experiments.
The novel hybrid ensemble technique integrates a boosting–bagging strategy to address the
bias-variance trade-off encountered by machine learning algorithms, along with an implicit
divide-and-conquer approach for tailoring residuals on particular parts of the data.

The proposed technique amalgamates the advantageous features of the leading tree-
based ensemble techniques, namely random forest (RF) [38] and extreme gradient Boosting
(XGBoost) [39], and incorporates an additional diversification mechanism to enhance its
predictive ability in terms of generalization. Prior to elucidating the process in which LCE
integrates these techniques, we shall first introduce the fundamental principles underpin-
ning them, which will subsequently be employed in the explication of LCE. The trade-off
between bias and variance characterizes the ability of the machine learning algorithm to
extend its performance beyond the confines of the dataset. The presence of systematic
errors in the learning algorithm leads to bias, which is a contributing factor to the prediction
error. A learning algorithm exhibiting high bias is indicative of its inability to effectively
capture the inherent structure of the training set, resulting in under-fitting. The variance
is a statistical metric that quantifies the degree of responsiveness of the machine learning
algorithm to modifications in the training dataset. A high degree of variance in a machine
learning model indicates that it is exhibiting over-fitting behavior by closely tailoring its
learning to the data. The aim is to reduce both the bias and variance. The utilization of
bagging results in a significant reduction in variance. This technique involves the creation
of multiple iterations of a predictor, also known as bootstrap replicates, which are subse-
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quently combined to produce an aggregated predictor. Random forest is the state-of-the-art
technique that utilizes bagging and the XGBoost is considered the leading technique that
employs boosting. The disparity between bagging and boosting techniques is depicted
in Figure 7. The LCE algorithm utilizes a combination of boosting–bagging techniques to
effectively address the bias-variance trade-off commonly encountered by machine learning
models. Furthermore, it employs a divide-and-conquer methodology to tailor predictor
errors to specific segments of the training data. Figure 8 depicts the representation of LCE.

Figure 7. Working mechanism of bagging and boosting ensemble methods.

Figure 8. Working mechanism of LCE.

The LCE approach relies on the principle of cascade generalization, whereby a se-
ries of predictors are employed in a sequential manner, with additional attributes being
incorporated into the input dataset at each subsequent stage. The novel characteristics
are obtained through the utilization of the output produced by a predictor, commonly
referred to as a base learner, which provides predictions for a regression problem. The
LCE methodology employs a divide-and-conquer approach by locally applying cascade
generalization through a decision tree. Additionally, it mitigates bias across the decision
tree by utilizing boosting-based predictors as base learners. The base learner utilized in the
present study is the state-of-the-art boosting algorithm that has demonstrated a superior
performance (XGBoost). Specifically, XGB10 and XGB11 are depicted in Figure 8. During
the process of tree growth, the propagation of boosting is achieved by incorporating the
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output of the base learner at each decision node as additional attributes to the dataset. This
can be observed in Figure 8, where XGB10(X1) is added. The predictive performance of the
base learner can be evaluated by examining the outputs of the prediction, which indicate
its ability to accurately forecast a given sample. At the subsequent tier of the tree structure,
the dataset is augmented with additional outputs, which are subsequently utilized by
the base learner as a weighting mechanism to prioritize the correction of prior errors or
residuals. The utilization of bagging serves to alleviate the over-fitting that arises from the
boosted decision tree. Bagging is a technique that aims to reduce variance by generating
multiple predictors through the process of random sampling with replacement from the
initial dataset. This can be observed in Figure 8, where X1 and X2 are the examples of such
predictors. Ultimately, the trees are combined through a basic process of determining the
majority vote. The LCE algorithm stores the model generated by the base learner in each
node for the purpose of being utilized as a predictor.

2.4. Tree-Structured Parzen Estimator

The efficacy of each machine learning algorithm is dependent on its hyperparameters.
They exercise control over the learning model or the foundational structure of the model. In
practical application, a universally accepted approach for the selection of hyperparameters
is currently non-existent. As a result, hyperparameters are commonly established through
a process of trial and error, employing optimization search techniques, or alternatively,
are retained with their default settings. The issue of selecting optimal hyperparameters
can be addressed in a methodical manner through hyperparameter optimization, which
formulates the problem as an optimization task. The aim of this study is to determine a
specific set of hyperparameters that can efficiently reduce the disparity between predicted
and observed values.

The present study utilized the TPE algorithm to perform hyperparameter tuning. The
technique being referred to is a sequential model-based global optimization method that
demonstrates proficiency in the identification of hyperparameters for machine learning
algorithms. The Parzen window estimators were introduced as a means of addressing
the limitations of conventional Bayesian optimization [40,41] in handling categorical and
conditional hyperparameters. This development aimed to improve the efficacy of hyperpa-
rameter search strategies. The TPE algorithm utilizes Parzen-window density estimation
to generate probability density functions in a search space that is hyper-parametric in
nature. The formation of the search space can be accomplished through the utilization of a
logarithmic uniform or deterministic distribution.

In the iterative process of commencement, an initial distribution is initialized through
a random search method that involves the random selection of hyperparameter {Ω(i), y(i),
i =1, 2, . . . , ∆it}, where Ω shows the set of hyperparameters, y represents the corresponding
outcome of machine learning model via random hyperparameters, and ∆ illustrates the
required number of iterations. The TPE methodology diverges from traditional Bayesian
optimization approaches by employing Parzen window estimators (PWE) as its fundamen-
tal building block. The PWE, also referred to as the kernel density estimator, is a widely
used empirical approach utilized for the goal of density estimation. The PWE are utilized
for the estimation of densities pertaining to both favorable (good) and unfavorable (bad)
hyperparameters.

The hyperparameters that were computed are segregated into two sets through the
utilization of a quantile threshold value denoted by y∗. It is noteworthy that the selection
of this value is arbitrary. The PWE p(Ω|y ) is formulated by normalizing the samples
of hyperparameters, whether favorable or unfavorable, with respect to the algorithm’s
configuration space, as represented in Equation (2):

p(Ω|y ) =
{

Φfavourable(Ω) if y < y∗
Φunfavourable(Ω) if y ≥ y∗

(2)
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where y < y* denotes a higher threshold value than the function value. The equation
denoted as Equation (2) can be elucidated as the derivation of two distinct distributions for
the hyperparameters. Specifically, one distribution corresponds to the scenario where the
function value is below the threshold value, while the other distribution pertains to the
situation where the function value exceeds the threshold value. Equation (3) demonstrates
the steps for determining the optimal hyperparameter configuration.

Ω∗ = argmin
Φunfavourable(Ω)

Φfavourable(Ω)
(3)

The TPE is designed to determine the optimal hyperparameters by utilizing a set of
optimal observations and their corresponding distributions, while simultaneously selecting
the optimal observations. The TPE process’s comprehensive flowchart is illustrated in
Figure 9.

Figure 9. Working mechanism of TPE (*—optimal value).

2.5. SHAP Interpretation Mechanism

The Shapley additive explanations (SHAP) method, as put forward by Lundberg and
Lee [42], is employed for the purpose of interpreting the model’s output. The terminology
is derived from Shapley additive explanation, which is an additive explanation model
developed by SHAP, drawing inspiration from cooperative game theory [43]. In this model,
all the characteristics are considered as “contributors”. In the case of each anticipated
sample, the model produces a projected outcome, and the SHAP value represents the
assigned value for each characteristic in the sample, as proposed by Shapley [44]. Consider
a scenario involving an LCE model, wherein a group denoted as N, consisting of n attributes,
is utilized to make predictions for an outcome variable also denoted by N. In the SHAP
framework, the allocation of the contributions of each feature (denoted by Ξi for attribute i)
to the model outcome ν(N) is determined by their respective marginal contributions. The
representation of Shapley values is given by Equation (4), which is based on a set of axioms
aimed at ensuring a fair allocation of contributions from every attribute.

Ξi = ∑
B∈N

|B|!(n− |B| − 1)!
n!

[ν(B∪ {i})− ν(B)] (4)

2.6. Performance Measures

Various metrics, such as mean absolute error (MAE), mean squared error (MSE), root
mean square error (RMSE), and coefficient of determination (R2), can be utilized to assess
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and contrast the effectiveness of distinct models. The MAE (Equation (5)) is defined as
the mean of the absolute values of the prediction errors computed across all instances.
Equation (6) is utilized to calculate the MSE, by which the discrepancies between the
predicted and actual values is determined. The RMSE is computed as the square root of the
difference between the predicted and actual values (Equation (7)). The R2, ranging from 0
to 1, serves as an indicator of the predictive accuracy of a given model (Equation (8)).

MAE =
N

∑
n=1

|yn − yn|
N

(5)

MSE =
1
N

N

∑
n=1

(yn − yn)

2

(6)

RMSE =

√√√√ N

∑
n=1

(yn − yn)
2

N
(7)

R2 = 1− ∑N
n=1(yn − yn)

2

∑N
n=1
(
yn − yavg

)2 (8)

where:
N—The number of wind tunnel experimental outcomes
yn—The n-th observed value of crosswind speed from wind tunnel experiment
yn—The n-th predicted value of crosswind speed from different machine learning model.
yavg—The average value of all crosswind speeds.

3. Result and Discussion

This section has been subdivided into four sub-sections. Section 3.1 presents the
optimal hyperparameters of the LCE approach and other machine learning algorithms
using the tree-structured Parzen estimator (TPE) approach. The performance of LCE and
other machine learning regression models in terms of MAE, MSE, RMSE, and R2 are shown
in Section 3.2. Uncertainty analysis is conducted in Section 3.3 and the interpretation
by SHAP analysis is illustrated in Section 3.4. It is pertinent to mention that, before the
hyperparameter training of the LCE and other competitive machine learning models, the
label coding of each factor is performed as shown in Table 1.

Table 1. Label coding of different parameters.

Parameters Data Type Coding

Crosswind speed Continuous -

Effect of buildings/terrain Discrete 1: if the presence of buildings/terrains is taken into the considered;
0: otherwise.

Wind direction Continuous -

Runway corridor Discrete 1: if the assigned approach runway is Runway 25RA; 0: if the
assigned approach runway is Runway 07LA.

Distance from runway Discrete

1: if the crosswind speed is computed at 1MF from the runway
threshold; 2: if the crosswind speed is computed at 2MF from the
runway threshold; 3: if the crosswind speed is computed at 3MF

from the runway threshold; 0: if the crosswind speed is computed
at the runway threshold.

3.1. Optimal Hyperparameters via TPE

The efficacy of a machine learning model’s predictions and its ability to mitigate over-
fitting are heavily influenced by the values assigned to its hyperparameters, particularly the
hyperparameters. The present study focused on optimizing the hyperparameters of the LCE
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model, specifically n_estimators and max_depth, using the TPE approach. The primary
goal of this optimization was to improve the performance of the model by increasing
the R2 value. The LCE model encompasses a hyperparameter known as n_estimator,
which serves to determine the number of boosting iterations that will be performed. The
variable “max_depth” denotes the maximum depth that a regression tree can attain. The
maximum depth of a tree places a limitation on the quantity of nodes that can exist within
it. The magnitude of this hyperparameter governs the manner in which the independent
variables interact. Figure 10 illustrates the advancement of the TPE over 50 iterations,
utilizing R2 as the metric for both LCE and their competitive machine learning models. The
hyperparameters linked to the model were adjusted to maximize the R2 metric, resulting in
optimal predictive models. The optimal hyperparameters are illustrated in Table 2.

Figure 10. Progress of TPE for hyperparameter tuning. (a) LCE; (b) XGBoost; (c) KTBoost; (d) RF;
and (e) DT.

Table 2. Optimal hyperparameter values of different machine learning algorithms.

Models Hyperparameters Range Optimal Values

LCE {(learning_rate), (n_estimators)} {(0.1–0.20), (100–1000)} {0.13, 270}
KTBoost {(learning_rate), (n_estimators)} {(0.1–0.20), (100–1000)} {0.11, 185}
XGBoost {(learning_rate), (n_estimators)} {(0.1–0.20), (100–1000)} {0.25, 155}

RF {(n_estimators), (max_depth)} {(100–1000), (3–15)} {880, 5}
DT (max_depth) (3–15) 3

3.2. Prediction Results and Comparative Analysis

In addition to hyperparameter tuning as a strategy for mitigating over-fitting, it is
worth mentioning that the dataset was also subjected to shuffling and partitioning, whereby
40% and 50% of the data were, respectively, reserved for testing. The results suggest that
the metric values acquired during the testing of the model exhibited stability within a confi-
dence interval of 95%. No abnormal patterns were detected in the metrics when altering the
quantity of test data samples. Table 3 illustrates the performance metrics by utilizing both
the training and test datasets. The TPE-LCE model exhibited an exceptional performance
relative to alternative models, as indicated by its corresponding MAE, MSE, RMSE, and R2

metrics of 0.198, 0.103, 0.319, and 0.953 for the training dataset. The evaluation metrics for
the testing data were as follows: the MAE of 0.490, MSE of 0.381, RMSE of 0.617, and R2

value of 0.855. The multivariate linear regression model exhibited poor performance in both
the training and testing data, with an MAE of 1.762, MSE of 6.052, RMSE of 2.460, and R2 of
0.629 and with an MAE of 1.593, MSE of 4.359, RMSE of 2.088, and R2 of 0.694, respectively.
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Table 3. Performance evaluation of machine learning models and a statistical model.

Models
Training Dataset Testing Dataset

MAE MSE RMSE R2 MAE MSE RMSE R2

TPE-LCE 0.198 0.103 0.319 0.953 0.490 0.381 0.617 0.855
TPE-XGBoost 0.234 0.124 0.353 0.943 0.538 0.487 0.698 0.813
TPE-KTBoost 0.388 0.245 0.495 0.894 0.616 0.600 0.774 0.788

TPE-RF 0.452 0.363 0.602 0.833 0.593 0.664 0.815 0.746
TPE-DT 1.206 3.664 1.913 0.775 1.22 3.416 1.846 0.760

Linear regression 1.762 6.052 2.460 0.629 1.593 4.359 2.088 0.694

The correlation between the results of the experiments and the outcomes estimated by
the TPE-LCE model, other machine learning models and a multivariate linear regression
model is illustrated in Figure 11 via scatter plots. The results indicate that the TPE-LCE
model demonstrated a greater degree of alignment with the 45-degree reference line when
compared to alternative models. This was observed through the scatter plot which illus-
trated the outcomes of crosswind speed estimation from both the training and testing
datasets. The clustering pattern of the fitted points of the other models was comparatively
more dispersed around the 45-degree baseline, and their predictive precision was inferior
to that of the TPE-LCE model.

Figure 11. Cont.



Atmosphere 2023, 14, 1561 14 of 21

Figure 11. Plots for the prediction error using both training and testing datasets: (a) TPE-LCE model
based on the training dataset; (b) TPE-LCE model based on the testing dataset; (c) TPE-KTBoost model
based on the training dataset; (d) TPE-KTBoost model based on the testing data; (e) TPE-XGBoost
model based on training data; (f) TPE-XGBoost model based on testing dataset; (g) TPE-RF model
based on the training dataset; (h) TPE-RF model based on the testing dataset; (i) TPE-DT model based
on the training dataset; (j) TPE-DT model based on the testing dataset; (k) linear regression model
based on the training dataset; and (l) linear regression model based on the testing dataset.

3.3. Model Uncertainty Analysis

In order to accurately estimate the crosswind speed along the runway glide path
using the TPE-LCE approach, it is imperative to consider the related uncertainties that may
arise from the proposed scheme when calculating prediction error. The TPE-LCE model,
alternative machine learning models and linear regression model were also compared based
on their experimental-to-predicted ratio, as illustrated in Figure 12. In order to establish
consistency between the results of the experiments and estimated outcomes, a substantial
percentage of the data points (both in the training and testing phases) that are in close
proximity (within a range from 0.90 to 1.10) to the unity line serve as a robust indicator of
minimal levels of uncertainty. The calculated mean and standard deviation (SD) are also
displayed in Table 4. The level of uncertainty in the model decreases as the mean value
approaches 1 and the standard deviation decreases. The TPE-LCE model demonstrates a
high level of coherence between predicted and experimental values, as evidenced by its
mean of 0.988 and standard deviation of 0.078, indicating low levels of uncertainty.
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Figure 12. Uncertainty analysis of the models: (a) experimental-to-predicted ratio for TPE-LCE model;
(b) experimental-to-predicted ratio for TPE-KTBoost model; (c) experimental-to-predicted ratio for
TPE-XGBoost model; (d) experimental-to-predicted ratio for TPE-RF model; (e) experimental-to-
predicted ratio for TPE-DT model; and (f) experimental-to-predicted ratio for linear regression model.

Table 4. Mean and standard deviation for uncertainty analysis.

Models Mean Standard Deviation

TPE-LCE 0.988 0.078
TPE-KTBoost 0.976 0.083
TPE-XGBoost 0.973 0.096

TPE-RF 0.891 0.121
TPE-DT 0.868 0.129
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3.4. TPE-LCE Model Interpretation by SHAP Analysis

The LCE model was chosen as the optimal fit for the crosswind speed over the glide
path based on the R2 value derived from the testing dataset. This section demonstrates the
application of SHAP analysis in determining both global and local interpretations, as well
as identifying the main effects and interaction effects of factors.

3.4.1. Factor Importance and Contribution

The interpretation of global factors involves the assessment of SHAP factor importance
and SHAP factor contribution, which are derived from the prediction results of the TPE-
optimized LCE model, as depicted in Figure 13. Figure 13a illustrates the average absolute
SHAP value, which represents the average influence on the extent of the model results. The
factor labeled “Effect of Terrain/Buildings” exhibited a higher SHAP significance value
of 2.52, while the factor denoted “Distance from Runway” had a value of 1.33, and the
factor referred to as “Wind Direction” had a value of 1.09. The Bee-swarm plot, depicted in
Figure 13b, visually represents the individual contributions of each factor. Factor values are
visually represented through a color code, wherein lower factor values are denoted by the
color blue, while higher factor values are denoted by the color red. A value of 0 assigned
to the “Effect of Terrain/Buildings” factor signifies the non-existence of terrain/buildings
and is visually indicated by a blue coloration positioned to the right of a virtual gray line.
Non-obstruction serves to depict the increased probability of a higher crosswind speed
flowing over the glide path. In a similar vein, it can be observed that the blue and purple
dots, which symbolize a shorter distance from the runway, serve as an indicator of a higher
crosswind speed. This implies that the probability of crosswind speed is higher in close
proximity to the runway.

Figure 13. SHAP interpretation: (a) factors importance graph; and (b) factors bee-swarm graph.

3.4.2. Single Factor Analysis

The SHAP dependence plot, as depicted in Figure 14, serves as a valuable tool for
understanding the impact of an individual significant factor on the output of the TPE-
optimized LCE model. The horizontal axis denotes the values of the factors, whereas the
vertical axis illustrates the SHAP value of each factor. As the narrative progressed, we
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were able to discern the shifting significance of the factors involved. SHAP values that
surpass zero (positioned above the green horizontal line) denote an increased probability
of elevated crosswind speed for particular factors. Figure 14a,b depict the influence of two
prominent factors, namely “Effect of Terrain/Buildings” and “Distance from Runway,” on
the crosswind speed observed over the airport runway glide path. The absence of terrain
features and structures, as well as the presence of a crosswind at a distance of 0.75 nautical
miles from the threshold of the runway, leads to a SHAP value exceeding 0.00, which
signifies an elevated crosswind speed. Furthermore, it can be observed from Figure 14c
that wind directions ranging from 129 to 180 degrees are more likely to result in elevated
crosswind speeds.

Figure 14. Single factor analysis: (a) effect of terrain/buildings; (b) effect of distance from runway;
and (c) effect of wind direction.

3.4.3. Factor Interaction Analysis

The SHAP interaction plots (Figure 15) are utilized to evaluate the interactions among
the factors used to assess the TPE-optimized LCE model in terms of their respective
contributions. Figure 15a illustrates a greater intensity of crosswind speed in the proximity
of the runway, regardless of the presence or absence of terrain or building influence. The
experimental findings suggest that a combination of a shorter distance from the runway
threshold and the absence of terrain or buildings is more likely to lead to higher crosswind
speeds. There is evidence suggesting that the presence of terrain and buildings near the
runway may contribute to increased crosswind speeds. According to Figure 15b, it can be
observed that wind directions ranging from 120 to 180 degrees exhibit a higher propensity
to generate elevated crosswind speeds. One possible explanation could be attributed to the
greater distance of mountainous topography on Lantau Island, which does not impede the
airflow in the vicinity of the runway and thereby avoids fluctuations in wind speed.
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Figure 15. Interaction analysis of important factors: (a) effect of terrain/buildings and distance from
runway; and (b) effect of wind direction and distance from runway.

3.5. Limitation of the Study

The present study employed multiple input variables to estimate the crosswind speed
over the runway glide path. However, it is worth noting that future investigations could
incorporate additional parameters, such as atmospheric pressure and temperature, to
further enhance the accuracy of the estimates. The primary emphasis of the research
revolved around the utilization of a machine learning approach in conjunction with the
SHAP analysis. Subsequent investigations may consider incorporating various additional
methodologies, including deep learning algorithms. The crosswind speed over the runway
glide path was a significant parameter of interest in this investigation. Moreover, it is
worth considering the inclusion of the turbulence integral length scale as an additional
noteworthy wind characteristic for future investigations.

4. Conclusions and Recommendation

This research introduced a novel LCE model that has been optimized through the
TPE with the intent of estimating crosswind speeds over the runway glide path. The
model’s development was based on the wind tunnel tests. The TPE-LCE model’s predic-
tive capabilities were evaluated in comparison to other contemporary machine learning
models including TPE-KTBoost, TPE-XGBoost, TPE-RF, TPE-DT as well as a multivariate
linear regression model. The outcomes reveal that the TPE-LCE model exhibited superior
predictive capabilities, as evidenced by its lower mean absolute error (MAE) of 0.198, mean
squared error (MSE) of 0.103, root mean squared error (RMSE) of 0.319, and higher R2 value
of 0.953 for the training dataset. Similarly, the testing dataset also demonstrated a lower
MAE of 0.490, MSE of 0.381, RMSE of 0.617, and a higher R2 of 0.855, indicating the model’s
robustness in predicting outcomes. The statistical linear regression model exhibited the
poorest performance, as evidenced by its MAE of 1.593, MSE of 4.359, RMSE of 2.088, and
R2 of 0.694.

The issue of limited interpretability in the TPE-optimized LCE model has been ef-
fectively addressed through the utilization of SHAP interpretation strategy. The SHAP
analysis, conducted using TPE-optimized LCE predictions, indicated that two factors,
namely “Effect of Terrain/Buildings” and “Distance from Runway,” made significant con-
tributions to the likelihood of a high crosswind speed over the runway glide slope/path.
The optimal conditions for high crosswind speeds have been identified to be marked by
the absence of nearby terrain obstacles or structures, a lesser distance from the runway
threshold area, and a prevailing wind direction ranging from 125 to 180 degrees.

The current research utilized multiple input parameters in order to estimate crosswind
velocities along the glide path of the northern runway at HKIA. In future research, we may
also opt to utilize post hoc interpretive strategies to improve the interpretation efficiency
of models, including local interpretable model-agnostic explanations (LIME) and partial
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dependency analysis (PDA). Furthermore, we would like to emphasize that we have
collected pilot reports (PIREPs) from HKIA and acquired weather reports from the Hong
Kong Observatory. These additional data sources will provide us with further information
regarding temperature and atmospheric pressure. Consequently, our future research will
encompass a broader range of factors in order to assess crosswind speeds, thereby yielding
a more representative depiction of the actual conditions through wind tunnel experiments
and validation by computational fluid dynamics (CFD) simulation.
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Appendix A

Table A1. Sample data of wind tunnel experiment.

Wind Direction Crosswind Speed Runway Corridor Distance from Runway Effect of Terrain/Buildings

90 12.62 25RA At RWY Considered
105 12.73 25RA 3MF Not considered
120 12.91 07LA 3MF Considered

- - - - -
- - - - -
- - - - -

180 21.26 25RA At RWY Considered
195 19.52 25RA At RWY Considered
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