Meteorological and Hydrological Drought Risks under Future Climate and Land-Use-Change Scenarios in the Yellow River Basin
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. The Yellow River Basin
2.2. Data Sources
2.2.1. NEX-GDDP Data
2.2.2. Observation Data
2.2.3. Remote Sensing Monitoring Data
3. Methodology
3.1. Meteorological and Hydrological Drought Indices
3.2. Land-Use-Change Prediction Model
3.2.1. CA-Markov Model
3.2.2. Accuracy Assessment
3.3. SWAT Model
3.4. Definition of Drought Event and Characteristics
3.5. Copula-Based Drought Risk-Assessment Model
3.5.1. Definition of Sub-Seasonal Drought and Seasonal Drought
3.5.2. Sub-Seasonal and Seasonal Drought Risk-Assessment Models
4. Results and Discussion
4.1. Future Climate Changes in the YRB
4.2. Future Land Use Changes in the YRB
4.3. SWAT Model Calibration and Validation
4.4. Meteorological Drought Risk Prediction
4.5. Hydrological Drought Risk Prediction
4.6. Analysis of the Future Concerns Regarding Sub-Seasonal and Seasonal Droughts
4.7. The Relationship between Meteorological- and Hydrological-Drought Risk Patterns
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- EM-DAT: Disasters in Numbers. 2012. Available online: www.emdat.be/ (accessed on 14 March 2013).
- EEA. Urban Adaptation to Climate Change in Europe: Challenges and Opportunities for Cities Together with Supportive National and European Policies; Report No 2/2012; European Environment Agency: Copenhagen, Denmark, 2012.
- Peterson, T.C.; Alexander, L.V.; Allen, M.R.; Anel, J.A.; Zhou, T.J. Explaining extreme events of 2012 from a climate perspective. Bull. Am. Meteorol. Soc. 2013, 94, S1–S74. [Google Scholar] [CrossRef]
- Dutra, E.; Pozzi, W.; Wetterhall, F.; Giuseppe, F.D.; Magnusson, L.; Naumann, G.; Barbosa, P.; Vogt, J.; Pappenberger, F. Global meteorological drought—Part 2: Seasonal forecasts. Hydrol. Earth Syst. Sci. 2014, 11, 919–944. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M.; Schubert, S.; Wang, H.; Lyon, B.; Kumar, A.; Nakamura, J.; Henderson, N. Causes of the 2011–14 California Drought. J. Clim. 2015, 28, 6997–7024. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef]
- Liu, Y.; Shan, F.Z.; Yue, H.; Wang, X.; Fan, Y.H. Global analysis of the correlation and propagation among meteorological, agricultural, surface water, and groundwater droughts. J. Environ. Manag. 2023, 333, 117460. [Google Scholar] [CrossRef]
- Huang, S.Z.; Chang, J.X.; Leng, G.Y.; Huang, Q. Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River Basin, China. J. Hydrol. 2015, 527, 608–618. [Google Scholar] [CrossRef]
- Ma, M.; Ren, L.; Singh, V.P.; Fei, Y.; Lu, C.; Yang, X. Hydrologic model-based palmer indices for drought characterization in the yellow river basin, China. Stoch. Environ. Res. Risk Assess. 2016, 30, 1401–1420. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.M.; Yang, H.B.; Di, D.Y.; Zhao, Y.; Liang, Q.H.; Hussain, Z. Copula-Based Drought Analysis Using Standardized Precipitation Evapotranspiration Index: A Case Study in the Yellow River Basin, China. Water 2019, 11, 1298. [Google Scholar] [CrossRef]
- Song, M.W.; Jiang, X.H.; Lei, Y.X.; Zhao, Y.R.; Cai, W.J. Spatial and temporal variation characteristics of extreme hydrometeorological events in the Yellow River Basin and their effects on vegetation. Nat. Hazards 2023, 116, 1863–1878. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Chang, J.X.; Huang, S.Z.; Huang, Q. Characteristics of integrated droughts based on a nonparametric standardized drought index in the Yellow River Basin, China. Hydrol. Res. 2016, 47, 454–467. [Google Scholar] [CrossRef]
- Li, Y.Y.; Luo, L.F.; Chang, J.X.; Wang, Y.M.; Guo, A.J.; Fan, J.J.; Liu, Q. Hydrological drought evolution with a nonlinear joint index in regions with significant changes in underlying surface. J. Hydrol. 2020, 585, 124794. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.M.; Yang, H.B.; Di, D.Y.; Zhao, Y.; Liang, Q.H.; Hussain, Z. Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China. J. Hydrol. 2020, 584, 124751. [Google Scholar] [CrossRef]
- Ji, G.X.; Lai, Z.Z.; Yan, D.; Wu, L.Y.; Wang, Z. Spatiotemporal patterns of future meteorological drought in the Yellow River Basin based on SPEI under RCP scenarios. Int. J. Clim. Change Strateg. Manag. 2022, 14, 39–53. [Google Scholar] [CrossRef]
- Wang, L.; Shu, Z.K.; Wang, G.Q.; Sun, Z.L.; Yan, H.F.; Bao, Z.X. Analysis of Future Meteorological Drought Changes in the Yellow River Basin under Climate Change. Water 2022, 14, 1896. [Google Scholar] [CrossRef]
- Zhang, T.; Su, X.L.; Zhang, G.X.; Wu, H.J.; Liu, Y.H. Projections of the characteristics and probability of spatially concurrent hydrological drought in a cascade reservoirs area under CMIP6. J. Hydrol. 2022, 613, 128472. [Google Scholar] [CrossRef]
- Li, Y.Y.; Chang, J.X.; Luo, L.F.; Wang, Y.M.; Guo, A.J.; Fan, J.J. Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using swat model with time-varying parameters. Hydrol. Res. 2019, 50, 244–261. [Google Scholar] [CrossRef]
- Wong, G.; Van Lanen, H.A.J.; Torfs, P.J.J.F. Probabilistic analysis of hydrological drought characteristics using meteorological drought. Hydrol. Sci. J.-J. Des Sci. Hydrol. 2013, 58, 253–270. [Google Scholar] [CrossRef]
- Zhang, D.D.; Yan, D.H.; Lu, F.; Wang, Y.C.; Feng, J. Copula-based risk assessment of drought in Yunnan province, China. Nat. Hazards 2015, 75, 2199–2220. [Google Scholar] [CrossRef]
- Yang, J.; Chang, J.X.; Wang, Y.M.; Li, Y.Y.; Hu, H.; Chen, Y.T.; Yao, J. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. J. Hydrol. 2018, 557, 651–667. [Google Scholar] [CrossRef]
- She, D.; Xia, J. Copulas-based drought characteristics analysis and risk assessment across the loess plateau of China. Water Resour. Manag. 2018, 32, 547–564. [Google Scholar] [CrossRef]
- Ullah, H.; Akbar, M. Bivariate Drought Risk Assessment for Water Planning Using Copula Function in Balochistan. J. Environ. Model. Assess. 2023, 28, 447–464. [Google Scholar] [CrossRef]
- Dai, M.; Huang, S.Z.; Huang, Q.; Leng, G.Y.; Guo, Y.; Wang, L.; Fang, W.; Li, P.; Zheng, X.D. Assessing agricultural drought risk and its dynamic evolution characteristics. Agric. Gricultural Water Manag. 2020, 231, 106003. [Google Scholar] [CrossRef]
- Yu, J.; Kim, J.E.; Lee, J.H.; Kim, T.W. Development of a PCA-Based Vulnerability and Copula-Based Hazard Analysis for Assessing Regional Drought Risk. Ksce J. Civ. Eng. 2021, 25, 1901–1908. [Google Scholar]
- Chang, J.X.; Li, Y.Y.; Wang, Y.M.; Yuan, M. Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. J. Hydrol. 2016, 540, 824–834. [Google Scholar] [CrossRef]
- Shaw, B.; Chithra, N.R. Copula-based multivariate analysis of hydro-meteorological drought. Theor. Appl. Climatol. 2023, 153, 475–493. [Google Scholar] [CrossRef]
- Ali, J.; Syed, K.H.; Gabriel, H.F.; Saeed, F.; Ahmad, B.; Bukhari, S.A.A. Centennial heat wave projections over Pakistan using ensemble nex gddp data set. Earth Syst. Environ. 2018, 2, 437–454. [Google Scholar] [CrossRef]
- Das, S.; Das, J.; Umamahesh, N.V. Identification of future meteorological drought hotspots over Indian region: A study based on NEX-GDDP data. Int. J. Climatol. 2021, 41, 5644–5662. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, C.; Duan, Q.; Shen, C.; Fan, X. Evaluation and projection of daily maximum and minimum temperatures over China using the high-resolution NEX-GDDP dataset. Clim. Dyn. 2020, 55, 2615–2629. [Google Scholar] [CrossRef]
- Singh, S.; Jain, S.K.; Singh, P.K. Inter-comparisons and applicability of CMIP5 GCMs, RCMs and statistically downscaled NEX-GDDP based precipitation in India. Sci. Total Environ. 2019, 697, 134163. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wang, F.; He, Y.; Li, Z. Evaluation and projection of snowfall changes in High Mountain Asia based on NASA’s NEX-GDDP high-resolution daily downscaled dataset. Environ. Res. Lett. 2020, 15, 104040. [Google Scholar] [CrossRef]
- Xiong, Y.; Xin, X.; Kou, X. Simulation and Projection of Near-Surface Wind Speeds in China by BCC-CSM Models. J. Meteorol. Res. 2019, 33, 149–158. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Schrier, G.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef]
- Cammalleri, C.; Micale, F.; Vogt, J. A novel soil moisture-based drought severity index (DSI) combining water deficit magnitude and frequency. Hydrol. Process. 2016, 30, 289–301. [Google Scholar] [CrossRef]
- Mckee, T.; Doesken, N.; Kleist, J. The Relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–184. [Google Scholar]
- Wang, H.; He, B.; Zhang, Y.; Huang, L.; Chen, Z.; Liu, J. Response of ecosystem productivity to dry/wet conditions indicated by different drought indices. Sci. Total Environ. 2018, 612, 347–357. [Google Scholar] [CrossRef]
- Khan, M.I.; Dong, L.; Qiang, F.; Faiz, M.A. Detecting the persistence of drying trends under changing climate conditions using four meteorological drought indices. Meteorol. Appl. 2018, 13, 184–194. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Zarch, M.A.A.; Sivakumar, B.; Sharma, A. Droughts in a warming climate: A global assessment of standardized precipitation index (SPI) and reconnaissance drought index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Hoekema, D.J.; Sridhar, V. Relating climatic attributes and water resources allocation: A study using surface water supply and soil moisture indices in the snake river basin, Idaho. Water Resour. Res. 2011, 47, 209–216. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; US Weather Bureau: Washington, DC, USA, 1965; p. 58.
- Wang, D.; Hejazi, M.; Cai, X.; Valocchi, A. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res. 2011, 47, W09527. [Google Scholar] [CrossRef]
- Svensson, C.; Hannaford, J.; Prosdocimi, I. Statistical distributions for monthly aggregations of precipitation and streamflow in drought indicator applications. Water Resour. Res. 2017, 53, 999–1018. [Google Scholar] [CrossRef]
- Shahid, S.; Hazarika, M.K. Groundwater Drought in the Northwestern Districts of Bangladesh. Water Resour. Manag. 2010, 24, 1989–2006. [Google Scholar] [CrossRef]
- Li, B.; Rodell, M. Evaluation of a model-based groundwater drought indicator in the conterminous U.S. J. Hydrol. 2015, 526, 78–88. [Google Scholar] [CrossRef]
- Ottosen, C.B.; Ronde, V.; Trapp, S.; Bjerg, P.L.; Broholm, M.M. Phytoscreening for Vinyl Chloride in Groundwater Discharging to a Stream. Ground Water Monit. Remediat. 2018, 38, 66–74. [Google Scholar] [CrossRef]
- Berberoğlu, S.; Akın, A.; Clarke, K.C. Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landsc. Urban Plan. 2016, 153, 11–27. [Google Scholar] [CrossRef]
- Wangyel, W.; Lamchin, M.; Woo-Kyun, L. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273–284. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Fuglsang, M.; Münier, B.; Hansen, H.S. Modelling land-use effects of future urbanization using cellular automata: An eastern Danish case. Environ. Model. Softw. 2013, 50, 1–11. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-Ca. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Gong, W.F.; Yuan, L.; Fan, W.Y.; Stott, P. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 207–216. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S. Application of Cellular automata and Markov-chain model in geospatial environmental modeling- A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhou, J.; Song, W. Simulating Urban Sprawl in China Based on the Artificial Neural Network-Cellular Automata-Markov Model. Sustainability 2020, 12, 4341. [Google Scholar] [CrossRef]
- Okba, W.; Samir, B.; Moncef, S.M. Modelling and Assessing the Spatiotemporal Changes to Future Land Use Change Scenarios Using Remote Sensing and CA-Markov Model in the Mellegue Catchment. J. Indian Soc. Remote Sens. 2023, 51, 9–29. [Google Scholar]
- Usman, M.; Ndehedehe, C.E.; Farah, H.; Ahmad, B.; Wong, Y.J.; Adeyeri, O.E. Application of a Conceptual Hydrological Model for Streamflow Prediction Using Multi-Source Precipitation Products in a Semi-Arid River Basin. Water 2022, 14, 1260. [Google Scholar] [CrossRef]
- Maneechot, L.; Wong, Y.J.; Try, S.; Shimizu, Y.; Bharambe, K.P.; Hanittinan, P.; Ram-Indra, T.; Usman, M. Evaluating the necessity of post-processing techniques on d4PDF data for extreme climate assessment. Envionmental Sci. Pollut. Res. 2023, 30, 102531–102546. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Yevjevich, V.M. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. Hydrologic Paper No. 23. Bachelor’s Thesis, Colorado State University, Fort Collins, CO, USA, 1967. [Google Scholar]
RDI | Drought Grade |
---|---|
No drought | |
Abnormally dry | |
Moderate drought | |
Severe drought | |
Extreme drought |
Land Use Type | 2020–2030 | 2030–2040 | 2040–2050 | 2050–2060 | 2020–2060 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Ratio (%) | Area (km2) | Ratio (%) | Area (km2) | Ratio (%) | Area (km2) | Ratio (%) | Area (km2) | Ratio (%) | |
Cropland | −18,746 | −8.34 | 6376 | 3.09 | −20,754 | −9.35 | −11,240 | −5.29 | −216,504 | −14.74 |
Woodland | 5569 | 4.93 | −7969 | −6.72 | 5306 | 4.87 | 3675 | 3.32 | 3314 | 3.28 |
Grassland | −9261 | −2.55 | −6364 | −1.80 | −36,459 | −9.52 | −1445 | −0.42 | −206,952 | −13.79 |
Water | 5293 | 21.42 | −2783 | −9.28 | 8127 | 36.37 | 3070 | 11.28 | 5117 | 23.17 |
Build-up | 3113 | 9.94 | 19,117 | 55.50 | 3587 | 63.16 | 4210 | 7.86 | 55,876 | 257.16 |
Bare land | 14,033 | 20.60 | −8378 | −10.20 | 7962 | 11.79 | 1730 | 2.35 | 7962 | 11.79 |
Station | Calibration | Validation | ||||
---|---|---|---|---|---|---|
R2 | PBIAS (%) | R2 | PBIAS (%) | |||
Tangnaiai | 0.83 | 0.85 | −5.19 | 0.86 | 0.88 | −10.38 |
Lanzhou | 0.77 | 0.88 | −8.77 | 0.80 | 0.90 | −10.99 |
Toudaoguai | 0.68 | 0.77 | −16.12 | 0.71 | 0.79 | −13.32 |
Huaxian | 0.79 | 0.83 | 11.65 | 0.80 | 0.87 | 2.85 |
Huanyuankou | 0.65 | 0.71 | −20.64 | 0.64 | 0.75 | −15.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Huang, Y.; Fan, J.; Zhang, H.; Li, Y.; Wang, X.; Deng, Q. Meteorological and Hydrological Drought Risks under Future Climate and Land-Use-Change Scenarios in the Yellow River Basin. Atmosphere 2023, 14, 1599. https://doi.org/10.3390/atmos14111599
Li Y, Huang Y, Fan J, Zhang H, Li Y, Wang X, Deng Q. Meteorological and Hydrological Drought Risks under Future Climate and Land-Use-Change Scenarios in the Yellow River Basin. Atmosphere. 2023; 14(11):1599. https://doi.org/10.3390/atmos14111599
Chicago/Turabian StyleLi, Yunyun, Yi Huang, Jingjing Fan, Hongxue Zhang, Yanchun Li, Xuemei Wang, and Qian Deng. 2023. "Meteorological and Hydrological Drought Risks under Future Climate and Land-Use-Change Scenarios in the Yellow River Basin" Atmosphere 14, no. 11: 1599. https://doi.org/10.3390/atmos14111599
APA StyleLi, Y., Huang, Y., Fan, J., Zhang, H., Li, Y., Wang, X., & Deng, Q. (2023). Meteorological and Hydrological Drought Risks under Future Climate and Land-Use-Change Scenarios in the Yellow River Basin. Atmosphere, 14(11), 1599. https://doi.org/10.3390/atmos14111599