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Abstract: As an important weather extreme, gales greatly impact the air quality, agriculture, aviation,
and renewable energy in North China. However, the spatial–temporal changes in gale events
remain unknown in North China. In this study, using the ERA5 reanalysis with high spatiotemporal
resolution and multi-model simulations from the Coupled Model Intercomparison Project Phase Six
(CMIP6), we investigate the temporal changes, including daily, seasonal and decadal variations in
gale events in North China between 1980 and 2021, and we project the changes in gale events in
the mid and late 21st century under two shared socio-economic pathways (SSPs). The gale events
show large spatial heterogeneity in frequency, with a high frequency of >25 days/year in central
Inner Mongolia province, northern Hebei province, and northwestern Beijing. Over the past four
decades, the gale events in North China have shown a decadal reversal, with a decrease between
1980 and 2006 and an increase between 2007 and 2014. Furthermore, the gale events show strong
temporal variations in North China. For seasonal variation, the gale events exhibit double peaks,
with the largest peak in April and the smallest peak in October. For daily variation, the gale events
show a single peak, with the maximum from 10:00 to 16:00 local time in North China. Multi-model
simulations from CMIP6 reveal a continuous decreasing trend of gale events in North China by the
end of the 21st century under both SSP1-2.6 and SSP2-4.5 scenarios relative to the historical period.
Our results provide comprehensive support for planning aviation, renewable energy, and agriculture
in the future.

Keywords: gale event; spatial–temporal changes; North China

1. Introduction

Climate extremes refer to a weather (climate) condition that deviates significantly from its
mean state [1]. The observed evidence shows that most climate extremes, including heatwaves,
droughts, and floods, have become more frequent and severe in recent decades as a result
of anthropogenic climate warming [2–5]. For example, over the past few decades, 58–73%
of land regions have shown a significant increase in compound drought and heatwaves
due to anthropogenic emissions [6]. Meanwhile, modeling studies reported that the global
weather and climate extremes are projected to increase by approximately two-fold compared
to historical periods by the end of this century under a high emission scenario [7,8]. The
increase is projected to exceed four-fold, particularly in densely populated regions, such as
the United States, north Africa, and Asia [9–11].

As an important extreme weather event, gales significantly impact energy, the ecologi-
cal environment, and aviation [12–14]. In terms of energy, while strong winds contribute
to generating more wind energy, they also increase the load and risk of damage to the
wind power equipment [15]. For agriculture, strong winds may break or damage the stems,
branches, and fruits or disrupt pollination processes, resulting in reduced crop yield or
even death [16]. Strong crosswinds or rapidly changing wind directions can make takeoff
and landing challenging for aviation [17]. Furthermore, gale events can cause damage to
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buildings, infrastructure, and vehicles. Fallen trees, damaged roofs, and toppled power
poles can pose risks of personal injury and property loss. For example, Inner Mongolia
experienced consecutive strong winds in mid-March 2021, with the highest wind force
reaching level 11 and the instantaneous maximum wind speed approaching an almost
50-year record. Such powerful winds devastated a solar power array of nearly a hun-
dred megawatts and caused soil erosion in arid areas [18,19], leading to severe sandstorm
weather conditions in North China [20,21].

North China has a predominantly temperate monsoon climate (Figure 1). The average
annual temperature is around 8–13 ◦C. The annual precipitation is around 400–800 mm. It
is hot and rainy in the summer, which promotes crop growth. Therefore, North China is
the largest agricultural region in China, accounting for more than 60% of wheat and 30% of
maize yields [22,23]. Meanwhile, North China is an important transportation and wind
farm hub [24] but has suffered from severe air pollution in recent years, posing a serious
threat to human health [25–27]. Therefore, gale events are an important weather extreme in
North China, influencing agriculture, aviation, energy, and air quality.
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Although Shi et al. [28] analyzed the decadal changes in gale weather events in the
entirety of China and reported that the frequency of gale events showed a decreasing trend
of 3.7 days/decade for China as a whole between 1959 and 2014, their study lacked the daily
and seasonal variations and future projection of gale events, hindering the comprehensive
assessment of gale weather events. In this study, using the hourly ERA5 reanalysis and
combining daily model outputs from the Coupled Model Intercomparison Project Phase six
(CMIP6), we evaluate the spatial–temporal changes in gale events over the historical period
and project the changes in gale events under two future shared socio-economic pathways
(SSP), including SSP1-2.6 and SSP2-4.5, by the mid-to-late 21st century in North China.
Such a study will provide comprehensive support for planning agriculture, renewable
energy, and flight distributions in North China.

2. Data and Methods
2.1. The ERA5 Reanalysis

In this study, we use the hourly ERA5 reanalysis with a high horizontal resolution
of 0.25◦ × 0.25◦ to investigate gale events’ spatial–temporal changes between 1980 and
2021 in North China. ERA5 is the fifth-generation reanalysis from the European Centre
for Medium-Range Weather Forecasts (ECMWF; https://www.ecmwf.int/en/forecasts/

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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dataset/ecmwf-reanalysis-v5) (accessed on 1 January 2023), which replaced ERA-Interim as
the next generation of representative satellite observational data on the global scale. ERA5
is generated by the Copernicus Climate Change Service (C3S) at the ECMWF. The ERA5
reanalysis has proven to be one of the best reanalysis datasets [29,30] and is widely used
in risk assessments and climate change studies [31–33]. This study uses the instantaneous
10 m wind gust from the ERA5 variable to define the gale event in North China.

2.2. Model Outputs from CMIP6

The earth system model (ESM) is an important tool for projecting future climate
change [34–36]. The predecessor of the Earth system model is the Climate System Model
(CSM). The traditional climate system model mainly includes the atmospheric circulation,
land surface physical, ocean, and sea ice systems. From the end of the last century to the
beginning of this century, with the deepening of the research on global climate change, the
Climate System Model has been continuously developed, and its field has been gradually
expanded to the ecological and environmental systems of the Earth’s surface, including
land and marine ecosystems, atmospheric chemistry, aerosols, etc. At the present stage,
the Earth system model is a mathematical model based on the physical, chemical, and
biological processes in the various layers of the Earth, as well as the laws of material
and energy exchange between them, which is then solved by numerical calculations and
compiled into a large-scale comprehensive calculation program.

The Coupled Model International Comparison Program (CMIP) was initiated and
organized by the World Climate Research Program (WCRP) Working Group on Coupled
Modeling (WGCM) in 1995, with the initial aim of comparing the performance of the
then limited number of global coupled climate models. CMIP6 has the largest number of
participating models, the best-designed scientific experiments, and the largest amount of
simulation data provided in more than 20 years of the CMIP program. In this study, we
use model simulations from CMIP6 to project the changes in gale events in North China
by the end of the 21st century. Due to ESM’s lack of hourly output, we select the daily
maximum near-surface wind speed (sfcWindmax) variable to define gale events in North
China. Considering the availability of sfcWindmax, eight ESMs from CMIP6 are used in
this study (Table 1). These ESMs provide simulations of the historical period and two
future Shared Socio-economic Pathways (SSP), including SSP1-2.6 and SSP2-4.5. These
SSPs represent alternative evolutions of future society in the absence of climate change
or climate policy [37]. For example, SSP1-2.6 refers to a scenario combining SSP1-based
socio-economic and RCP2.6-based energy-emissions-land use scenarios. SSP2-4.5 refers to
a scenario combining SSP2-based socio-economic and RCP4.5-based energy-emissions-land
use scenarios. In this study, the simulations in the historical period are used to evaluate
the performance of ESMs in simulating gale events in North China, and the simulations in
three future scenarios are used to project the changes of gale events in North China by the
mid-to-late 21st century. To maintain consistent horizontal resolution, all model outputs are
interpolated to a common resolution of 0.5◦ × 0.5◦ using the bilinear interpolation method.

Table 1. Summary of eight CMIP6 models used in this study.

Model Country Resolution (Lat × Lon)

ACCESS-ESM1-5 Australia 145 × 192
AWI-CM-1-1-MR Germany 192 × 384
BCC-CSM2-MR China 160 × 320

CanESM5 Canada 64 × 128
FGOALS-g3 China 80 × 180

MIROC6 Japan 128 × 256
MRI-ESM2-0 Japan 160 × 320

NESM3 China 96 × 192

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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2.3. Definition of Gale Event in Observation and Model Simulation

In this study, the variable of instantaneous 10 m wind gust from ERA5 is used to
define a gale day with at least one gale event (instantaneous wind speeds reach or exceed
17.0 m/s) in the 24 h grid. In order to investigate the daily and seasonal variations of gale
events, we first sum gale events for all grids in North China and then count the proportions
of hourly gale events in each day or monthly gale events in each year between 1980 and
2021. Due to the lack of hourly outputs from ESMs, we define a gale day with a daily
maximum near-surface wind speed reaching or exceeding 17.0 m/s for future projections
of gale weather events in North China.

2.4. Bias Correction of Model Simulations

ESM is an essential tool to project future climate change, but large uncertainties and
biases were revealed by many previous climate change studies [33,38]. Therefore, before
projecting the temporal and spatial changes of gale events in North China, we apply the
quantile delta mapping (QDM) technique to correct daily maximum near-surface wind
speed from model simulation in historical and future periods using the ERA5 reanalysis [39].
The QDM technique is developed to apply the same empirical cumulative distribution
function (CDF) for model simulations and observations and to maintain the future change
signal in climate change projections. For a given meteorological variable, the QDM method
can be described as follows:

(1) We obtain the non-exceedance probability of x:

ε(t) = F(t)
s,p

[
xm, f (t)

]
, ε(t) ∈ {0, 1} (1)

where xm,p(t) is the simulated (denoted by the subscript s) value at time t in the future

period (denoted by the subscript f ); F(t)
s, f is the time-dependent CDF of xs, f .

(2) We calculate the absolute changes in quantiles between the future and calibration
periods using the inverse CDFs in the future and calibration periods, F(t)−1

s, f and F(t)−1
s,c :

∆m(t) =F(t)−1
m,p [ε(t)]− F(t)−1

m,c [ε(t)] (2)

(3) We correct the simulated ε quantile values at time t in future periods using the
inverse CDF calculated from observations in the calibration period, F(t)−1

o,c :

x̂(t) = F(t)−1
o,c [ε(t)] (3)

(4) We obtain the bias-corrected simulations of xm,p at time t by adding the change
signal in quantiles ∆m(t) to the corrected quantile value x̂(t):

xcorrected,s, f = x̂(t) + ∆m(t) (4)

To validate the skill of the QDM technique independently, we divide historical obser-
vations into two segments. The 1980–2004 segment is defined as the calibration period, and
the 2005–2014 segment is applied to validate the skill of the QDM technique in correcting
the simulated daily maximum near-surface wind speed in North China. For future sim-
ulations under the SSP1-2.6 and SSP2-4.5 scenarios, 35-year (1980–2014) observations are
defined as the calibration period to correct the projected daily maximum near-surface wind
speed. In this study, the QDM technique is used for each model simulation separately, and
an ensemble mean of eight ESMs is used to investigate the changes of gale events in North
China by the mid-to-late 21st century under two SSPs scenarios.
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3. Results
3.1. Daily and Seasonal Variations of Gale Events

Figure 1 shows the seasonal and daily variations of gale events between 1980 and
2021 in North China. It is seen that the gale events exhibit strong temporal variations
in North China. For seasonal variation (Figure 2a), the gale events exhibit double peaks,
with the largest peak (~20%) in April and the second peak (8%) in October. Such double
peaks of gale events are mainly attributed to frequent Mongolian cyclones in spring and
autumn [21,40,41]. Between June and July, the frequency of gale events reaches its minimum,
accounting for only 3% of the annual total. For daily variation (Figure 2b), the gale events
show a single peak with a maximum from 10:00 to 16:00 local time in North China. The
largest frequency of gale events reaches > 12% in 13:00–14:00 local time in North China,
which is related to the down sent momentum [42,43]. Generally, after the ground is heated
in the afternoon, the enhanced vertical exchange of air results in gales being transmitted
from high levels to the ground.
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Observations revealed that the wind speed in North China suffered a decadal change
in the past three decades, with a decline from 1990 and a recovery from 2008 [44]. Here,
we further investigate the decadal change in temporal variation of gale events between
1980 and 2021 (Figure 3). From the 1980s to the 2010s, the gale events show a significant de-
creasing trend in April and June in North China (Figure 3a). On the contrary, an increasing
trend of gale events in North China occurred in December from the 1980s to the 2010s. The
largest frequency of gale events in March was found in the 2000s, but the largest frequency
in September and October was found in the 1990s. In addition, the frequencies of gale
events in May and November in North China decreased in the 1990s but reversed in the
2010s. For daily variation, the maximum gale events in North China occurred between 9:00
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and 16:00 local time from the 1980s to the 2010s (Figure 3b). However, we find that gale
events in North China decrease during the night and increase in the day, suggesting a shift
from nighttime to daytime between the 1980s and 2010s.
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3.2. Model Evaluation of Gale Events in North China

In this study, we use eight ESMs from the CMIP6 to project the changes in gale events
in North China by the end of the 21st century. We first evaluate the performance of ESMs
in simulating observed gale events in North China in the historical period (2005–2014)
(Figure 4). The results revealed North China’s large spatial heterogeneity of gale events
(Figure 4a). The large annual gale days of >25 are found in central Inner Mongolia, northern
Hebei, and northwestern Beijing, where frequent weather systems occur. However, the
annual gale days are smaller than 10 days in southern Shanxi province, Tianjin, and south-
eastern Beijing. Additionally, there is a narrow gale belt in the greater Khingan mountains,
where the annual gale days are larger than 40 days. Compared to observations, the model
simulations significantly underestimate the gale events in North China (Figure 4b). Espe-
cially in the central Inner Mongolia province, the underestimation reaches 20 days/year,
suggesting that there are large uncertainties in simulated gale events using ESMs in North
China. Therefore, we apply the QDM method to correct model simulations before pro-
jecting future changes in gale events in North China. It is seen that the bias-corrected
model simulations reproduce the spatial pattern of gale events in North China with a
high correlation coefficient of 0.98 and a low absolute bias of 0.6 days/year (Figure 4c).
The above evaluation results demonstrate that the QDM method significantly improves
the confidence level of model simulations from ESMs in simulating gale events in North
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China. Therefore, we apply the QDM method to correct future projections under three
SSP scenarios and project the changes in gale events in North China by the end of the 21st
century in the following sections.
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3.3. Projection of Gale Events in North China

Projection of gale events can provide essential information for planning aviation,
renewable, and agriculture in the future. Figure 5 shows the temporal variation of gale
events in North China in the historical period (1980–2014) and future period (2015–2100)
under two SSP scenarios. Overall, regional mean gale events exhibit a decreasing trend in
North China in the historical period. On an interdecadal scale, gale events in North China
show a decadal reversal in about 2006, decreasing between 1980 and 2006 but increasing
between 2007 and 2014. Such decadal reversal was also revealed in wind speed in North
China [44,45]. In future periods, the projected gale events in North China will continue
to decrease under the SSP1-2.6 and SSP2-4.5 scenarios. In the mid-21st century, there
are limited differences in gale events in North China between the SSP1-2.6 and SSP2-4.5
scenarios. However, the decreasing gale events in the SSP2-4.5 scenario are significantly
larger than that in the SSP1-2.6 scenario by the end of the 21st century relative to the
historical period, suggesting fewer gale events in North China in a warmer climate.
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Figure 5. Time series of gale events in North China in historical (black line) and future periods. The
green and red lines represent projected gale events in North China under SSP1-2.6 and SSP2-4.5
scenarios, respectively. The shadings represent one standard deviation of eight ESMs.

Although regional mean gale events in North China will decrease substantially in the
future, there are obvious differences in magnitude on a regional scale (Figure 6). In the
mid-21st century, the changes in annual gale events in North China under the SSP1-2.6
scenario relative to the historical period show large spatial heterogeneity. The largest
decrease of >3 days/year is found in northern Hebei province, followed by 1–2 days/year
in central Inner Mongolia and Shanxi province. In southwestern and northeastern Inner
Mongolia, the changes are very small and lower than the significant level (Figure 6a). In
the SSP2-4.5 scenario, the decreased gale events in the mid-21st century relative to the
historical period are slightly smaller than that in SSP1-2.6 (Figure 6b). On a regional scale,
the gale events increased slightly in Hebei province in the mid-21st century under the
SSP2-4.5 scenario relative to the historical period. Compared to limited changes in the
SSP1-2.6 scenario, the gale events in northeastern Inner Mongolia show a large decrease
in the mid-21st century under the SPP2-4.5 scenario. Compared to the mid-21st century,
the gale events are further decreased by the end of the 21st century under the SSP1-2.6
and SSP2-4.5 scenarios. Furthermore, there are large differences between the SSP1-2.6 and
SSP2-4.5 scenarios by the end of the 21st century (Figure 6c vs. 6d). A large decline of gale
events in North China is found in the SSP2-4.5 scenario rather than the SSP1-2.6 scenario
by the end of 21st century. Especially in the greater Khingan mountains, the gale events are
projected to decrease by >5 days/year by the end of the 21st century under the SSP2-4.5
scenario relative to the historical period. On the contrary, there are limited changes in gale
events in southern Shanxi and Hebei provinces by the end of the 21st century under the
SSP2-4.5 scenario relative to the historical period. The above analysis shows large scenario
dependence and spatial heterogeneity of future gale events in North China relative to the
historical period.
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4. Summary and Discussion

Gale is an important weather extreme that seriously threatens the ecosystem and
economy [46,47]. In this study, we apply the ERA5 reanalysis with a high spatiotemporal
resolution to investigate the spatial–temporal changes of gale events from 1980 to 2021 in
North China. The gale events mainly occurred in central Inner Mongolia province, northern
Hebei province, and northwestern Beijing, with >25 days per year. In the last four decades,
gale events in North China exhibit an obvious decadal reversal, decreasing between 1980
and 2006 but increasing between 2007 and 2014. Furthermore, gale frequency in North
China shows strong temporal variations, with a maximum in spring (March–May) and
daytime (9:00–16:00 local time). Model simulations reveal that the gale events continuously
decreased in the mid and late 21st century under the SSP1-2.6 and SSP2-4.5 scenarios
relative to the historical period.

Compared to Shi et al. [28], which reported a similar decreasing trend of gale weather
events in China from 1959 to 2014, our study provides some new insights, including the
daily and seasonal variations and future projection of gale events based on the ERA5
analysis and multi-model simulations from CMIP6. Meanwhile, in contrast to most climate
extremes becoming more frequent, gale events show a significant decreasing trend in a
warmer climate, which is possibly related to decreasing wind speed in North China [44,45].
These findings are valuable for planning aviation, renewables, and agriculture in the future.
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Our results have potential applications for flights, energy, and air quality. Firstly, gale
weather can affect the takeoff and landing process of flights [48]. Strong crosswinds or gusts
may cause difficulties in flight control and increase the risk of takeoff and landing accidents.
Therefore, when the wind speed exceeds the maximum allowable value, the airline may
cancel, delay, or change the route of the flight [49]. The temporal variations from this
study can guide airlines in arranging flights in order to reduce economic losses. Secondly,
strong winds may pose challenges to the structure of the wind turbine [50,51]. If the wind
speed exceeds the limit range that the wind turbine can withstand, it may lead to serious
consequences, such as blade breakage and tower overturning. Therefore, it is necessary
to increase the dependence on photovoltaics in gale seasons such as April and October
to ensure energy security. Finally, strong winds can bring large amounts of mineral dust
aerosols from the Gobi Desert across southern Mongolia, causing serious environmental
problems in North China [20,52]. In the last four decades, the decadal reversal of gale
events in North China can account for part of the decadal changes in sand and dust storms.

Our study is subject to some limitations. First, we only project gale days in North
China, not daily and seasonal variations, mainly because of the lack of high temporal and
spatial outputs from CMIP6. In the future, the hourly outputs of ESMs from CMIP6 are
required to project the daily and seasonal variations of gale events further by the mid-
to-late 21st century. Second, we use a horizontal resolution of 0.5◦ × 0.5◦ to investigate
the changes in gale days in North China in historical and future periods. We chose this
resolution because the resolutions of ESMs are relatively lower (Table 1). At present, the
resolution of 0.5–1.0◦ is widely used in regional climate change projection [36,53]. We
acknowledge that this resolution can induce biases for climate change projection. Therefore,
we can downscale the model results using statical and dynamic methods to reduce the
uncertainty of projection in future gale days in North China. Finally, our study provides
a climatological analysis of gale weather events in North China in historical and future
periods. Similar to other climate extreme studies [2,54–57], this study demonstrates a
decreasing trend of gale events in a warmer climate, but the physical mechanisms are
lacking. The formation of gale weather events is complicated and related to many weather
and climate systems; therefore, we can cluster different types of gale events related to a
specific weather system and investigate the possible reason behind decreasing gale events
in North China in future studies.
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