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Abstract: In March 2022, a new wave of COVID-19 outbreak occurred in Shanghai due to the
widespread transmission of the Omicron variant. A two-month citywide lockdown was implemented
from April 1st to May 31st, adopting measures such as zone-based classification and grid management.
This unique social event provided an “ideal air quality experiment” for pollution research. The rapid
reduction in economic activities during the lockdown had many positive impacts on the environment,
leading to overall improvements in air quality. Particularly, the concentration of NOx, one of the
precursors to O3, significantly decreased. However, O3, as a typical secondary pollutant, showed
a noticeable increase. This study uses the WRF-CAMx-OSAT air quality model method to analyze the
source of O3 pollution in Shanghai from April to May 2022. The impact of O3 precursor control, sector
sources, and regional contributions on the formation of O3 pollution in Shanghai is analyzed in depth.
During the pandemic lockdown period, it was found that, in Shanghai, the overall O3 levels were
controlled by VOCs (Volatile Organic Compounds), and controlling VOCs proved to be an effective
measure in reducing O3 concentrations in Shanghai. Compared with the same period in 2021, the
proportion of road traffic sources contributing to ozone concentration has significantly decreased from
70.61% to 64.3%, but they are still the largest contributor. The contribution of industrial emissions to
the ozone concentration has significantly risen from 20.71% to 26.36%, making them still the second
largest contributor. Industrial and traffic sources are emission sources that require particular attention.
The contribution ratio of local sources to external transport is about 7:3, which is higher than the
ratio of local sources to external transport in the same period of 2021, which is about 6:4. The local
ozone is the main source of ozone concentration in Shanghai, and controlling local source emissions
is the key to controlling ozone concentration in the Shanghai area. When excluding the impact of
long-range transport, the main areas contributing to O3 formation from local sources are Baoshan
District, Jiading District, Qingpu District, and Chongming District, accounting for approximately
41.12% of the total absolute contribution. Different source regions exhibit significant spatial variations
in their contributions to the ozone concentration. Through these studies, we aim to provide scientific
support and control suggestions for the precise prevention and control of O3 pollution in Shanghai.

Keywords: COVID-19; CAMx-OSAT; source analysis; ozone; Shanghai

1. Introduction

Since the outbreak of the COVID-19 pandemic in early 2020, countries around the
world have implemented control measures in affected areas to curb the spread of the virus.
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These measures include the closure of public places and restrictions on human mobility
to reduce unnecessary human activities. Studies have shown that COVID-19 pandemic
control measures have had a significant impact on reducing emissions in the atmosphere,
to the maximum extent possible [1].

The rapid reduction in economic and social activities during the lockdown period has
had some positive impacts on the environment, with a general improvement in air quality.
Specifically, the concentration of NOx, one of the precursors to O3, significantly decreased;
however, O3, as a typical secondary pollutant, exhibited a significant increase in most urban
areas, especially in densely populated metropolitan regions with higher levels of human
activity [2]. By comparing the PM2.5 and O3 monitoring data in Shanghai from 1 April to
31 May 2022, with the same period in 2021, it was found that the average concentration
of PM2.5 in Shanghai decreased by 26.8% during this period. However, the maximum
daily 8 h average (MDA8) concentration of O3 increased by 14.5%. This is consistent with
previous research results, which showed a general improvement in air quality during the
lockdown period, while the ozone concentration exhibited an increasing trend [2]. (Data
source: Air Quality Online Monitoring and Analysis Platform https://www.aqistudy.cn,
(accessed on 6 May 2023)).

The formation of O3 is a complex process that involves atmospheric chemical reactions
and the interaction of various factors. The primary pathway for ozone formation is through
photochemical reactions. Under the influence of sunlight, NOx and VOCs undergo
photolysis reactions, producing free radicals such as nitrogen oxide radicals (NO3) and
hydroxyl radicals (HO). These radicals further react with oxygen (O2) to generate ozone.
The formation of ozone involves complex factors such as photochemical reactions, NOx
cycling, contributions from VOCs, meteorological conditions, and regional transport.
Ground-level ozone is considered one of the most significant air pollutants that adversely
affects human health (such as the respiratory and cardiovascular systems), vegetation, and
materials [3,4].

At the urban scale, the anthropogenic emissions of VOCs and NOx are heavily influ-
enced by human activities. Urban NOx emissions primarily come from fossil fuel combus-
tion, while VOCs have diverse anthropogenic sources. The formation of O3 depends on the
ratio of VOCs to NOx [5]. Research by Zeng et al. [6] indicated that, after strict lockdown
measures were implemented in Wuhan, the reduction in NOx emissions exceeded that of
VOC emissions, resulting in an increased VOCs–NOx ratio and consequently increasing O3
production. Sicard et al. [7] studied the air quality during the COVID-19 lockdown in Rome
and Turin (Italy), Nice (France), Valencia (Spain), and Wuhan (China). They suggested
that the increase in O3 was due to a significant reduction in local nitrogen oxide emissions,
primarily NO emissions, resulting in weakened titration processes. During the lockdown
period, the increase in emissions of carbon monoxide and ozone precursors such as volatile
organic compounds from sources like household activities (e.g., cleaning, fireplace use)
and outdoor activities (e.g., barbecues, biomass burning) may also be contributing factors
to the observed rise in ozone levels [8]. Tanvir et al. [9] used a highly precise Multi-Axis
Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument to study the impact
of reduced human activities during the 2020 control measures on air quality in Shanghai.
They found that the concentration of ozone was not influenced by the control measures
and continued to steadily increase during the study period, coinciding with the enhanced
solar radiation in late winter and early spring. Huang et al. [10] found that the reduction
in NOx emissions from transportation during the COVID-19 pandemic in eastern China
increased O3 concentrations and facilitated nighttime NO3 radical formation, leading to
an elevated aerosol oxidative capacity (AOC) and increased secondary organic aerosols
(SOA). Wang et al. [11] pointed out, based on the simulation results of WRF-Chem, that
during the COVID-19 lockdown period from 1 January to 18 April 2020, in China, the
atmospheric oxidative capacity significantly increased. The levels of oxidants increased (up
to +25%), particularly in southern Jiangsu, Shanghai, and northern Zhejiang, ultimately
leading to an increase in O3.

https://www.aqistudy.cn
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Air quality modeling is an important technical tool for studying O3 and can be used
for O3 sensitivity analysis, the identification of key controlling factors, and source appor-
tionment. Among the air quality monitoring methods, the CAMx-OSAT (Comprehensive
Air Quality Model with Extensions-Ozone Source Apportionment Technology), based on
a three-dimensional Eulerian chemical transport model, provides source apportionment or
source contribution capabilities. In a single-model run, it can assess the temporal and spa-
tial contributions of multiple source regions, categories, and pollutant types to levels of O3
and particulate matter. OSAT is based on an improved O3 source apportionment method,
which estimates the contributions of emissions from different regions to O3 concentrations.
This method categorizes regions into NOx control zones, VOC control zones, and transition
zones, attributing O3 formation at each time step to the precursors NOx and VOCs, which
are then labeled as O3N and O3V. In the model, tracers are used to estimate the contri-
butions of different regions to O3N and O3V levels, and these contributions are used to
determine the regional contributions to O3 concentrations. This approach calculates source
region contributions to the target region, considering both the transport of O3 precursors
generated in the source region to the target region and the generation of O3 precursors in
the target region itself. This allows for the comprehensive simulation and assessment of
atmospheric pollutants at various scales, including the urban and regional levels. Currently,
research on O3 source apportionment in China mainly focuses on heavily polluted and
economically developed regions such as the Beijing-Tianjin-Hebei area [12–14], the Yangtze
River Delta [15–18], and the Pearl River Delta [19–22].

From 1 April to 31 May 2022, Shanghai implemented a two-month citywide lockdown,
adopting measures such as zonal classification and grid management. This special period
greatly reduced economic and social activities to nearly the lowest level, providing an “ideal
air quality experiment” for pollution research. This study employed the WRF-CAMx-OSAT
air quality modeling approach to investigate the spatiotemporal distribution characteristics
of O3 pollution in Shanghai during April and May 2022. OSAT was employed to assess
the impacts of various sectors and regional contributions on O3 pollution formation in
Shanghai. The aim was to identify sectors and regions with significant influence on O3
concentrations. Through this research, this study aimed to reveal the spatiotemporal
distribution of O3 concentrations during the lockdown period in Shanghai, the effects on
the ozone formation mechanisms in Shanghai, the substantial emission reductions resulting
from the lockdown and their impact on air quality in Shanghai, and the differences in
contributions to O3 concentrations between the lockdown and normal conditions. The goal
was to provide scientific support and control recommendations for the precise prevention
and treatment of O3 pollution in Shanghai based on these findings.

2. Materials and Methods
2.1. WRF-CAMx-OSAT Simulation Method

The WRF-CAMx-OSAT simulation method was employed, using the WRF 3.9.1
(Weather Research and Forecasting) model to provide meteorological fields for the CAMx
model. The parameterization schemes for WRF and CAMx can be found in Table S1. In
Figure 1, the WRF simulation adopted a three-level nested domain with grid resolutions
of 9 km, 3 km, and 1 km, respectively. The center point of the model projection was set at
(31.9◦ N, 118.51◦ E). The first domain covered the East China region, the second domain
covered the Yangtze River Delta region, and the third domain focused on the Shanghai area.
Localized settings for the main parameters of the WRF model were applied to match the
climatic background of Shanghai. The initial and boundary conditions for the WRF model
were obtained from the Global Final Analysis data, provided by the National Centers
for Environmental Prediction (NCEP) in the United States. The data were available at
a horizontal resolution of 1 × 1 and were retrieved from the NCEP FNL Operational Model
Global Tropospheric Analyses dataset, continuing from July 1999 (https://rda.ucar.edu/,
accessed on 14 April 2023).

https://rda.ucar.edu/
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Figure 1. WRF model simulation domain.

This study utilizes CAMx version 6.5 for comprehensive modeling. CAMx, based on the
“one atmosphere” framework, simulates pollutant emissions, dispersion, chemical reactions,
and atmospheric removal processes by solving the physical and chemical transformation
equations for each pollutant in each grid cell at various scales, including the urban and
regional scales [23,24]. The OSAT (Ozone Source Apportionment Technology) is a source
apportionment technique integrated into the CAMx numerical model. OSAT calculates the
contributions of regional and sectoral emission sources to the formation (or emission) and
removal of O3 and its precursors using a tracing method. It provides clear information about
the regional and sectoral sources’ contributions to O3 and its precursors for selected time
periods and receptor locations. CAMx-OSAT uses the CB05 chemical mechanism, SOAP/CF
aerosol scheme, Wesely resistance model for dry deposition, Seinfeld and Pandis scheme
for wet deposition, and boundary and initial conditions from the real-time output of the
MOZART-4 global model. CAMx has a two-layer nested grid configuration, with the same
resolution and grid center points as the second and third layers of WRF. To minimize the
impact of boundary fields on air quality simulations, the CAMx grid is slightly smaller than
the WRF grid. In the vertical direction, 28 pressure levels are set with increasing spacing
from near the surface. The atmospheric O3 column data required for the photolysis rate
parameter in the model are obtained from the daily O3 observations provided by NASA
Ozone Watch (https://ozonewatch.gsfc.nasa.gov/data/omi/, accessed on 24 April 2023).

In the source apportionment analysis, the second nested layer is divided into 9 regions:
Central Urban Area (Huangpu District, Jing’an District, Xuhui District, Changning District,
Yangpu District, Hongkou District, Putuo District), Minhang District, Baoshan District and
Jiading District, Chongming District, Pudong New Area, Jinshan District and Fengxian
District, Songjiang District, Qingpu District, and Other Areas (areas outside Shanghai). The
analysis considers four pollution sources: natural sources, industrial sources (including
industrial sources and power sources), transportation sources, and other sources (including
agricultural sources and residential sources). These sources are further categorized into
36 groups to assess their contributions to O3 formation.

2.2. Emission Inventory during the Lockdown Period

In this study, the term “COVID-19 lockdown period” refers to the period from 1 April
2022 to 31 May 2022, in the Shanghai region. This study utilizes the 2017 Multi-resolution
Emission Inventory for China (MEIC), developed by Tsinghua University, as a bottom-up
emission inventory model, and the 2017 anthropogenic emission inventory for the Yangtze
River Delta compiled by the Shanghai Academy of Environmental Sciences in 2017 as
the baseline. Assuming that, during the pandemic period (from the beginning of 2020
to 2022), the industrial structure and its distribution in Shanghai, as well as the overall

https://ozonewatch.gsfc.nasa.gov/data/omi/
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level of air pollution control, remained relatively unchanged from the baseline emission
scenario, the variation in emissions during the 2022 lockdown period (April and May)
can be attributed to the changes in socio-economic activities caused by the lockdown
measures. The changes in emissions during the Shanghai lockdown in April and May
2022 are calculated by adjusting the “baseline scenario” based on the variations in socio-
economic activities. In this study, the period from 1 April 2022 to 31 May 2022 was used
as the non-lockdown period, and the emissions inventory during this period was taken
from the “baseline scenario” for comparison with the lockdown period. Therefore, the
changes in pollutant emissions are only related to changes in activity levels. The estimation
of emission reductions needs to be conducted based on the changes in activity levels to
establish an emission inventory for the lockdown period.

Eijk COVID−19 = ∑ Eijk without COVID−19 × aij COVID−19 (1)

In Equation (1), Eijk COVID−19 represents the emissions of pollutant k from emission
source j in region i during the lockdown of the COVID-19 pandemic. aij COVID−19 repre-
sents the ratio of the activity levels between the lockdown period and the corresponding
period in 2021 without lockdown for emission source j in region i.

The biogenic emission data are sourced from the global vegetation emission inventory
published on the HEMCO website with a resolution of 0.25 × 0.3125 (http://wiki.seas.
harvard.edu/geos-chem/index.php/FlexGrid, accessed on 5 April 2023). The emission
data for the first layer of industrial sources (including industrial and power sources),
transportation sources, and other sources (including agricultural and residential sources)
are obtained from the MEIC inventory (http://meicmodel.org/, accessed on 5 April 2023).
The resolution for all sources except shipping sources is 0.25◦, while the resolution for
shipping sources is 0.5◦. The second and third layers of industrial sources, transportation
sources, and other sources are provided by the Shanghai Environmental Science and
Engineering Institute (ESEI) in the form of a human-made emission inventory for the
Yangtze River Delta region, with a resolution of 4 km. Following the principle of emission
conservation, the emission data from the MEIC inventory and the ESEI inventory are
interpolated to match the grid and resolution of each nested layer in CAMx using bilinear
interpolation. Additionally, the emission inventory for Shanghai is adjusted based on
survey data to account for emission reductions.

2.3. Social and Economic Statistical Data during the Lockdown Period

To estimate the emission reductions resulting from the COVID-19 lockdown, we
selected 32 near-real-time dynamic economic and industrial activity level data (Table S2)
to estimate the emissions in Shanghai for April and May 2022. The activity level data for
the thermal power sector were obtained from the monthly statistical data of the National
Bureau of Statistics (https://data.stats.gov.cn/, accessed on 5 November 2023), showing
a year-on-year decrease in electricity generation of 41.1% and 41.4% for April and May
2022, respectively. Since all power generation in Shanghai is from thermal power plants, we
assume that the reduction in electricity generation represents the impact of the COVID-19
lockdown on atmospheric pollutant emissions from the power sector [10]. Therefore, the
emissions from the power sector in April and May 2022 were estimated to decrease by
41.1% and 41.4% compared to the same period in 2021.

The same approach was applied to the industrial sector. The production volume data
for the selected 26 industrial sectors, such as edible vegetable oil, ethylene, steel, cement, etc.,
were obtained from the Shanghai Statistics Bureau (https://tjj.sh.gov.cn/, accessed on
5 November 2023) and the National Bureau of Statistics (https://data.stats.gov.cn/, accessed
on 6 November 2023) monthly statistical data. Assuming that the reduction in production
volume of the major industrial sectors represents the impact of the COVID-19 lockdown
on atmospheric pollutant emissions from the industrial sector, the industrial emissions in
Shanghai for April and May 2022 were estimated to decrease by 59.4% and 22.5% compared
to the same period.

http://wiki.seas.harvard.edu/geos-chem/index.php/FlexGrid
http://wiki.seas.harvard.edu/geos-chem/index.php/FlexGrid
http://meicmodel.org/
https://data.stats.gov.cn/
https://tjj.sh.gov.cn/
https://data.stats.gov.cn/
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As for the residential sector, emissions from boilers and stove commercial use in
the Shanghai area have been considered negligible following the implementation of the
lockdown measures, while emissions from household cooking are assumed to be unaffected.

For the transportation sector, the activity level data for the turnover of goods and passen-
gers on highways, railways, and waterways were obtained from the Ministry of Transport of
the People’s Republic of China (https://www.mot.gov.cn/, accessed on 6 November 2023).
It is assumed that the reduction rate in the turnover of goods and passengers is the impact
of COVID-19 lockdowns on emissions of pollutants in the transportation sector. According
to transportation index data, the turnover of goods and passengers in April and May 2022
decreased by 45.1% and 41.8% compared to 2021. During the COVID-19 lockdown period,
the activity level of non-road mobile machinery is assumed to be close to zero. Therefore,
the road emissions in April and May 2022 decreased by 45.1% and 41.8% compared to 2021.

3. Results and Discussion
3.1. Model Validation
3.1.1. Evaluation Methods

Comparisons between the simulated results of the WRF-CAMx model and the
observed data were conducted to validate the accuracy of the simulation in this study. For
the simulation of meteorological fields, hourly observed data of various meteorological
elements from 11 stations within the Shanghai area, including Baoshan (BS), Chongming
(CM), Fengxian (FX), Jiading (JD), Jinshan (JS), Minhang (MH), Nanhui (NH), Pudong
(PD), Qingpu (QP), Songjiang (SJ), and Xujiahui (XJH), were used for validation. The
observed data covered the period from 1 April 2022 to 31 May 2022 (source: https:
//xihe-energy.com/, accessed on 12 May 2023). For the pollution field simulation, the
simulated results for conventional pollutants (PM2.5, O3, NO2, SO2) were validated
using hourly average monitoring data from 19 national monitoring stations in Shanghai
from 2 April 2022 to 30 April 2022 (source: https://www.aqistudy.cn/, accessed on
6 May 2023). The selected monitoring stations included Baoshan Miaohang (BSMH),
Fengxian Nanqiao New Town (FXNQXC), Hongkou (HK), Jiading Nanxiang (JDNX),
Jinshan Xincheng (JSXC), Minhang Pujiang (MHPJ), Pudong Huinan (PDHN), Jing’an
(JA), Pudong Chuansha (PDCS), Pudong New Area (PDXQ), Pudong Zhangjiang (PDZJ),
Putuo (PT), Shiwuchang (SWC), Xuhui Shangshida (XHSSD), Yangpu Sipiao (YPSP),
Qingpu Xujing (QPXJ), Changning Xianxia (CNXX), Chongming Shangshi Dongtan
(CMSSDT), and Songjiang Library (SJTSG). The distribution of the meteorological and
pollutant monitoring stations used for validation in this study is shown in Figure 2.Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 25 
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Using the observed data from meteorological stations, the model performance evalua-
tion for four meteorological variables, namely temperature, relative humidity, wind speed,
and wind direction, was conducted following the evaluation criteria recommended by the
U.S. Environmental Protection Agency (EPA). The selected evaluation parameters include
mean bias, root mean squared error (RMSE), and correlation coefficient (COR). For vector
variables (wind direction), only two parameters, MB and RMSE, were considered. The
expressions for the selected evaluation parameters are as follows:

MB =
1
N

N

∑
i=1

(Xp − Xo) (2)

RMSE =

√√√√ 1
N

N

∑
i=1

(Xp − Xo)2 (3)

COR =
∑N

i=1(Xp − Xp)(Xo − Xo)√
∑N

i=1(Xp − Xp)2(Xo − Xo)2
(4)

In the equations, Xo represents the observed value, Xp represents the simulated value,
N represents the sample size, and Xo, Xp represent the mean values of the observed and
simulated results, respectively.

3.1.2. Evaluation of Meteorological Field Simulation

A comparison of the simulated and observed time series for temperature, relative
humidity, wind speed, and wind direction in April and May 2022 was conducted. The time
series comparison plots for temperature, relative humidity, wind speed and wind direction
are presented in Figure 3. The performance of the meteorological variables is summarized
in Table 1.

Table 1. Statistics of meteorological elements simulation results. (From 1 April 2022 to 31 May 2022).

Temperature/(°C) Relative Humidity/(%) Wind Speed/(m/s) Wind
Direction/(◦)

MB RMSE COR MB RMSE COR MB RMSE COR MB RMSE

BS −0.05 3.01 0.82 3.54 14.14 0.69 0.55 2.51 0.61 10.96 65.83

CM −0.01 3.10 0.81 5.06 14.18 0.70 0.56 2.53 0.62 14.94 64.03

FX −0.09 2.52 0.82 10.35 16.45 0.67 1.58 2.45 0.68 8.49 58.44

JD 0.11 3.06 0.85 6.78 15.23 0.74 0.82 2.64 0.60 12.55 62.55

JS −0.05 2.33 0.81 9.39 14.92 0.65 0.76 2.64 0.65 4.82 71.47

MH −0.01 2.94 0.84 7.28 15.00 0.73 0.87 2.61 0.61 12.65 59.63

NH −0.03 2.82 0.78 6.75 15.03 0.57 0.68 2.19 0.70 15.05 61.71

PD −0.10 3.01 0.83 6.70 15.27 0.69 0.30 2.32 0.54 11.09 61.15

QP −0.09 3.19 0.84 7.30 15.22 0.75 0.72 2.56 0.58 11.01 59.21

SJ −0.06 3.07 0.83 7.49 15.15 0.73 0.77 2.55 0.60 7.17 73.10

XJH −0.04 2.99 0.82 −2.42 14.60 0.71 0.45 2.37 0.63 13.72 61.25
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Figure 3. Time series comparison of temperature, relative humidity, and wind speed between
simulated and observed values at various meteorological observation stations. (Red represents
observed values and black represents simulated values).

As shown in Figure 3, the simulated temperature values at the 11 stations in Shanghai
are in good agreement with the observed values and exhibit significant diurnal variation.
The simulated temperatures reach their peak in the afternoon and reach their lowest point
from the late night to the early morning, showing good consistency with the observed
values. However, it can also be observed that the model’s performance in simulating
temperature is poorer during the nighttime, with a noticeable underestimation. Regarding
the simulation of relative humidity, the simulated values also show good consistency with
the observed values. The diurnal variation in the relative humidity exhibits a trough
in the afternoon and a peak during the nighttime. As for the wind speed simulation,
although there is considerable variability in the diurnal pattern, the model performs well
in simulating wind speed at the 11 stations, showing good agreement with the observed
values. However, there are some instances where the model tends to overestimate wind
speed on certain dates and times. For wind direction simulation, the model can generally
capture wind direction changes at different locations.

As shown in Table 1, overall, the model tends to underestimate the temperature in its
simulation. Among the 11 stations in Shanghai, except for the Jiading station, temperatures
are underestimated, with the temperature mean bias ranging from −0.10 ◦C to 0.11 ◦C. The
model shows a relatively small root mean squared error (RMSE) for temperature simulation
at the 11 stations, and the simulated temperatures exhibit a high correlation (COR) with the
observed temperatures, with all COR values reaching 0.78 or higher. For the simulation of
the relative humidity, the MB ranges from −2.42% to 10.35%, the RMSE ranges from 14.14%
to 16.45%, and the COR is relatively high, all above 0.65. Typically, the model exhibits
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significant uncertainties in simulating near-surface wind speed and wind direction. In
this study, for the wind speed simulation, all 11 stations show a slight overestimation of
the wind speed. The wind speed MB ranges from 0.45 m/s to 1.58 m/s, and the RMSE
ranges from 2.19 m/s to 2.64 m/s. The COR values for the wind speed simulation are also
relatively high, all above 0.54. For the wind direction simulation, the MB ranges from 4.82◦

to 15.05◦ at the 11 stations, and the RMSE ranges from 58.44◦ to 73.10◦.
The comparison and analysis of the observed data and simulation results indicate that,

during the simulation period of this study, the model performs well in simulating various
meteorological elements. It can effectively reproduce the temperature, humidity, and wind
fields, as well as local meteorological processes during the simulation period, providing
reliable meteorological background fields for the simulation of pollutants in the region.

3.1.3. Simulation Verification of Pollution Field

As for the verification of the pollution field, similar to the evaluation of the meteorological
field simulation results, the concentration of pollutants was evaluated using indicators such
as MB, RMSE, and COR. Hourly monitoring data of conventional pollutants (PM2.5, O3,
NO2, SO2) from the 19 national monitoring stations in Shanghai were selected, and hourly
average values were compared with the simulation results for validation. The time series of the
simulation and observed values are shown in Figure 4. The statistical results of the simulation
effectiveness for major pollutant concentrations in different seasons are presented in Table 2.
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Table 2. Statistics of pollutants simulation results (from 1 April 2022 to 30 April 2022).

Stations Pollutants Xo /(µg/m3) MB/(µg/m3) RMSE/(µg/m3) COR/(µg/m3)

BSMH

PM2.5 24.63 3.82 24.26 0.57

NO2 13.38 −3.11 15.31 0.52

SO2 7.18 −1.89 5.17 0.50

MDA8 O3 97.01 −21.08 45.26 0.54

FXNQXC

PM2.5 22.28 4.44 26.67 0.56

NO2 16.48 −8.58 14.32 0.54

SO2 6.25 −1.56 4.92 0.56

MDA8 O3 100.88 −21.86 45.72 0.52

HK

PM2.5 21.20 3.65 20.57 0.53

NO2 16.52 −6.47 13.49 0.60

SO2 5.51 0.10 13.49 0.60

MDA8 O3 97.84 −21.93 46.64 0.52

JDNX

PM2.5 21.92 5.78 24.74 0.51

NO2 21.78 −9.19 15.96 0.62

SO2 5.23 −0.002 5.58 0.55

MDA8 O3 98.40 −22.93 48.65 0.58

JSXC

PM2.5 24.20 1.56 29.90 0.52

NO2 17.51 −9.12 16.16 0.56

SO2 11.21 −7.47 10.28 0.50

MDA8 O3 104.93 −26.87 51.28 0.57

MHPJ

PM2.5 17.25 1.46 20.87 0.57

NO2 14.94 −4.18 12.99 0.59

SO2 4.03 0.75 5.19 0.55

MDA8 O3 95.30 −13.05 40.96 0.57

PDCS

PM2.5 22.47 6.78 24.28 0.54

NO2 19.90 −10.47 15.57 0.53

SO2 4.93 −0.67 4.43 0.58

MDA8 O3 105.31 −26.00 47.78 0.56

PDHN

PM2.5 22.49 7.76 25.74 0.52

NO2 16.27 −7.67 14.16 0.52

SO2 4.76 −0.52 3.78 0.54

MDA8 O3 92.36 −11.95 39.78 0.50

From Figure 4, it can be observed that, overall, the CAMx model can reasonably
simulate the pollution levels of and temporal variations in major pollutants in Shanghai.
Regarding PM2.5 simulation, there are instances where the model overestimates the PM2.5
concentrations. As for O3, typically, O3 concentrations peak in the afternoon and reach
a minimum in the early morning and nighttime. The model exhibits good performance
in simulating the daily variation in O3 concentrations. However, the O3 concentrations
in Shanghai are slightly underestimated, which can be attributed to the uncertainty in
emission inventories, resulting in deviations in the simulation results [25,26]. The model
shows good performance in simulating SO2 and NO2, and the observed and simulated
values of the SO2 and NO2 concentrations are in good agreement across different regions.
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From the statistical results, it can be seen that the correlation coefficients between the
simulated results of conventional pollutants in Shanghai and the monitoring data are above
0.50, and the MB values for each pollutant are within ±27 µg/m3. It can be concluded that
the simulation performance and deviation levels of WRF-CAMx in the chemical field are
comparable to other research findings [27], indicating that the simulation results can be
used for further source apportionment of ozone.

3.2. Changes and Characteristics of the Emission Inventory during the Lockdown Peri

Due to the inherent uncontrollable nature of biogenic emissions, this study focuses only
on the anthropogenic emission changes resulting from the pandemic lockdown measures.
The biogenic emissions of VOCs remain unchanged at their original levels. In April–May
2021, the total anthropogenic emissions of major air pollutants (PM10, CO, NH3, NOx, PM2.5,
SO2, VOCs) in Shanghai were as follows: 9.62 × 103, 1.38 × 105, 3.39 × 103, 5.81 × 104,
5.89 × 103, 2.36 × 104, and 9.99 × 104 (tons). In April–May 2022, the total anthropogenic
emissions of major air pollutants (PM10, CO, NH3, NOx, PM2.5, SO2, VOCs) were as follows:
5.71 × 103, 8.07 × 104, 3.33 × 103, 3.40 × 104, 3.48 × 103, 1.40 × 104, and 6.05 × 104 (tons).
The reduction percentages for each pollutant are as follows: 40.64% (PM10), 41.52% (CO),
1.77% (NH3), 41.48% (NOx), 40.92% (PM2.5), 40.68% (SO2), and 39.45% (VOCs). For each
pollutant species, industrial sources show the largest decrease in emissions. The proportion
of major pollutant emissions by each emission sector in the Shanghai during April–May
2021 and April–May 2022 is shown in the Figure 5.
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The proportion of major pollutant emissions by each emission sector in Shanghai during
April–May 2021 and April–May 2022 is relatively consistent. In terms of PM10, industrial
sources have the highest proportion of emissions (2021: 83.32%, 2022: 82.90%), followed by
transportation sources (2021: 14.82%, 2022: 13.97%); for PM2.5, industrial sources have the
highest proportion of emissions (2021: 86.91%, 2022: 86.97%), followed by transportation
sources (2021: 12.26%, 2022: 11.62%); industrial sources contribute significantly to SO2
emissions, accounting for 99.05% in 2021 and 98.82% in 2022; for NOx emissions, industrial
sources have the highest proportion (2021: 67.79%, 2022: 68.35%), followed by transportation
sources (2021: 31.05%, 2022: 29.67%); NH3 emissions have the highest proportion from
other sources (mainly agricultural emissions), accounting for 95.64% in 2021 and 97.50% in
2022; industrial sources have the highest proportion of CO emissions (2021: 67.79%, 2022:
68.48%); for VOCs, biogenic sources accounted for 5.22% in 2021 and 8.33% in 2022, while
anthropogenic sources accounted for 94.78% in 2021 and 91.67% in 2022, with industrial
VOCs having the highest proportion (2021: 80.54%, 2022: 76.02%).
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We assessed the emission reduction levels by comparing the emission ratios of
various pollutants in Shanghai between April–May 2021 and April–May 2022. The
spatial distribution of these reductions is shown in Figure 6. The reduction in SO2 emis-
sions is evenly distributed across the region, and is related to a decrease in industrial
coal consumption during the control period. The spatial variation in NOx emissions
primarily exhibits a belt-like pattern, with a significant reduction in emission intensity.
This is related to the decrease in industrial and vehicular emissions during the lock-
down period. The spatial distribution of CO emissions shows a similar belt-like pattern
to that of NOx. Noticeable reductions in NH3 emissions are observed in the central
part of Shanghai, and we assumed that agricultural sources were unaffected by the
lockdown and the reduction in NH3 emissions is mainly associated with the decrease
in vehicle emissions from transportation sources. The changes in VOC emissions are
concentrated in the central region of Shanghai, with a significant decrease in emission
levels. The reductions in emissions for PM10 and PM2.5 are uniformly distributed
across the region. 

2 

       

 Figure 6. Spatial distribution of the ratio of total pollutant emissions in Shanghai between April–May
2021 and the same period in 2022 (by comparing the magnitudes of the ratios, the degree of emission
reduction can be assessed, with colors ranging from red to blue indicating increasing levels of
emission reduction).

Overall, during the lockdown period in 2022, the areas with decreased emissions
of SO2, PM10, PM2.5, and NOx show a uniform distribution, while the areas with de-
creased emissions of VOCs, CO, and NH3 are mainly concentrated in the central region
of Shanghai.

3.3. Spatial and Temporal Distribution Characteristics of O3 Concentration during the
Lockdown Period
3.3.1. Observational Facts

During the lockdown period, due to strict isolation policies, there was a sharp reduc-
tion in human activity, which had a significant impact on the atmospheric environment.
Comparing the same periods in 2021 and 2022, ground-level monitoring stations observed
a significant decrease in the concentrations of several air pollutants, as shown in Figure 7.
In April, there was a decrease of 50.42% in NO2, 19.99% in PM10, and 25.68% in PM2.5.
In May, there was a decrease of 46.60% in NO2, 38.48% in PM10, and 28.20% in PM2.5.
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However, the overall air quality in Shanghai did not improve. According to real-time
observations, the average Air Quality Index during the lockdown period was 76.90, which
was relatively consistent with the average AQI of 70.49 during the same period in 2021.
This was primarily due to an increase in the frequency and intensity of O3 pollution, as
shown in Figure 8. During the lockdown period, Shanghai experienced consistently high
levels of O3 pollution compared to 2021.
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According to China’s Environmental Air Quality Standards (GB3095-2012) (https://
www.mee.gov.cn/, accessed on 9 July 2023), during the lockdown period, from 1 April to
31 May 2022, Shanghai experienced a total of 61 days: there were 49 days during this period
when the MDA8 O3 concentration exceeded the primary concentration limit of 100 µg/m3,
and 13 days when it exceeded the secondary concentration limit of 160 µg/m3.

Meteorological conditions generally play a fundamental role in atmospheric pollution.
Chang et al. found that high-pressure systems dominated by southwest winds in Shanghai
are the most conducive to high concentrations of O3 [28]. In Shanghai, south and southeast
winds prevail during the months of April and May. By comparing the wind speed
and direction between April–May 2021 and April–May 2022 (Figure 9), we found no
significant changes in the wind conditions over Shanghai, and the comparative analysis of
temperature trends during this period found that the average high temperatures in April
2021 and 2022 were 21 ◦C and 22 ◦C, respectively, while the average low temperatures

https://www.mee.gov.cn/
https://www.mee.gov.cn/
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were 14 ◦C and 13 ◦C. In May 2021 and 2022, the average high temperatures were 27 ◦C
and 25 ◦C, respectively, while the average low temperatures were 19 ◦C and 17 ◦C. The
meteorological conditions were generally consistent between the two years and did not
constitute decisive factors influencing pollution. Consequently, the high concentrations
of O3 are primarily attributed to the significant changes in human activities during the
lockdown period [29].

Figure 9. Wind Speed and Direction Comparison between April–May 2021 and April–May 2022.

3.3.2. Simulation Results

Based on a statistical analysis of simulation results from CAMx, the distribution
characteristics of monthly average maximum eight-hour ozone (MDA8 O3) concentra-
tions in the Shanghai area during April and May of 2021 and 2022 are shown in the
Figure 10. In April and May 2022, the MDA8 O3 concentrations in Shanghai ranged
from 16.92 to 104.03 µg/m3, with a regional average concentration of 79.70 µg/m3.
The spatial distribution showed higher ozone concentrations in the western areas of
Shanghai and the adjacent Jiangsu and Zhejiang regions, while the central urban area
of Shanghai and its eastern regions exhibited lower concentrations. In April and May
2021, the MDA8 O3 concentrations in Shanghai ranged from 7.68 to 88.32 µg/m3, with
a regional average concentration of 73.26 µg/m3. The spatial distribution shows that
higher ozone concentrations were observed in most areas of Chongming Island and
its surrounding regions, as well as in the offshore areas of Jiangsu. The ozone concen-
trations were the second highest in the central and western parts of Shanghai and the
neighboring Jiangsu and Zhejiang regions. Lower ozone concentrations were observed
in the southern and eastern areas of Shanghai. Compared to April and May 2021, the
MDA8 O3 concentrations in most areas of the Shanghai region (The coastal area in the
north of Chongming Island, the area near Jiangsu and Zhejiang provinces, and the
eastern area of Shanghai) increased in 2022, with an average increase of 6.44 µg/m3

and a growth rate of 8.79%.
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Figure 10. Monthly average concentration of MDA8 O3 during April and May of 2021 (a) and 2022 (b),
and the difference in monthly average concentration of MDA8 O3 between April–May 2022 and the
same period in 2021 (c).

3.4. Source Apportionment of O3 during the Lockdown Period
3.4.1. Analysis of the Main Contributors to O3 Precursors

In the CAMx-OSAT model, the ozone formation under NOx control or VOCs control
is identified based on the ratio of H2O2 to HNO3 generation rates. O3N and O3V are ozone
formation indicators in the OSAT module, representing ozone generated under NOx control
conditions and VOCs control conditions, respectively [13]. The ratio between them reflects
the ozone formation mechanism in the region. The spatial distribution of the contributions
of NOx and VOCs, emitted in the Shanghai region, to O3 generation during the pollution
analysis period in 2021 and the corresponding period in 2022, is shown in Figure 11. By
extracting the grid cells in the Shanghai area, the sensitivity of ozone formation in Shanghai
was investigated based on the ratio of O3V to O3N, as shown in Figure 12. According to
the displayed figures, in the entire Shanghai region, during April and May 2021, most areas
have O3V/O3N ratios greater than 1, indicating that ozone formation is primarily driven
by VOCs, representing the VOCs control zone. However, there are small areas where
the O3V/O3N ratio is less than 1, indicating the NOx control zone. In the corresponding
period of 2022, the O3V/O3N ratios are greater than 1 throughout the Shanghai region,
indicating it as a VOCs control zone. Previous studies have generally indicated that, in
urban areas and their immediate vicinity, there is strong NOx emission and higher NOx
concentrations, where the reaction between OH radicals and NOx is dominant, resulting in
ozone formation primarily under VOCs control [13]. Huang et al. [10] drew O3-VOCs-NOx
isopleths (EKMA) based on WRF-Chem simulation results, which indicated that ozone
formation in the eastern part of China (30◦ N–40◦ N, 110◦ E–120◦ E) is VOCs-controlled,
and with a reduction in NOx, ozone formation can increase by 40% to 50%. The distribution
of ozone precursors in Shanghai in this study aligns with previous research.
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The study by Yin et al. [30] demonstrated that, during the COVID-19 lockdown period
in Wuhan, ozone (O3) increased by 43%, with meteorological conditions contributing 6%
of the increase. This indicates that the reduction in ozone precursor emissions during the
COVID-19 lockdown was the main cause of changes in tropospheric ozone. In urban centers,
which are often VOCs-controlled areas, high concentrations of NO have a scavenging effect
on ozone. The reduction in NOx, primarily through decreased NO emissions, weakens
the scavenging effect, leading to an increase in ozone concentrations [7]. Liu et al. [31]
defined the number of ozone molecules produced by removing one NOx molecule as the
ozone production efficiency (OPE). During the transport of air masses, as the air masses
undergo photochemical aging, the amount of NOx decreases continuously, and OPE shows
an increasing trend. The photochemical characteristics within the air masses become more
favorable for ozone production [32,33].

Wang [34] used the WRF-Chem model to design 36 emission reduction scenarios
based on varying proportions of NOx and VOC reductions. These scenarios simulated
the air quality conditions during periods of PM2.5 and O3 combined pollution in the
Yangtze River Delta region. Employing a combination of the Comprehensive EKMA
Curve (CEKMA) and Dijkstra’s shortest path algorithm, Wang assessed the air quality
under different reduction scenarios, considering cost-effectiveness, environmental impacts,
health benefits, and spatial effects. This analysis yielded varying effects of synergistic
NOx and VOC reductions, and also explored the optimal reduction pathway for NOx and
VOC emissions in the Shanghai area: prioritizing NOx reduction first, followed by VOC
reduction, and vice versa. Both strategies led to the most effective improvement in air
quality, with an improvement efficiency of about 85–100%. Conversely, the simultaneous
proportional reduction in NOx and VOCs represented the least optimal pathway, resulting
in the least improvement in air quality, with an improvement efficiency of just 77–85%.
During the research phase of this study, the reduction ratios for VOCs and NOx emissions,
the precursors of ozone, were approximately 39.45% and 41.48%, respectively. This nearly
equal proportion of simultaneous reduction was found to be one of the less effective
emission reduction strategies for regional air quality improvement.

3.4.2. Analysis of Sector Source Contribution of O3

Figure 13 shows the monthly average percentage contributions of four emission
sources to MDA8 O3 concentrations in Shanghai during the simulated analysis period.
From Figure 13, it can be observed that, during the lockdown period of the COVID-19
pandemic, the transportation sector was the largest contributor to MDA8 O3 concentrations
in Shanghai, accounting for MDA8 O3 monthly contribution of 64.30%. The industrial
sector ranked second with a monthly average contribution percentage of 26.36%, while
natural sources contributed an average of 8.75% to hourly O3 concentrations in Shanghai.
Contributions from residential and agricultural sources were relatively small, accounting
for only 0.59% of the monthly average MDA8 O3 concentrations. Compared with the
same period in 2021, the proportion trend of concentration contribution is similar to that in
2022, but the proportion changes significantly. For example, the proportion of road traffic
sources contributing to the ozone concentration has significantly decreased from 70.61%
to 64.3%, but it is still the largest contributor. The contribution of industrial emissions to
the ozone concentration has significantly risen from 20.71% to 26.36%, making it still the
second largest contributor. The pandemic lockdown measures resulted in a reduction in
anthropogenic emissions, the decrease in traffic flow during the strict lockdown period led
to a decrease in the contribution of transportation sources. Reductions in vehicle emissions
can lead to lower concentrations of pollutants such as PM2.5, PM10, CO, and NO2. The
decrease in PM2.5 and PM10 concentrations resulted in increased near-surface ultraviolet
radiation intensity, promoting the photochemical production of O3. In the industrial
sector, the suspension of manufacturing activities during the pandemic and the impact
of epidemic prevention measures led to decreased pollutant emissions. The significant
reduction in primary emissions such as SO2 and NO2 resulted in a significant increase
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in O3 concentrations. This, in turn, enhanced the atmospheric oxidation capacity and
the formation of secondary aerosols in the Shanghai region. Additionally, stable weather
conditions favored the accumulation of O3 mass concentrations, potentially amplifying
local O3 pollution [35]. As a result, during the lockdown period, the O3 pollution levels
did not decrease significantly and instead saw an increase [36].
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Figure 13. Contribution of sector sources to monthly average concentration of MDA8 O3 in Shanghai
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3.4.3. Analysis of O3 Regional Contribution

The regional contribution analysis of Shanghai includes nine regions: external areas
(regions other than Shanghai), central urban areas (Huangpu District, Jing’an District, Xuhui
District, Changning District, Yangpu District, Hongkou District, Putuo District), Minhang
District, Baoshan District, Jiading District, Chongming District, Pudong New Area, Jinshan
District, Fengxian District, Songjiang District, and Qingpu District. Figures 14 and 15a–i
represent the spatial distribution of regional contributions to Shanghai’s O3 concentration
during the simulation period for these nine regions. From Figures 14 and 15, it can
be observed that different source regions exhibit significant spatial variations in their
contributions to ozone concentration. In April–May 2021, the high-contribution regions of
local sources to Shanghai’s O3 concentration were primarily concentrated in the southern
part of Chongming District, the northern area of Pudong New Area, Jiading District,
Baoshan District, western Fengxian District, and the northern and southern parts of Jinshan
District. In April–May 2022, the high-contribution regions of local sources to Shanghai’s O3
concentration were mainly concentrated in most areas of Chongming Island, Jiading District,
Baoshan District, Minhang District, and the northern and central parts of Pudong New Area.
Within these high-contribution regions, the high-value area in Chongming District exhibited
a belt-like distribution, while the other high-value areas showed a patchy distribution.

As shown in Figure 16, during April–May 2021, the contribution of local sources to
Shanghai’s O3 concentration accounted for 58.33%, while the contribution from external
transmission was 41.67%, with a ratio of approximately 6:4. The main regions contributing
to O3 formation were Pudong New Area, Chongming District, Jinshan District, and Fengx-
ian District, accounting for around 35.41%. In the same period of 2022, the contribution
of local sources increased to 71.11%, and external transmission contributed 28.89%, with
a ratio of about 7:3. Among local sources in Shanghai, Qingpu District, Chongming Dis-
trict, Baoshan District, and Jiading District were the primary contributors to O3 formation,
accounting for approximately 41.12%. Local ozone generation remains the primary source
of Shanghai’s ozone concentration, emphasizing the significance of controlling local source
emissions to manage ozone levels in the region.
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Generally speaking, during April–May of 2021 and 2022, regional transmission and
long-range transport were significant contributors to Shanghai’s ozone concentration.
For instance, the southern area of Fengxian, adjacent to Hangzhou Bay, is near a coastal
industrial belt consisting of the Cixi, Zhenhai, and Beilun districts, which are dominated
by industrial emissions like VOCs. These emissions might be transported to areas on the
northern side of Hangzhou Bay, such as Jinshan, and jointly influenced by local sources,
causing higher O3 values when the wind direction is southerly. Ozone from outside the
Shanghai area, transported through regional transmission, could affect the sensitivity of
ozone to local precursor emissions, potentially impacting the effectiveness of controlling
ozone concentrations through local precursor reduction.

Figure 14. Contribution of regional sources to O3 pollution in Shanghai in April–May 2021 (a–i) represent
External Transport (areas outside Shanghai), Central Urban Area (Huangpu District, Jing’an District,
Xuhui District, Changning District, Yangpu District, Hongkou District, Putuo District), Minhang
District, Baoshan District and Jiading District, Chongming District, Pudong New Area, Jinshan
District and Fengxian District, Songjiang District, and Qingpu District).
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Figure 15. Contribution of regional sources to O3 pollution in Shanghai in April–May 2022.(a–i) represent
External Transport (areas outside Shanghai), Central Urban Area (Huangpu District, Jing’an District,
Xuhui District, Changning District, Yangpu District, Hongkou District, Putuo District), Minhang
District, Baoshan District and Jiading District, Chongming District, Pudong New Area, Jinshan
District and Fengxian District, Songjiang District, and Qingpu District).

When PM2.5 emission contributions decrease, the concentrations of hydrogen peroxide
radicals (HO2·) and nitrogen oxide radicals (NOx·≡NO+NO2) in the air increase. This
leads to elevated levels of hydroxyl radicals (HOx·≡OH·+HO2·+RO2·) and nitrogen oxide
radicals, promoting the catalytic oxidation of volatile organic compounds (VOCs) by NOx·
and HOx·, resulting in the generation of O3 and its accumulation [37]. The Shanghai
Environmental Monitoring Center [38] divides the administrative divisions of Shanghai
into three major regions based on the inner and outer ring roads: within the inner ring
road, between the inner and outer ring roads, and outside the outer ring road. The area
outside the outer ring road is the main region of pollutant emissions in Shanghai, with
a contribution rate of 58.9% for PM2.5 emissions. During the lockdown period, there was
a significant reduction in PM2.5 emissions outside the outer ring road, resulting in signifi-
cantly higher O3 emission contributions in these four regions (Qingpu District, Chongming
District, Baoshan District, and Jiading District) compared to the rest of the areas.
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Figure 16. Contribution of regional sources to monthly average concentration of MDA8 O3 in
Shanghai during April–May 2021 (left) and April–May 2022 (right).

4. Conclusions

The lockdown measures that occurred in Shanghai from April to May 2022 provided
an “ideal air quality experiment” for pollution research. This paper conducted a simulation
study to analyze the characteristics of ozone pollution, sources of high ozone concentrations,
and ozone formation mechanisms during the lockdown period in Shanghai. The main
conclusions are as follows:

(1) During the lockdown period, the air quality in Shanghai showed significant differ-
ences compared to non-lockdown periods, the concentrations of most pollutants
generally decreased, while the ozone concentration increased. By comparing the
PM2.5 and O3 monitoring data for Shanghai from 1 April to 31 May 2022 (a total of
61 days) with the same period in 2021, it was found that the average PM2.5 concen-
tration in Shanghai decreased by 26.8% during this period. However, the MDA8 O3
concentration increased by 14.5%. A total of 49 days had MDA8 O3 concentrations
exceeding the first-level concentration limit (100 µg/m3), and 13 days exceeded the
prescribed second-level concentration limit (160 µg/m3);

(2) The controlled simulation results of O3 precursors in Shanghai indicate the following:
During the simulated period of 2021, the majority of Shanghai’s O3 was primarily
influenced by VOCs (volatile organic compounds) in most areas, while in certain
suburban counties and rural regions of the city, ozone formation was mainly driven
by NOx (nitrogen oxides) control. However, during the simulated period of 2022, the
generation of ozone in Shanghai was predominantly driven by VOCs, and the entire
area was under VOCs control. Generally speaking, controlling VOCs is an effective
approach to reduce O3 concentrations in Shanghai;

(3) A sector source analysis revealed that the transportation sector contributes the most
to O3 formation in Shanghai, accounting for 70.61% in 2021 and 64.30% in 2022. Fol-
lowing transportation, the industrial sector also plays a significant role, contributing
20.71% and 26.36% in the respective years. Therefore, controlling emissions from the
transportation and industrial sectors should be a priority;

(4) Shanghai’s regional source apportionment results indicate the following: During the
months of April and May in 2021, local sources accounted for 58.33% of the contri-
bution to Shanghai’s O3 concentration, while contributions from sources outside the
region accounted for 41.67%. The ratio between local sources and transboundary
transport was approximately 6:4. In the same period in 2022, local sources contributed
to 71.11% of Shanghai’s O3 concentration, while contributions from sources outside
the region accounted for 28.89%. The local sources to transboundary transport ratio
increased to about 7:3, indicating an elevated contribution from local sources. Lo-
cally generated ozone is the primary source of Shanghai’s ozone concentration, and
controlling emissions from local sources is the key to managing ozone levels in the
Shanghai region;
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(5) Different source regions exhibit significant spatial variations in their contributions to
the ozone concentration. In 2021, high-contribution regions of local sources to Shang-
hai’s O3 concentration were mainly concentrated in the southern part of Chongming
District, the northern area of Pudong New Area, Jiading District, Baoshan District,
the western part of Fengxian District, and the northern and southern parts of Jinshan
District. In 2022, high-contribution regions of local sources to Shanghai’s O3 con-
centration were primarily concentrated in most areas of Chongming Island, Jiading
District, Baoshan District, Minhang District, and the northern and central parts of
Pudong New Area. Among these high-contribution regions, Chongming District’s
high-contribution area exhibited a belt-like distribution, while other high-contribution
areas showed a patchy distribution.

Despite the positive impact of reduced economic activities on the air quality during
the COVID-19 pandemic, the increasing trend of O3 concentration demands attention. This
is primarily due to the weakened titration effect of NO on O3 resulting from the reduction
in NOx emissions. This indicates that controlling NOx emissions alone, especially from
vehicle emissions, is insufficient to effectively regulate near-surface O3 concentrations.
Thus, implementing measures that focus on NOx emissions and coordinated VOCs control,
based on the sensitivity of O3 chemistry, are essential for O3 control. Further research and
analysis of O3 generation mechanisms and the influence of other factors are crucial for
developing targeted pollution control strategies and environmental management measures.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/atmos14101563/s1. Table S1: The parameterization scheme of WRF
and CAMx; Table S2: Shanghai’s monthly statistical data used in this study and monthly growth
rates (%) in 2022 compared to the same month of 2021 in Shanghai.
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