Evaluation and Projection of Gale Events in North China
Abstract
:1. Introduction
2. Data and Methods
2.1. The ERA5 Reanalysis
2.2. Model Outputs from CMIP6
2.3. Definition of Gale Event in Observation and Model Simulation
2.4. Bias Correction of Model Simulations
3. Results
3.1. Daily and Seasonal Variations of Gale Events
3.2. Model Evaluation of Gale Events in North China
3.3. Projection of Gale Events in North China
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2021; IPCC: Geneva, Switzerland, 2021.
- Wang, Z.; Lin, L.; Yang, M.; Xu, Y. The effect of future reduction in aerosol emissions on climate extremes in China. Clim. Dyn. 2016, 47, 2885–2899. [Google Scholar] [CrossRef]
- Chen, R.; Wen, Z.; Lu, R.; Wang, C. Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the Western Tropical Pacific Warming. Adv. Atmos. Sci. 2019, 36, 465–478. [Google Scholar] [CrossRef]
- Wei, L.; Xin, X.; Li, Q.; Wu, Y.; Tang, H.; Li, Y.; Yang, B. Simulation and projection of climate extremes in China by multiple Coupled Model Intercomparison Project Phase 6 models. Int. J. Clim. 2023, 43, 219–239. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Ullah, S.; Chen, C.; Shen, L.; Liu, Z. Substantial increase in abrupt shifts between drought and flood events in China based on observations and model simulations. Sci. Total. Environ. 2023, 876, 162822. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Mishra, A.K. Increase in Compound Drought and Heatwaves in a Warming World. Geophys. Res. Lett. 2021, 48, e2020GL090617. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Ismail, M.; Ehsan, M.A.; Islam, M.N.; Abid, M.A.; O’brien, E.; Kamil, S.; Rashid, I.U.; et al. Projected Changes in Climate Extremes Using CMIP6 Simulations Over SREX Regions. Earth Syst. Environ. 2021, 5, 481–497. [Google Scholar] [CrossRef]
- Chen, H.; Sun, J. Significant Increase of the Global Population Exposure to Increased Precipitation Extremes in the Future. Earth’s Futur. 2021, 9, e2020EF001941. [Google Scholar] [CrossRef]
- Dahl, K.; Licker, R.; Abatzoglou, J.T.; Declet-Barreto, J. Increased frequency of and population exposure to extreme heat index days in the United States during the 21st century. Environ. Res. Commun. 2019, 1, 075002. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T. Significant Increases in Extreme Precipitation and the Associations with Global Warming over the Global Land Monsoon Regions. J. Clim. 2019, 32, 8465–8488. [Google Scholar] [CrossRef]
- Ridder, N.N.; Ukkola, A.M.; Pitman, A.J.; Perkins-Kirkpatrick, S.E. Increased occurrence of high impact compound events under climate change. Npj Clim. Atmos. Sci. 2022, 5, 3. [Google Scholar] [CrossRef]
- Heinonen, T.; Pukkala, T.; Ikonen, V.-P.; Peltola, H.; Gregow, H.; Venäläinen, A. Consideration of strong winds, their directional distribution and snow loading in wind risk assessment related to landscape level forest planning. For. Ecol. Manag. 2011, 261, 710–719. [Google Scholar] [CrossRef]
- Li, S.; Tse, K.; Weerasuriya, A.; Chan, P. Estimation of turbulence intensities under strong wind conditions via turbulent kinetic energy dissipation rates. J. Wind. Eng. Ind. Aerodyn. 2014, 131, 1–11. [Google Scholar] [CrossRef]
- Storer, L.N.; Williams, P.D.; Gill, P.G. Aviation Turbulence: Dynamics, Forecasting, and Response to Climate Change. Pure Appl. Geophys. 2019, 176, 2081–2095. [Google Scholar] [CrossRef]
- Li, D.; Feng, J.; Dosio, A.; Qi, J.; Xu, Z.; Yin, B. Historical Evaluation and Future Projections of 100-m Wind Energy Potentials Over CORDEX-East Asia. J. Geophys. Res. Atmos. 2020, 125, e2020JD032874. [Google Scholar] [CrossRef]
- Lai, L.-W. The relationship between extreme weather events and crop losses in central Taiwan. Theor. Appl. Clim. 2018, 134, 107–119. [Google Scholar] [CrossRef]
- Leung, A.C.W.; Gough, W.A.; Butler, K.A.; Mohsin, T.; Hewer, M.J. Characterizing observed surface wind speed in the Hudson Bay and Labrador regions of Canada from an aviation perspective. Int. J. Biometeorol. 2022, 66, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Niacsu, L.; Sfica, L.; Ursu, A.; Ichim, P.; Bobric, D.E.; Breaban, I.G. Wind erosion on arable lands, associated with extreme blizzard conditions within the hilly area of Eastern Romania. Environ. Res. 2019, 169, 86–101. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wu, X.; Wang, D.; Wu, T.; Li, R.; Hu, G.; Zou, D.; Bai, K.; Ma, X.; Liu, Y.; et al. Spatiotemporal variations and driving factors for potential wind erosion on the Mongolian Plateau. Sci. Total Environ. 2023, 862, 160829. [Google Scholar] [CrossRef]
- Gui, K.; Yao, W.; Che, H.; An, L.; Zheng, Y.; Li, L.; Zhao, H.; Zhang, L.; Zhong, J.; Wang, Y.; et al. Record-breaking dust loading during two mega dust storm events over northern China in March 2021: Aerosol optical and radiative properties and meteorological drivers. Atmos. Meas. Tech. 2022, 22, 7905–7932. [Google Scholar] [CrossRef]
- Yin, Z.; Wan, Y.; Zhang, Y.; Wang, H. Why super sandstorm 2021 in North China? Natl. Sci. Rev. 2022, 9, nwab165. [Google Scholar] [CrossRef]
- Wang, E.; Yu, Q.; Wu, D.; Xia, J. Climate, agricultural production and hydrological balance in the North China Plain. Int. J. Clim. 2008, 28, 1959–1970. [Google Scholar] [CrossRef]
- Xin, Y.; Tao, F. Developing climate-smart agricultural systems in the North China Plain. Agric. Ecosyst. Environ. 2020, 291, 106791. [Google Scholar] [CrossRef]
- Sun, H.; Luo, Y.; Zhao, Z.; Chang, R. The Impacts of Chinese Wind Farms on Climate. J. Geophys. Res. Atmos. 2018, 123, 5177–5187. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, S.X.; Wu, X. Meteorological Change and Impacts on Air Pollution: Results from North China. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Li, J.; Hao, X.; Liao, H.; Wang, Y.; Cai, W.; Li, K.; Yue, X.; Yang, Y.; Chen, H.; Mao, Y.; et al. Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nat. Geosci. 2022, 15, 349–355. [Google Scholar] [CrossRef]
- Tong, P.F.; Chen, S.X.; Tang, C.Y. Detecting and Evaluating Dust-Events in North China with Ground Air Quality Data. Earth Space Sci. 2022, 9, e2021EA001849. [Google Scholar] [CrossRef]
- Shi, J.; Wen, K.; Cui, L. Temporal and spatial variations of high-impact weather events in China during 1959–2014. Theor. Appl. Clim. 2017, 129, 385–396. [Google Scholar] [CrossRef]
- Fan, W.; Liu, Y.; Chappell, A.; Dong, L.; Xu, R.; Ekström, M.; Fu, T.-M.; Zeng, Z. Evaluation of Global Reanalysis Land Surface Wind Speed Trends to Support Wind Energy Development Using In Situ Observations. J. Appl. Meteorol. Clim. 2021, 60, 33–50. [Google Scholar] [CrossRef]
- Huang, J.; Yin, J.; Wang, M.; He, Q.; Guo, J.; Zhang, J.; Liang, X.; Xie, Y. Evaluation of Five Reanalysis Products with Radiosonde Observations Over the Central Taklimakan Desert During Summer. Earth Space Sci. 2021, 8, e2021EA001707. [Google Scholar] [CrossRef]
- Taszarek, M.; Allen, J.T.; Marchio, M.; Brooks, H.E. Global climatology and trends in convective environments from ERA5 and rawinsonde data. Npj Clim. Atmos. Sci. 2021, 4, 35. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, Y.; Yue, S. A high-spatial-resolution dataset of human thermal stress indices over South and East Asia. Sci. Data 2021, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Wang, Z.; Wang, D.; Zhang, X.; Che, H.; Yue, X.; Tian, C.; Zhong, J.; Guo, L.; Li, L.; et al. Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy. Nat. Clim. Change 2023, 13, 693–700. [Google Scholar] [CrossRef]
- Wang, Z.L.; Lin, L.; Zhang, X.Y.; Zhang, H.; Liu, L.K.; Xu, Y.Y. Scenario dependence of future changes in climate extremes under 1.5 degrees C and 2 degrees C global warming. Sci. Rep. 2017, 7, 46432. [Google Scholar]
- Lei, Y.D.; Yue, X.; Liu, Z.Y. Dipole response of early-summer rainfall in eastern China to 1.5 and 2.0 degrees C global warming. Int. J. Climatol. 2022, 42, 10009–10020. [Google Scholar]
- Tian, C.; Yue, X.; Zhou, X.; Lei, Y.; Zhou, H.; Cao, Y. Projection of Long-Term Climate Change in China Under COVID-19 Recovery Emission Scenarios. J. Geophys. Res. Atmos. 2023, 128, e2023JD039197. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Li, D.; Yuan, J.; Kopp, R.E. Escalating global exposure to compound heat-humidity extremes with warming. Environ. Res. Lett. 2020, 15, 064003. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Li, J.; Hao, X.; Liao, H.; Yue, X.; Li, H.; Long, X.; Li, N. Predominant Type of Dust Storms That Influences Air Quality Over Northern China and Future Projections. Earth’s Futur 2022, 10, e2022EF002649. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, D.; Huang, J.; He, J.; Chen, Y.; Chen, J.; Bi, H.; Lou, G.; Du, S.; Zhang, Y.; et al. Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023. Adv. Atmos. Sci. 2023, 40, 1549–1557. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Shang, K.; Yang, Z.; Chen, F. The Characteristics of Momentum Transfer during a Cold Strong Wind Process. J. Desert Res. 2016, 36, 467–473. [Google Scholar]
- Lan, C.; Xie, J.; Li, L.; Wang, B.; Yang, H.; Lu, J. Downward Momentum Flux: An Important Mechanism of Typhoon Maintaining Ground Destructive Force. J. Geophys. Res. Atmos. 2023, 128, e2022JD037470. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Z.; Xu, R.; Ziegler, A.D.; Jerez, S.; Chen, D.; Azorin-Molina, C.; Zhou, L.; Yang, X.; Xu, H.; et al. Increases in China’s wind energy production from the recovery of wind speed since 2012. Environ. Res. Lett. 2022, 17, 114035. [Google Scholar] [CrossRef]
- Zha, J.; Shen, C.; Zhao, D.; Wu, J.; Fan, W. Slowdown and reversal of terrestrial near-surface wind speed and its future changes over eastern China. Environ. Res. Lett. 2021, 16, 034028. [Google Scholar] [CrossRef]
- Zhang, Y.; Lam, J.S.L. Estimating the economic losses of port disruption due to extreme wind events. Ocean Coast. Manag. 2015, 116, 300–310. [Google Scholar] [CrossRef]
- Coccolo, S.; Mauree, D.; Naboni, E.; Kaempf, J.; Scartezzini, J.-L. On the impact of the wind speed on the outdoor human comfort: A sensitivity analysis. Energy Procedia 2017, 122, 481–486. [Google Scholar] [CrossRef]
- Shamoun-Baranes, J.; van Loon, E.; Liechti, F.; Bouten, W. Analyzing the effect of wind on flight: Pitfalls and solutions. J. Exp. Biol. 2007, 210, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Burnett, N.P.; Badger, M.A.; Combes, S.A. Wind and route choice affect performance of bees flying above versus within a cluttered obstacle field. PLoS ONE 2022, 17, e0265911. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Huang, W. The detection and prediction for oil spill on the sea based on the infrared images. Infrared Phys. Technol. 2016, 77, 391–404. [Google Scholar] [CrossRef]
- Chou, J.-S.; Ou, Y.-C.; Lin, K.-Y.; Wang, Z.-J. Structural failure simulation of onshore wind turbines impacted by strong winds. Eng. Struct. 2018, 162, 257–269. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, S.; Huang, Z.; Yang, Y.; Wang, L.; Han, W.; Li, X. Characteristics of Dust Events in China from 2015 to 2020. Atmosphere 2021, 12, 952. [Google Scholar] [CrossRef]
- Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Clim. 2016, 36, 1051–1066. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.; Qin, D.; Wu, J.; Gao, R.; Song, L. Changes in Mean and Extreme Temperature and Precipitation over the arid Region of Northwestern China: Observation and Projection. Adv. Atmos. Sci. 2017, 34, 289–305. [Google Scholar] [CrossRef]
- Niu, X.; Wang, S.; Tang, J.; Lee, D.-K.; Gutowski, W.; Dairaku, K.; McGregor, J.; Katzfey, J.; Gao, X.; Wu, J.; et al. Ensemble evaluation and projection of climate extremes in China using RMIP models. Int. J. Clim. 2018, 38, 2039–2055. [Google Scholar] [CrossRef]
- Avila-Diaz, A.; Benezoli, V.; Justino, F.; Torres, R.; Wilson, A. Assessing current and future trends of climate extremes across Brazil based on reanalyses and earth system model projections. Clim. Dyn. 2020, 55, 1403–1426. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Z.; Zhang, X.; Che, H.; Yue, X.; Tian, C.; Zhong, J.; Guo, L.; Li, L.; Zhou, H. Avoided population exposure to extreme heat under two scenarios of global carbon neutrality by 2050 and 2060. Environ. Res. Lett. 2022, 17, 094041. [Google Scholar] [CrossRef]
Model | Country | Resolution (Lat × Lon) |
---|---|---|
ACCESS-ESM1-5 | Australia | 145 × 192 |
AWI-CM-1-1-MR | Germany | 192 × 384 |
BCC-CSM2-MR | China | 160 × 320 |
CanESM5 | Canada | 64 × 128 |
FGOALS-g3 | China | 80 × 180 |
MIROC6 | Japan | 128 × 256 |
MRI-ESM2-0 | Japan | 160 × 320 |
NESM3 | China | 96 × 192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Li, Q.; Wu, L.; Huo, M.; Huang, Y. Evaluation and Projection of Gale Events in North China. Atmosphere 2023, 14, 1646. https://doi.org/10.3390/atmos14111646
Yuan R, Li Q, Wu L, Huo M, Huang Y. Evaluation and Projection of Gale Events in North China. Atmosphere. 2023; 14(11):1646. https://doi.org/10.3390/atmos14111646
Chicago/Turabian StyleYuan, Rong, Qiuyue Li, Lingfang Wu, Miao Huo, and Yi Huang. 2023. "Evaluation and Projection of Gale Events in North China" Atmosphere 14, no. 11: 1646. https://doi.org/10.3390/atmos14111646
APA StyleYuan, R., Li, Q., Wu, L., Huo, M., & Huang, Y. (2023). Evaluation and Projection of Gale Events in North China. Atmosphere, 14(11), 1646. https://doi.org/10.3390/atmos14111646