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Abstract: Climate model evaluation work has made progress both in theory and practice, providing
strong support for better understanding and predicting climate change. However, at the weather
scale, there is relatively little assessment of climate models in terms of daily-scale climate phenomena,
such as storm frequency and intensity. These weather-scale variables are of significant importance
for our understanding of the impacts of climate change. In order to assess the capability of climate
models to simulate weather-scale climate patterns, this study employs Self-Organizing Maps (SOMs)
for weather pattern classification. By combining different evaluation metrics, varying the number
of SOM types, changing the size of the study area, and altering the reference datasets, the climate
models are evaluated to ensure the robustness of the assessment results. The results demonstrate that
the size of the study area is positively correlated with observed differences, and there are correlations
among different evaluation metrics. The highest correlation is observed between evaluation metrics in
large-scale and small-scale spatial domains, while the correlation with SOM size is relatively low. This
suggests that the choice of evaluation metrics has a minor impact on model ranking. Furthermore,
when comparing the correlation coefficients calculated using the same evaluation metrics for different-
sized regions, a significant positive correlation is observed. This indicates that variations in the size
of the study area do not significantly affect model ranking. Further investigation of the relationship
between model performance and different SOM sizes shows a significant positive correlation. The
impact of dataset selection on model ranking is also compared, revealing high consistency. This
enhances the reliability of model ranking. Taking into account the influence of evaluation metric
selection, SOM size, and reanalysis data selection on model performance assessment, significant
variations in model ranking are observed. Based on cumulative ranking, the top five models identified
are ACCESS1-0, GISS-E2-R, GFDL-CM3, MIROC4h, and GFDL-ESM2M. In conclusion, factors such
as evaluation metric selection, study area size, and SOM size should be considered when assessing
model ranking. Weather pattern classification plays a crucial role in climate model evaluation, as it
helps us better understand model performance in different weather systems, assess their ability to
simulate extreme weather events, and improve the design and evaluation methods of model ensemble
predictions. These findings are of great significance for optimizing and strengthening climate model
evaluation methods and provide valuable insights for future research.

Keywords: Coupled Model Intercomparison Project Phase 5 (CMIP5); climate models; model skill
evaluation; self-organizing map (SOM); atmospheric circulation; extreme precipitation; southeastern
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1. Introduction

Global Climate Models (GCMs) are important tools in studying climate change [1].
The climate model is an important approach for studying climate change and formulating
adaptation strategies [2]. Given the diverse and complex natural environment in China,
it is necessary to adjust model parameters and evaluate simulation results based on the
characteristics of the region when conducting climate model capability assessment [3].
This ensures accurate simulation results that align with the specific characteristics of the
regional climate system in China [4]. The assessment of climate model capability not only
facilitates a deeper understanding of the evolution of the regional climate system, but also
enhances prediction accuracy and reliability, providing a solid foundation for developing
effective strategies to address climate change [5]. However, due to the complexity of the
global climate system, GCMs have limitations in their representativeness and reliability,
particularly in simulating extreme precipitation events [6]. The ability of models to simulate
extreme precipitation is directly linked to the accuracy of future projections. Furthermore,
atmospheric circulation is considered a key driver of extreme precipitation [7,8], making it
a focus in model evaluations.

The current assessment of climate models has made significant progress in both theory
and practice, providing strong support for a better understanding and prediction of climate
change [9]. Firstly, in recent years, the ensemble approach using multiple models has
been widely applied in climate model evaluation. Studies have shown that averaging
the output results of multiple models can reduce the errors caused by individual model
biases, thereby improving the accuracy and reliability of simulation results. This ensemble
method has been successfully applied in global-scale climate simulations, but still faces
challenges in simulating weather-scale phenomena [10]. Secondly, the application of
statistical metrics enables objective assessment of model performance. Commonly used
metrics, such as mean error, root-mean-square error, correlation, and variance, are widely
used to evaluate the differences between model outputs and observational data. These
metrics provide a quantitative way to compare the discrepancies between model output
and actual observations, helping us judge the accuracy and reliability of the models [11].
However, there are still some issues in the current climate model evaluation. Particularly,
at the weather scale, there is relatively limited evaluation of climate phenomena at the daily
scale, such as storm frequency and intensity. These weather-scale variables are of vital
importance in our understanding of the impacts of climate change [12].

Weather regime classification is an important method for evaluating and diagnosing
the performance of global climate model output [13]. With the rapid development of
computer technology, an increasing number of meteorologists have adopted weather regime
classification techniques to categorize and analyze various weather systems globally, such
as low-pressure systems, cyclones, and vortices [14]. These classification techniques can be
used to discover the physical factors and processes associated with specific weather patterns
and, based on that, further comprehend the mechanisms behind global climate change [15].
For instance, Pfahl et al. proposed a spatial clustering-based approach to classify weather
regimes with similar atmospheric circulation features from reanalysis data, aiming to unveil
the relationship between global climate change and extreme weather events [16]. Other
studies have employed weather regime classification techniques by integrating multiple
weather indices for multivariate regression analysis, effectively reducing biases and errors
in meteorological model output [17]. Additionally, machine learning algorithms have also
been utilized to classify global climate models, offering better handling of nonlinear and
high-dimensional data compared to traditional physics-based structures [18]. In summary,
weather regime classification techniques serve as essential tools for assessing the reliability
and diagnosing the performance of meteorological models, uncovering underlying physical
rules within weather systems, and providing crucial support for research on global climate
change [19].

Classification techniques of weather patterns have been applied to assess GCM out-
puts and evaluate model performance, as well as diagnose changes in atmospheric circula-
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tion [20,21]. In recent years, self-organizing maps (SOMs) have emerged as a useful tool for
assessing the skill of climate models in capturing climate patterns and variability. The use
of self-organizing maps (SOMs) and discretized Sammon maps to study the links between
atmospheric circulation and weather extremes was explored by Stryhal and Plavcová [22].
The complex relationships between atmospheric circulation and weather extremes were
investigated, contributing to a better understanding of these connections. Climate extremes
were studied using SOMs by Gibson et al. [23], while precipitation patterns were analyzed
using SOMs by Li et al. [24]. These studies showcased the potential of SOMs in examining
climate-related phenomena. The performance of CMIP5 models in simulating synoptic
patterns over East Asia was evaluated by Wang et al. [25], and synoptic systems in CMIP5
models over the Australian region were assessed by Gibson et al. [26]. These investigations
aimed to improve climate modeling by assessing the accuracy of model simulations. SOMs
were employed by Gore et al. [27] to establish connections between large-scale meteorologi-
cal patterns and extratropical cyclones in CMIP6 climate models. This study demonstrated
the capability of SOMs in linking meteorological patterns to cyclones. Future changes
in tropical cyclogenesis were investigated using SOMs by Jaye et al. [28], contributing to
an enhanced understanding of the potential unfolding of these changes. Event-specific
drought attribution was explored by Harrington et al. [29] using SOMs, providing insights
into the potential of SOMs in attributing drought events to specific causes. The perfor-
mance of CMIP5 and CMIP6 models in simulating the East Asian summer monsoon was
compared by Yu et al. [30], while boreal summer circulation patterns of CMIP6 models
over the Asian region were evaluated by Bu et al. [31]. These studies aimed to evaluate
and improve the ability of climate models to simulate regional climate phenomena. The
reviewed studies demonstrate the effectiveness of self-organizing maps as a tool for climate
model evaluation. They offer comprehensive assessments of climate model performance,
reveal model strengths and weaknesses, and provide valuable insights into their ability to
capture climate patterns and variability.

The Pacific Subtropical High (PTH) and its interaction with Tropical Low Pressure
(TLP) play a crucial role in shaping the summer weather conditions of East Asia. Previous
studies have found that the interannual variability of the western ridge of the PTH is closely
associated with the region’s summer rainfall [32]. Specifically, when the western ridge
shifts southward, it leads to a reduction in rainfall across East Asia. In a comprehensive
review, researchers summarized previous research on the relationship between the PTH
and summer precipitation in East Asia. They highlighted the significant influence of tropi-
cal low-pressure systems in modulating this relationship. These systems contribute to the
complex pressure distribution pattern observed during the summer season, impacting the
spatial distribution and intensity of rainfall [33]. Studies focusing on the variability of the
western PTH and its connection with the East Asian summer monsoon have demonstrated
that anomalous changes in the high-pressure system have important implications for the
monsoon, consequently influencing the climate and weather patterns of East Asia [34].
Moreover, investigations into the Pacific–East Asian teleconnection, with an emphasis on
the influence of El Niño–Southern Oscillation (ENSO) events on the East Asian climate,
have established a close linkage between El Niño events and the Pacific–East Asian Telecon-
nection, which further affects the climate dynamics of the region, including the behavior
of the PTH [35]. In summary, the PTH and its interaction with tropical low-pressure sys-
tems significantly influence the summer weather conditions in East Asia. The position
of the PTH’s western ridge is closely associated with changes in rainfall patterns. The
interplay between the PTH and tropical low-pressure systems contributes to the complex
pressure distribution pattern observed during the summer, impacting rainfall intensity and
distribution. Additionally, the variability of the PTH exerts important influences on the
East Asian summer monsoon, and the influence of ENSO events on the Pacific–East Asian
Teleconnection further shapes regional climate dynamics. Based on the analysis and sum-
mary presented above, we can identify several limitations in previous research: (a) There
is a lack of comprehensive evaluation considering multiple variables. Previous research
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tends to focus on evaluating individual variables, and the ranking of models may differ
for different variables. (b) The causes of extreme precipitation are complex. There is not a
one-to-one correspondence between extreme precipitation and weather patterns, making
it challenging to analyze the relationship between extreme precipitation and atmospheric
circulation. (c) Model rankings may vary with different regions.

We aim to select models that can effectively simulate extreme precipitation and at-
mospheric circulation. Firstly, we aim to extend the single-variable evaluations of GCMs
to a comprehensive evaluation considering multiple variables. Secondly, a new model
evaluation approach is needed to investigate whether models can realistically reproduce the
patterns of atmospheric circulation and the corresponding extreme precipitation. Thirdly,
we are particularly interested in the applicability of the new method to China and identify-
ing models that perform well in China. To address these issues, we apply the proposed
new method to select GCMs that perform best in China. This analysis will provide insights
into why these models perform well and can serve as a reference for model improvement.
Additionally, it can guide future climate predictions and downscaling of model selection.

This study aims to achieve two primary objectives. Firstly, it proposes a novel ap-
proach for evaluating models using weather pattern classification, which assesses whether
precipitation patterns are generated accurately. Secondly, we apply this new model evalu-
ation approach to Southeastern China. The approach is used to comprehensively assess
the ability of GCMs in simulating atmospheric circulation patterns, and to select a set of
high-performing GCMs.

2. Data
2.1. Analysis Domains

To explore the sensitivity of the analysis results to changes in the study area, we
conducted the analysis on three spatial domains: (a) the “large” domain, encompassing
the majority of central and eastern China; (b) the “small” domain, covering Southeastern
China (Figure 1). The latitude range of a larger region is between 20◦ N and 40◦ N, while
the longitude range is between 100◦ E and 125◦ E. The latitude range of a smaller region is
between 25◦ N and 35◦ N, while the longitude range is between 110◦ E and 120◦ E. This
region covers a vast geographical area in China, including diverse terrains and climate
conditions. In terms of climatology, it encompasses various climate zones and precipitation
patterns in China, ranging from subtropical humid climate to temperate continental climate,
as well as highland climate and arid climate [36]. This study area also includes significant
geographical features of China, such as the Yangtze River Basin, the Yellow River Basin, and
the Qinghai–Tibet Plateau. Conducting climatological research in this region contributes to
a deeper understanding of China’s climate change trends, precipitation patterns, and their
impacts on ecosystems, agriculture, and urban planning. This is of great significance for
tackling climate change, resource management, and sustainable development [37,38].

2.2. Validation Data

To evaluate the ability of Global Climate Models (GCMs) to accurately simulate
weather patterns and their impact on precipitation, the study compares the historical
simulations of GCMs with reference datasets, including reanalysis data and observation
data. Two variables, namely, mean sea level pressure (MSLP) and precipitation (PR), are
used for the evaluation.
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As the reference dataset, MSLP is derived from reanalysis data, which are widely
considered to be the most reliable dataset [39]. Two sets of reanalysis data are utilized in this
study: the National Center for Environmental Prediction/National Center for Atmospheric
Research (NCEP-NCAR) [40] dataset and the 40-year European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA-40) [41] dataset. These reanalysis datasets
are chosen as they are regarded as the most reliable datasets for comparison with GCM
output data [39].

Both reanalysis datasets provide MSLP data with a regular resolution of 2.5◦ × 2.5◦.
For the analysis, a 20-year period (1980–1999) from each reanalysis dataset is selected as
the reference period for this study. Despite its relatively short duration, this 20-year period
includes the most complete and accurate observational data, largely due to advancements
in space-based remote sensing [42].

In addition to the reanalysis data, gridded precipitation (PR) data provided by Chen
et al. [43] are also used (referred to as CHEN05). This dataset has a spatial resolution
of 0.5◦ × 0.5◦ and is obtained by ordinary kriging interpolation from 753 operational
surface stations of the China Meteorological Administration. The dataset exhibits minimal
interpolation errors in the eastern part of China due to the high station density.

By comparing the GCMs’ simulations with these reference datasets, the study aims
to assess the accuracy of the models in reproducing weather patterns, specifically MSLP
and precipitation. The use of reliable reanalysis data and observation data, along with the
high-quality gridded precipitation data, enhances the robustness of the evaluation. This
approach provides valuable insights into the performance of GCMs and their ability to
simulate real-world weather conditions.

2.3. Model Output

To ensure that the Self-Organizing Map (SOM) method accurately captures daily
weather-scale precipitation events, this study utilized daily sea level pressure (SLP) and
precipitation (PR) data from 34 Coupled Model Intercomparison Project Phase 5 (CMIP5)
models [44]. The data were obtained from the Program for Climate Model Diagnosis &
Intercomparison (PCMDI) archive website (https://esgf-node.llnl.gov/projects/cmip5:

https://esgf-node.llnl.gov/projects/cmip5
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accessed on 3 September 2022). A time frame of 20 years, specifically from 1980 to 1999,
was selected for analysis.

Each CMIP5 model has its own unique resolution, which is provided in Table 1. To
facilitate comparison and analysis, all models were interpolated to a common grid with a
resolution of 2.5◦ × 2.5◦.

Table 1. Model identification, originating center, and atmospheric resolution. The symbol ‘~’ repre-
sents ‘approximately equal to’.

GCMs Institution Resolution

ACCESS1-0 Commonwealth Scientific and Industrial Research Organisation and
Bureau of Meteorology, Australia 1.875◦ × 1.25◦

ACCESS1-3 Commonwealth Scientific and Industrial Research Organisation and
Bureau of Meteorology, Australia 1.875◦ × 1.25◦

bcc-csm1-1 Beijing Climate Center, China Meteorological Administration, China 2.8◦ × ~2.8◦

bcc-csm1-1-m Beijing Climate Center, China Meteorological Administration, China 1.125◦ × ~1.12◦

BNU-ESM Beijing Normal University, China 2.8◦ × ~2.8◦

CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 2.8◦ × ~2.8◦

CCSM4 National Center for Atmospheric Research (NCAR), USA 1.25◦ × ~0.9◦

CESM1-FASTCHEM National Science Foundation/Department of Energy NCAR, USA 1.25◦ × ~0.9◦

CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti, Italy 0.75◦ × ~0.75◦

CMCC-CMS Centro Euro-Mediterraneo per i Cambiamenti, Italy 1.875◦ × ~1.875◦

CNRM-CM5 Centre National de Recherches Meteorologiques, Meteo-France, France 1.4◦ × ~1.4◦

CSIRO-Mk3-6-0 Australian Commonwealth Scientific and Industrial Research
Organization, Australia 1.875◦ × ~1.875◦

EC-EARTH Royal Netherlands Meteorological Institute, The Netherlands 1.125◦ × 1.125◦

FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China 2.8 × ~1.65◦

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 2.5◦ × 2.0◦

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 2.5◦ × ~2.0◦

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, USA 2.5◦ × ~2.0◦

GISS-E2-R NASA Goddard Institute for Space Studies, USA 2.5◦ × 2.0◦

HadCM3 Met Oce Hadley Centre, UK 3.75◦ × 2.5◦

HadGEM2-CC Met Oce Hadley Centre, UK 1.875◦ × 1.25◦

HadGEM2-ES Met Oce Hadley Centre, UK 1.875◦ × 1.25◦

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 3.75◦ × ~1.895◦

IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 2.5◦ × ~1.27◦

MIROC-ESM
Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology (MIROC)
2.8◦ × ~2.8◦

MIROC-ESM-CHEM AORI, NIES, JAMSTEC, Japan 2.8◦ × ~2.8◦

MIROC4h AORI, NIES, JAMSTEC, Japan ~0.56◦ × ~0.56◦

MIROC5 AORI, NIES, JAMSTEC, Japan ~1.4◦ × 1.4◦

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 1.875◦ × ~1.875◦

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 1.875◦ × ~1.875◦

MPI-ESM-P Max Planck Institute for Meteorology, Germany 1.875◦ × ~1.875◦

MRI-CGCM3 Meteorological Research Institute, Japan 1.125◦ × ~1.125◦

NorESM1-M Norwegian Climate Centre, Norway 2.5◦ × ~1.89◦

By utilizing the SLP and PR data from these CMIP5 models, the study aims to accu-
rately capture and analyze daily precipitation events at a weather scale. The chosen time
frame allows for a comprehensive assessment of the models’ performance over a significant
period. The interpolation of the models’ data onto a common grid enables consistent and
meaningful comparisons among the different models.

This approach ensures the capture of valuable information regarding daily precipita-
tion patterns, enabling a thorough investigation of the models’ ability to simulate weather-
scale events. The inclusion of multiple models from the CMIP5 dataset enhances the
robustness and reliability of the analysis.



Atmosphere 2023, 14, 1647 7 of 25

3. Methods
3.1. Classification of WT: Self-Organizing Maps (SOMs)

The Self-Organizing Map (SOM) is an unsupervised artificial neural network that
utilizes competitive learning to identify similarities in nonlinear phases of synoptic-scale
circulation. It represents the weather system as distinct neuron clusters through self-
learning and iterative comparison, enabling the modeling and classification of atmospheric
circulation.

The SOM consists of an input layer and a competitive (output) layer, with training
and mapping being the two main steps. In this study, daily mean sea level pressure fields
are used as the input layer for the SOM. Specific types of circulation patterns, called nodes,
are identified by the competitive layer, with the number of nodes being user-defined.

The general algorithm for SOM training involves the following steps: First, the SOM
network is established and initialized using SOM nodes (or reference vectors) to represent
the input data. Each node is initialized with a weight vector. In each iteration, each reference
vector gradually learns from the input data by updating its weight. This is achieved by
calculating the Euclidean distance between the weight vector of each node and the input
vector. The node with the smallest Euclidean distance to the input vector is identified as the
winning node. The position of nodes within the neighborhood of the winning node is then
updated, moving them closer to the input vector and allowing each node to learn and adjust
its position based on the input data. This process continues for all input data, resulting in
the topological organization of the SOM, where similar nodes are placed adjacent to each
other.

During training, the learning rate and neighborhood size are adjusted for each input
vector while recalculating the Euclidean distance, determining the winning node, and
updating the weights of nodes. The training continues until a preset number of iterations is
reached. At the end of the training, the winning nodes represent the distinctive circulation
patterns extracted by the SOM.

In this study, we use daily sea level pressure fields as the input layer for the self-
organizing map. The SOM identifies specific types of circulation patterns as winning nodes
in the output layer, with each category referred to as a node. The number of nodes is
determined by the user.

The general algorithm for SOM training can be summarized as follows:
(a) Construct and initialize the SOM network: the SOM starts with a user-defined map

size, and the nodes (reference vectors) are initialized to represent the input data, with each
node assigned a random weight vector.

(b) Calculate Euclidean distance: compute the Euclidean distance between the weight
vector of each node’s reference vector and the input vector. This determines the minimum
Euclidean distance between the jth node’s weight vector and the input data.

(c) Determine the winning node: select the node in the competitive layer with the
minimum Euclidean distance to the input vector as the winning node.

(d) Update the node’s weight: update the position of nodes near the winning node,
moving them closer to the input vector, so that each node can learn from the input data
and adjust its position accordingly. The weight vector update can be described using the
following equation:

W(t + 1) = W(t) + Θ(t)α(t)[V(t)− W(t)] (1)

In this formula, t represents the current iteration count, W denotes the weight vector,
V represents the input vector. Θ is the constraint function, typically referred to as the
neighborhood function, that measures the distance from the best matching unit. α is a
time-dependent learning restraint. Repeat this process until all input data are processed,
and the SOM organizes based on the minimum Euclidean distance, placing similar nodes
adjacent to each other.
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(e) Update the learning rate and neighborhood size: adjust the learning rate and
neighborhood size for the next input vector and repeat steps (b)–(e).

(f) Determine the stopping condition: the training process continues until it reaches
the predefined number of iterations. The final winning node represents the feature pattern
extracted by the SOM.

For more detailed information on SOM, please refer to the relevant literature, such as
Kohonen [45].

The selection of the Self-Organizing Map (SOM) node size is determined based on the
number of major synoptic patterns observed. Mathematically, the size of SOM nodes is
determined by maximizing similarity within clusters and minimizing similarity between
clusters. In this study, we explore different SOM sizes, specifically 3 × 3, 4 × 4, 5 × 5, and
6 × 6 nodes, to compare the training results. By using multiple SOM sizes, we aim to assess
the sensitivity of the model evaluation to the SOM size. A detailed discussion and analysis
regarding this aspect can be found in Section 4.3.

The SOMs are trained on a seasonal basis, focusing on the summer months of June,
July, and August (JJA). To prepare the input data for SOM training, the daily-averaged mean
sea level pressure (MSLP) during the 20-year baseline period (1980–1999) is subtracted from
the daily MSLP values at each grid point from both the reanalysis dataset and the output
of each GCM. The resulting fields, referred to as temporal MSLP, represent the temporal
anomalies of MSLP. A similar procedure is applied to extreme precipitation events, where
the daily-averaged precipitation is treated as temporal precipitation (PR).

This study investigates the effect of self-organizing map (SOM) size on pattern recog-
nition and general circulation model (GCM) performance evaluation, based on previous
research findings. The results indicate that, after fixing the SOM map size, the sensitivity of
pattern recognition in SOM training to the selection of optimization parameters is relatively
low. However, for GCM performance evaluation, the choice of SOM size may have a certain
impact. In order to accurately capture the details of characteristic sea level pressure (SLP)
patterns in each season while maintaining interpretability, this study tries different SOM
sizes and ultimately selects four sizes: 3 × 3, 4 × 4, 5 × 5, and 6 × 6. By adopting multiple
SOM sizes, it is possible to test the sensitivity of model evaluation to SOM size. The present
research adheres to academic writing conventions and aims to offer a scholarly insight into
the topic.

3.2. Definition of Extreme Precipitation Patterns (EPPs)

Following the methodology of Zhao et al. [46], we establish a definition for extreme
precipitation patterns (EPPs) as follows:

(a) Initially, an abnormal precipitation day is identified at each grid point by compar-
ing the daily precipitation anomaly with the long-term daily climatology. If the deviation
exceeds +2.0σ (sigma), which represents the standard deviation of the daily average precipi-
tation for the corresponding calendar day, that day is classified as an abnormal precipitation
day. This classification is applied to all grid points within the study domain on a daily
basis.

(b) To determine the regional impact of extreme precipitation events, we additionally
require that the number of grid cells exceeding the precipitation threshold on any given
day exceeds 5% of the total number of grid points within the study domain. Only those
days that satisfy this criterion are regarded as extreme precipitation events.

(c) The daily grid-normalized precipitation anomaly is then labeled as an extreme
precipitation event. This labeling facilitates the utilization of clustering analysis to identify
the corresponding extreme precipitation modes (EPPs).

By defining extreme precipitation patterns in this manner, we can effectively analyze
and categorize the occurrence of extreme precipitation events within the study region.
This approach aligns with established research practices and enables comparability and
consistency in subsequent analyses and discussions.
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3.3. Model Evaluation

To evaluate the models, we followed the procedure outlined in Section 3.4 to identify
days characterized by extreme precipitation events. Precipitation (PR) and mean sea level
pressure (MSLP) data corresponding to these identified days were extracted, resulting in
two separate datasets. These datasets were then used to train two Self-Organizing Maps
(SOMs): Trained_A with MSLP time offset and Trained_B with PR time offset (Figure 2).
This training process yielded two distinct models.
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Subsequently, we conducted an analysis to determine the frequency of occurrence
of each element in Trained_A within each element of Trained_B. This frequency analysis
enabled the construction of a two-dimensional binary matrix called PROB_O, where each
element represents the probability of a specific circulation pattern being associated with
extreme precipitation events.

A similar processing method was applied to the model data, resulting in the generation
of Trained_A and Trained_B. We then analyzed the frequency of occurrence of each element
in Trained_A within each element of Trained_B, yielding a two-dimensional matrix denoted
as PROB_M.

To assess the performance of the models, we calculated the correlation coefficient
between the reference data (PROB_O matrix) and the model data (PROB_M matrix). The
correlation coefficient serves as an indicator of how well the model’s output replicates the
observed reanalysis data. A higher correlation coefficient suggests a stronger resemblance
between the model’s simulation of extreme precipitation patterns and the reanalysis data.

By evaluating the correlation coefficient, we can determine the accuracy of the models
in reproducing extreme precipitation patterns under the same circulation patterns observed
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in the reanalysis data. This evaluation process ensures the reliability and effectiveness of
the models in capturing and representing extreme precipitation events.

3.4. Model Simulation Performance Ranking Metrics

In this paper, we utilized three evaluation metrics, the first two of which were proposed
by Radic’ [47], while the last was put forward by Schuenemann and Cassano [48].

(a) Average correlation coefficient

The average correlation coefficients of all seasons (only JJA is considered in this study)
and all circulation patterns (3 × 3, 4 × 4, 5 × 5, 6 × 6) were synthesized.

MC =
1
m

m

∑
i=1

ri (2)

where m is the product of the season number, and four SOM size (m = 4) r is the correlation
coefficient. Higher numbers would indicate improved performance.

(b) Cumulative sum of the number of significant correlations

To account for the total number of significant positive correlations, we define a signifi-
cance measure following the approach in

MS =
m

∑
i=1

δi

{
δi = 1 if ri ≥ r0
δi = 0 if ri < r0

(3)

where r0 is the threshold value for the correlation significantly larger than zero at the 95%
confidence level (derived from a t test). The greater the value is, the more favorable the
outcome.

(c) Comprehensive rating index

This index can be expressed as

MR = 1 − 1
mn

m

∑
i=1

ranki (4)

where m is the product of the number of seasons and the size type; n is the number of
patterns; and rank is the rating number: the best model has a rank of 1, and the worst is 34.
The higher the value is, the better.

In order to obtain the final comprehensive ranking, we can calculate the values of the
above three evaluation indexes respectively by analyzing the calculation results of the time
anomaly of large and small regions in 20 years (1980–1999).

4. Results
4.1. Simulation of MSLP Temporal Patterns and PR Temporal Patterns
4.1.1. Characteristic Patterns of Mean Sea Level Pressure (MSLP)

The Pacific Subtropical High (PTH) and Tropical Low Pressure (TLP) are significant
weather systems that impact summer weather conditions in China. This study investigates
the characteristics of these two systems using anomaly pressure distribution charts. The
PTH is typically observed as a prominent high-pressure system, exhibiting elevated atmo-
spheric pressures across a broad region. Its presence is associated with prolonged periods
of high temperatures, aridity, and reduced rainfall in the southeastern parts of China. The
anomaly pressure distribution chart illustrates higher pressure values within this region.
In contrast, the TLP is manifested as a weaker low-pressure system, occupying a relatively
smaller spatial extent. This system is liable to induce heavy rainfall, storms, and subsequent
natural disasters, such as floods and landslides. The anomaly pressure distribution chart
depicts lower pressure values within the affected area. When both the PTH and TLP coexist,
their distinctive characteristics contribute to a complex pressure distribution pattern on the



Atmosphere 2023, 14, 1647 11 of 25

anomaly pressure distribution chart, resulting in highly variable weather conditions in the
southeastern region. Overall, the PTH and TLP are critical components of China’s summer
meteorological situation, exerting significant influences on the weather and climate patterns
of the southeastern regions.

Figure 3a–d depict the characteristic daily patterns of MSLP anomalies during the
summer season (June, July, August—JJA) for the period 1980–1999, analyzed using the
3 × 3 Self-Organizing Map (SOM) technique. In this study, we employed the NCEP/NCAR
reanalysis dataset (REF) as the reference, along with simulation data from the bcc-csm1-1-m
global climate model (GCM).
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Figure 3. The 3 × 3 self-organizing maps (SOMs) were employed to analyze the temporal anomalies of
mean sea level pressure (MSLP) during the summer season (June, July, and August—JJA). The SOMs
were trained using both the reference dataset (REF: NCEP/NCAR reanalysis) and the simulated data
from the bcc-csm1-1-m global climate model (GCM) over the baseline period of 1980-1999. Patterns
over the large domain (a) of REF and (b) of GCM. Patterns over the small domain (c) of REF and (d)
of GCM.

Figure 3a illustrates the spatial distribution of MSLP anomalies over a large area in
the REF dataset. Through observation, distinct spatial patterns and variations in MSLP
anomalies at a broad scale can be identified. Notably, certain regions exhibit high-pressure
or low-pressure systems, which may be associated with local climatic systems and topo-
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graphical features. These findings align with existing climatological knowledge and offer
insights for further investigating the climate mechanisms specific to these regions [32–35].

Figure 3b presents the corresponding MSLP anomaly patterns from the GCM sim-
ulation. By comparing them with the REF dataset, we can evaluate the accuracy and
reliability of the GCM in simulating MSLP variability. A strong resemblance between the
two indicates a higher reliability of the GCM in reproducing observed climatic phenomena.
However, significant discrepancies would necessitate further research to improve and
refine the GCM.

Furthermore, Figure 3c showcases the MSLP anomaly patterns within a smaller do-
main in the REF dataset. Focusing on a more localized analysis enables a detailed exami-
nation of pressure variations in specific regions. This localized analysis facilitates a better
understanding of the operational mechanisms of small-scale meteorological systems and
provides more precise climate predictions and weather forecasts.

Lastly, Figure 3d demonstrates the MSLP anomaly patterns within a smaller domain
from the GCM simulation. Comparing the results between the REF dataset and the GCM
simulation allows for an assessment of the GCM’s capability to simulate pressure changes
at different scales. If the GCM adequately simulates pressure anomalies in local regions, its
global-scale simulation results would also gain credibility. However, significant deviations
or errors would require further research to enhance the GCM through improved methods
and techniques.

In summary, the utilization of the SOM technique allows for a comprehensive analysis
of MSLP anomalies during the summer season, enabling the exploration of pressure vari-
ations from different scales and perspectives. This analysis enhances our understanding
of the intricate nature of the climate system and provides valuable insights for enhancing
climate models and prediction capabilities. To gain a more comprehensive understanding
of MSLP anomalies, future research can expand the dataset and time range. Additionally,
integrating the analysis of other meteorological variables, such as temperature and precip-
itation, would provide a holistic overview of climate change. This scientific foundation
serves as a basis for addressing climate change and mitigating weather-related disasters.

4.1.2. PR Characteristic Patterns

The analysis of precipitation (PR) anomalies during the summer season using the
3 × 3 self-organizing map (SOM) technique offers valuable insights into the spatiotemporal
patterns of precipitation. Figure 4a–d illustrate the characteristic daily PR anomaly patterns
for the summer season (JJA) over two domains during the period 1980–1999.

Figure 4a displays the patterns of PR anomalies over a broad spatial domain in the REF
dataset. The SOM analysis reveals distinct spatial structures, indicating the influence of
local climate systems and geographical features on precipitation variability during summer.
Regions with high PR anomalies may indicate enhanced rainfall, while low PR anomalies
can imply drier conditions. These findings align with existing climatological knowledge
and highlight the underlying mechanisms driving these patterns.

Figure 4b shows the corresponding patterns of PR anomalies from the GCM simulation,
allowing for an assessment of the GCM’s performance in capturing precipitation variability.
Consistency and similarity between the two datasets indicate the reliability of the GCM in
representing observed PR anomalies. Significant discrepancies between the two datasets
emphasize areas for model improvement and refinement, underscoring the importance of
continuous model evaluation and development to enhance the accuracy and reliability of
climate simulations.
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Figure 4. The temporal anomalies of precipitation (PR) during summer (June, July, August—JJA)
were analyzed using 3 × 3 Self-Organizing Maps (SOMs). The SOMs were trained using observations
from the reference dataset (REF: CHEN05) and simulations from the bcc-csm1-1-m global climate
model (GCM) over the baseline period of 1980-1999. Patterns over the large domain (a) of REF and
(b) of GCM. Patterns over the small domain (c) of REF and (d) of GCM.

Using the SOM method to classify weather patterns enables a more thorough ex-
amination of various precipitation patterns, especially within the smaller spatial range
depicted in Figure 4c of the REF dataset. By conducting detailed investigations within these
specific regions, we can gain deeper insights into precipitation anomalies and develop an
understanding of the operational mechanisms of small-scale meteorological systems that
influence these anomalies. This information is of significant importance for improving
the accuracy of climate predictions and weather forecasts in these particular areas, as it
facilitates a better comprehension and prediction of the development and evolutionary
trends of different weather patterns.

Lastly, Figure 4d illustrates the patterns of PR anomalies within a smaller domain from
the GCM simulation, enabling the evaluation of the GCM’s ability to capture PR changes at
different scales. Comparing the results between the REF dataset and the GCM simulation
allows for the assessment of the GCM’s performance in representing PR anomalies in local
regions, leading to improved simulations and predictions on a global scale.

The integration of PR anomalies with other meteorological variables, such as tempera-
ture and wind patterns, would provide a more comprehensive understanding of climate
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change and its impacts on regional climate systems. The comparison between the REF
dataset and the GCM simulation emphasizes the importance of model evaluation and
improvement, highlighting the need for ongoing research efforts to enhance the GCM’s
ability to capture precipitation dynamics at multiple spatial scales.

In summary, the SOM technique offers insights into the characteristics and patterns
of precipitation variations during the summer season, revealing the influence of local
climate systems and geographical features on PR anomalies. These findings align with
existing climatological knowledge and provide crucial evidence for understanding the
underlying mechanisms driving precipitation dynamics. The localized analysis within
smaller spatial domains facilitates a more detailed examination of precipitation patterns in
specific regions, improving climate predictions and weather forecasts at local scales. The
comparison between the REF dataset and the GCM simulation underscores the importance
of ongoing research efforts to enhance the accuracy and reliability of climate simulations
and predictions.

4.2. Simulation of Probability

Previous evaluations of the model have primarily focused on assessing its univariate
simulation capabilities, and there is limited understanding of the relationship between
circulation patterns and precipitation types. To gain a new perspective on the model’s
simulation capabilities, we aimed to combine the generation of extreme precipitation with
different weather patterns. This involved clustering extreme precipitation events and
circulation patterns separately, resulting in an equal number of types for each.

We then calculated the frequency of occurrence for each extreme precipitation type
within each weather pattern. This analysis was performed independently for each extreme
precipitation type, resulting in matrices as the outcome. The same calculations were
executed for each General Circulation Model (GCM), and the results were also organized
into respective matrices.

To evaluate the model’s simulation capability, we correlated the matrices derived from
each GCM with the corresponding matrix derived from the reanalysis data. A significant
positive correlation would indicate that the model effectively simulates the probability of
occurrence for each extreme precipitation type within each circulation pattern.

In this study, we established the link between circulation patterns and precipitation
types through the use of occurrence probabilities. We will present the analysis results using
the bcc-csm1-1-m model as an example. Initially, we calculated the frequency of occurrence
for each circulation type within each precipitation type using the reference data (Figure 5).
The results showed an uneven distribution, with higher overall frequencies observed on
the right side and lower frequencies on the left side of the distribution. The maximum
frequency value was found in the last row’s fourth column at the bottom, indicating the
potential for different circulation types to yield varying precipitation amounts.
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Figure 5. Comparison of the model’s ability to simulate the probability distribution of occur-
rence of circulation type in precipitation type (a) of REF (CHEN05 observation) and (b) of GCM
(bcc-csm1-1-m).

Subsequently, we performed similar calculations for each model separately. The results
for the bcc-csm1-1-m model exhibited a similar uneven distribution pattern as observed in
the reference data, with higher frequencies on the right side and lower frequencies on the
left side. The maximum frequency values were also concentrated in the fourth column at
the bottom, aligning with the reference data. These findings indicate the model’s capability
to simulate the correspondence between circulation types and extreme precipitation types.

To quantify the similarity between the frequency distribution matrices, we computed
the correlation coefficient. We consider the magnitude of this coefficient as a reliable indi-
cator of the model’s simulation capability, with a higher correlation coefficient indicating
superior performance in simulation.

We conducted a correlation analysis between the reference dataset and each General
Circulation Model (GCM). We considered different Self-Organizing Map (SOM) sizes
(3 × 3, 4 × 4, 5 × 5, 6 × 6) and spatial domains. Table 2 presents the resulting correlation
coefficients (r values) for temporal SOMs over the large domain across all SOM sizes.
Correlations that were found to be significantly different from zero (at a 95% confidence
level) are indicated in bold font. The table shows a wide range of correlation values,
which vary across different GCMs and SOM sizes, encompassing both strong positive and
negative correlations.

Upon analyzing the correlation coefficients, we observed that the majority of the mod-
els performed exceptionally well. Out of the 34 GCMs analyzed, 25 exhibited significant
positive correlations with the reanalysis data across all SOM sizes. Only three models
displayed non-significant correlations at different SOM sizes. The substantial number of
significantly positive correlations indicates that nearly every GCM effectively reproduces
extreme precipitation patterns as observed in the reanalysis data under the same circulation
patterns during the baseline period from 1980 to 1999.
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Table 2. Correlation coefficients (r) between the probability matrices from the observed data and each
Global Climate Model (GCM), based on different sizes of Self-Organizing Maps (SOMs) (3 × 3, 4 × 4,
5 × 5, and 6 × 6). The correlations are calculated for both the large domain and the small domain
using temporal anomalies of sea level pressure (SLP). Correlation coefficients that are significantly
greater than zero at the 95% confidence level are shown in bold font.

GCM
Performance of Different SOM Sizes (Large) Performance of Different SOM Sizes (Small)

3 × 3 (81) 4 × 4 (256) 5 × 5 (625) 6 × 6 (1296) 3 × 3 (81) 4 × 4 (256) 5 × 5 (625) 6 × 6 (1296)

ACCESS1-0 0.43 0.52 0.28 0.29 0.65 0.36 0.27 0.23
ACCESS1-3 0.49 0.25 0.15 0.18 0.66 0.24 0.29 0.16
bcc-csm1-1 0.42 0.30 0.20 0.23 0.32 0.25 0.29 0.16
bcc-csm1-1-m 0.39 0.34 0.12 0.15 0.29 0.26 0.21 0.28
BNU-ESM 0.36 0.32 0.22 0.21 0.36 0.05 0.05 0.17
CanESM2 0.45 0.28 0.15 0.21 0.08 0.27 0.23 0.12
CCSM4 0.34 0.12 0.07 0.19 0.15 0.08 0.22 0.14
CESM1-
FASTCHEM 0.23 0.27 0.13 0.10 −0.01 0.24 0.29 0.22

CMCC-CM 0.29 0.29 0.21 0.20 0.38 0.36 0.29 0.14
CMCC-CMS 0.42 0.45 0.30 0.29 0.10 0.16 0.22 0.16
CNRM-CM5 0.18 0.28 0.23 0.13 0.45 0.19 0.27 0.19
CSIRO-Mk3-6-0 0.32 0.23 0.26 0.20 0.23 0.24 0.25 0.37
EC-EARTH 0.39 0.33 0.49 0.17 0.18 0.15 0.27 0.17
FGOALS-g2 0.38 0.32 0.14 0.20 0.28 0.11 0.23 0.09
FGOALS-s2 0.32 0.25 0.10 0.19 0.25 0.10 0.15 0.11
GFDL-CM3 0.50 0.37 0.23 0.23 0.42 0.34 0.27 0.34
GFDL-ESM2G 0.36 0.42 0.16 0.19 0.47 0.17 0.25 0.13
GFDL-ESM2M 0.47 0.37 0.17 0.31 0.35 0.29 0.29 0.16
GISS-E2-R 0.48 0.45 0.29 0.25 0.34 0.26 0.30 0.26
HadCM3 0.17 0.06 0.03 0.06 −0.05 −0.20 0.00 0.03
HadGEM2-CC −0.02 0.09 0.02 0.04 0.16 −0.04 0.01 0.04
HadGEM2-ES 0.11 0.06 0.07 0.04 0.24 0.14 0.07 0.02
inmcm4 0.20 0.09 0.07 0.06 0.07 −0.11 −0.02 −0.01
IPSL-CM5A-LR 0.14 0.34 0.19 0.15 0.32 0.28 0.22 0.10
IPSL-CM5A-MR 0.29 0.38 0.19 0.23 0.34 0.16 0.24 0.11
MIROC4h 0.28 0.31 0.23 0.21 0.47 0.31 0.32 0.25
MIROC5 0.35 0.37 0.37 0.25 0.36 0.33 0.29 0.14
MIROC-ESM 0.09 0.00 0.10 0.09 −0.16 −0.04 0.01 0.05
MIROC-ESM-
CHEM −0.25 0.01 0.05 0.04 −0.11 −0.17 −0.07 0.00

MPI-ESM-LR 0.38 0.34 0.16 0.27 0.12 −0.01 0.18 0.10
MPI-ESM-MR 0.42 0.48 0.21 0.23 0.26 0.07 0.19 0.08
MPI-ESM-P 0.51 0.35 0.16 0.31 0.25 −0.03 0.16 0.10
MRI-CGCM3 0.40 0.39 0.20 0.18 0.14 0.33 0.25 0.31
NorESM1-M 0.52 0.32 0.27 0.19 0.41 0.18 0.14 0.15

4.3. Model Ranking
4.3.1. Impact of the Choice of Evaluation Indicators on the Assessment of Model
Simulation Capacity

In order to rank GCMs based on their ability to simulate extreme precipitation types,
we used a set of evaluation metrics outlined in Section 3.4. Figure 6 depicts the evalu-
ation measures applied to both small and large spatial domains for temporal Sea Level
Pressure (SLP) anomaly patterns. Our analysis revealed that the choice of evaluation
indicators significantly impacts the assessment results, even when simulating the same
climate characteristics.
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Figure 6. (top to bottom) (a) Correlation measure MC, (b) significance measure MS, and (c) rank
measure MR for each model. The measures are derived for two different cases: SOMs of temporal
SLP anomalies over the small domain, and SOMs of temporal SLP anomalies over the large domain.

Figure 6a shows that the evaluation results for model simulation capacity are influ-
enced by the size of the study area. This relationship was also observed for the other two
evaluation metrics (Figure 6b,c). However, we found significant correlations between two
of the three evaluation indicators, both for the large and small spatial domains, at a 95%
confidence level. The correlation coefficients between two indicators, MC and MS, were the
highest for both domains (0.96 for the large domain and 0.97 for the small domain), while
the correlation coefficients between MS and MR were the lowest for both domains (0.79 for
the large domain and 0.86 for the small domain). These results suggest that although the
choice of evaluation metrics has an impact, it has little effect on model ranking.

Our analysis also revealed significant positive correlations between the correlation
coefficient calculations for different-sized regions when using the same evaluation metrics.
Specifically, the correlation coefficients for the three indicators were 0.74 (MC), 0.79 (MS),
and 0.63 (MR) between the two spatial domains. Therefore, we conclude that the rankings
of patterns are not significantly affected by the size of the study area.

4.3.2. Impact of the Choice of SOM Sizes on the Assessment of Model
Simulation Capability

In order to assess the impact of Self-Organizing Map (SOM) sizes on model ranking,
we conducted an analysis. Figure 7 presents the results of ranking pairs of models using
four different SOM sizes: 3 × 3, 4 × 4, 5 × 5, and 6 × 6. Additionally, we investigated
whether there is a relationship between model performances across different SOM sizes, as
this would indicate redundancy in evaluation.
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By correlating the model rankings between two different SOM sizes, we found a
significant positive correlation (at a 95% confidence level) for all pairs in both spatial
domains. The mean correlation coefficients were calculated to be 0.63 in the small domain
and 0.64 in the large domain. These findings suggest that there is consistency in the ranking
of models across different SOM sizes, indicating that the choice of SOM size has limited
impact on the assessment of model simulation capability.

4.3.3. Impact of the Choice of Reanalysis Data on the Assessment of Model
Simulation Capability

To assess the impact of the choice of reanalysis data on model simulation capability,
we separately utilized two different sets of reanalysis data: NCEP and ERA-40. The model
ranking results obtained using these datasets are presented in Figure 8. Interestingly, we
found a high level of consistency in the model rankings across the two datasets.



Atmosphere 2023, 14, 1647 19 of 25

Atmosphere 2023, 14, x FOR PEER REVIEW 19 of 25 
 

 

Figure 7. Model ranking according to the correlation coefficient (R) assessed for four different SOM 
sizes, 3 × 3, 4 × 4, 5 × 5, and 6 × 6: (a) small domain and (b) large domain. 

4.3.3. Impact of the Choice of Reanalysis Data on the Assessment of Model Simulation 
Capability 

To assess the impact of the choice of reanalysis data on model simulation capability, 
we separately utilized two different sets of reanalysis data: NCEP and ERA-40. The model 
ranking results obtained using these datasets are presented in Figure 8. Interestingly, we 
found a high level of consistency in the model rankings across the two datasets. 

In the large domain, the correlation coefficients for the two ranking results were 0.77 
( C
M  + S

M ) and 0.74 ( R
M ), respectively. Similarly, in the small domain, a significant corre-

lation (at the 95% confidence level) was observed with correlation coefficients of 0.94 ( C
M  

+ S
M ) and 0.95 ( R

M ). To ensure robustness in the pattern ranking results, we considered 
both reanalysis data as references. 

Our analysis revealed notable differences in the correlation coefficients between the 
large and small domains. Specifically, the correlation coefficients were significantly 
smaller for the large domain compared to the small domain. Additionally, a higher num-
ber of changes in the model ranking order were observed in the large domain, with at least 
eight instances of such changes. In contrast, the smaller domains exhibited a much lower 
number of ranking changes, with approximately three instances occurring. These findings 
suggest that certain portions of the model’s simulation capability tend to be more unstable 
as the study area expands. 

 

Figure 8. Comparison of the model ranking from the NCEP and ERA-40: (a) C
M  + S

M  of large 

domain, (b) R
M  of large domain, (c) C

M  + S
M  of small domain, and (d) R

M  of small domain. 

0

20

40
M

od
el

 R
an

ki
ng

(a)MC + MS of Large Domain (R=0.77)

 

 
NCEP
ERA-40

0

20

40

M
od

el
 R

an
ki

ng

(b) MR of Large Domain (R=0.74)

0

20

40

M
od

el
 R

an
ki

ng

(c) MC + MS of Small Domain (R=0.94)

0

20

40

M
od

el
 R

an
ki

ng

A
C

C
E

SS
1-

0
A

C
C

E
SS

1-
3

bc
c-

cs
m

1-
1

bc
c-

cs
m

1-
1-

m
B

N
U

-E
SM

C
an

ES
M

2
C

C
SM

4
C

E
SM

1-
FA

S
TC

H
E

M
C

M
C

C
-C

M
C

M
C

C
-C

M
S

C
N

R
M

-C
M

5
C

S
IR

O
-M

k3
-6

-0
E

C
-E

A
R

TH
FG

O
A

LS
-g

2
FG

O
A

LS
-s

2
G

FD
L-

C
M

3
G

FD
L-

ES
M

2G
G

FD
L-

ES
M

2M
G

IS
S-

E
2-

R
H

ad
C

M
3

H
ad

G
E

M
2-

C
C

H
ad

G
E

M
2-

E
S

in
m

cm
4

IP
S

L-
C

M
5A

-L
R

IP
S

L-
C

M
5A

-M
R

M
IR

O
C

4h
M

IR
O

C
5

M
IR

O
C

-E
SM

M
IR

O
C

-E
SM

-C
H

E
M

M
P

I-E
SM

-L
R

M
P

I-E
SM

-M
R

M
P

I-E
SM

-P
M

R
I-C

G
C

M
3

N
or

ES
M

1-
M

(d) MR of Small Domain (R=0.95)

Figure 8. Comparison of the model ranking from the NCEP and ERA-40: (a) MC + MS of large
domain, (b) MR of large domain, (c) MC + MS of small domain, and (d) MR of small domain.

In the large domain, the correlation coefficients for the two ranking results were
0.77 (MC + MS) and 0.74 (MR), respectively. Similarly, in the small domain, a significant
correlation (at the 95% confidence level) was observed with correlation coefficients of
0.94 (MC + MS) and 0.95 (MR). To ensure robustness in the pattern ranking results, we
considered both reanalysis data as references.

Our analysis revealed notable differences in the correlation coefficients between the
large and small domains. Specifically, the correlation coefficients were significantly smaller
for the large domain compared to the small domain. Additionally, a higher number of
changes in the model ranking order were observed in the large domain, with at least eight
instances of such changes. In contrast, the smaller domains exhibited a much lower number
of ranking changes, with approximately three instances occurring. These findings suggest
that certain portions of the model’s simulation capability tend to be more unstable as the
study area expands.

4.3.4. Model Ranking across All Measures

Figure 9 depicts the model ranking derived from a comprehensive set of evaluation
measures used in this study. These measures were assessed using two distinct sets of
reanalysis data. The colors assigned to each rank in the figure visually illustrate significant
variations in model ranks across the evaluated measures. Certain models consistently
achieved high ranks, such as ACCESS1-0 and GISS-E2-R, while others consistently obtained
low ranks, including MI-ROC-ESM-CHEM and MIROC-ESM.
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Figure 9. Ranking of models based on a set of metrics for the small domain (S) and large domain
(L). The cells in each square are color-coded to indicate the ranking of the models over the NCEP
(left) and ERA-40 (right) datasets. The top-performing model is assigned a rank of 1, while the
worst-performing model is assigned a rank of 34.

When considering the cumulative ranks for each model, the top five models identified
are ACCESS1-0, GISS-E2-R, GFDL-CM3, MIROC4h, and GFDL-ESM2M.

To emphasize the rankings obtained from the NCEP and ERA-40 reanalysis data, the
cells within each square in the figure are color-coded. Our ranking system assigns a rank of
1 to the model with the highest performance and a rank of 34 to the model with the lowest
performance. By examining the color pattern in each square, we can discern the relative
performance of the models over the two datasets.

This ranking scheme serves as a valuable tool for comparing and contrasting the
accuracy and reliability of different models. It allows us to identify models that excel in
capturing the characteristics and dynamics of both small and large domains, as well as
those that may exhibit shortcomings or inconsistencies.

Such evaluations provide crucial insights into the suitability of models for specific
applications or research purposes. They also contribute to ongoing efforts to enhance our
understanding of climate patterns and improve the quality of reanalysis data.

It is important to note that these rankings are based solely on the metrics used in this
study. Other factors, such as computational efficiency or data availability, should be taken
into consideration when selecting a model for practical applications.

Overall, this ranking analysis provides a comprehensive overview of model perfor-
mance in both small and large domains, shedding light on their strengths and weaknesses.
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5. Discussion

The aim of this study is to evaluate the capacity of a model and investigate the impacts
of different evaluation metrics, self-organizing map (SOM) size selection, and reanalysis
data choice on the assessment of model performance. Our research findings reveal the
interrelationships among various evaluation metrics and demonstrate that the choice of
evaluation metrics has limited influence on model ranking.

We conducted evaluations of the models’ capabilities using selected evaluation metrics
in both small-scale and large-scale spatial domains. Correlation analysis showed significant
relationships among different evaluation metrics. We found that the choice of evaluation
metrics has only a minor impact on model ranking. We also found that the size of the study
area exhibited a positive correlation with model ranking.

To investigate the sensitivity of model ranking to the selection of SOM size, we ranked
the models using four different SOM sizes (3 × 3, 4 × 4, 5 × 5, and 6 × 6). The results
showed a significant positive correlation among different sizes. Therefore, caution should
be taken when selecting the SOM size in the evaluation method.

Furthermore, we compared the results of model evaluation using different reanalysis
datasets (NCEP and ERA-40) and found a high consistency in model ranking between
the two datasets. The top five models were determined to be ACCESS1-0, GISS-E2-R,
GFDL-CM3, MIROC4h, and GFDL-ESM2M based on the evaluation metrics and reanalysis
datasets.

Our findings are of great significance for improving the evaluation methods of climate
models and enhancing our understanding and prediction of climate change. These findings
can serve as a reference for future research. This paper concludes that the choice of
evaluation metrics, the size of the study area, and SOM size selection all have certain
influences on model ranking.

The classification of weather regimes based on their patterns plays a crucial role in
assessing the performance of climate models. Weather regimes are classified according to
their distinctive characteristics and temporal evolution. The utilization of these categorized
weather patterns in evaluating climate models serves several key purposes:

(a) Firstly, it enhances our comprehension of how climate models perform across
diverse weather systems. This tool enables the identification of biases and uncertainties
inherent in climate models when simulating various weather system types.

(b) Secondly, it facilitates the assessment of climate models’ capability to accurately
simulate extreme weather events. Through classifying extreme weather events into specific
weather regimes, we can evaluate the modeling proficiency of climate models for different
weather patterns. This evaluation provides invaluable insights into model performance
and areas that require improvement.

(c) Thirdly, it contributes to the development and evaluation of ensemble prediction
methods. By utilizing the classification of weather regimes, ensemble strategies can be
tailored based on the frequency and significance of different patterns. This enables more
precise capturing of the full range of variations and uncertainties inherent in different
weather systems. Additionally, it allows for an evaluation of the effectiveness of ensemble
prediction strategies and identifies potential avenues for further improvements.

In conclusion, the classification of weather regimes and its application in climate
model evaluation play a significant role in comprehending model performance, assessing
simulations of extreme weather events, and refining ensemble prediction strategies.

6. Summary and Conclusions

The objective of this study was to assess the performance of a model by examining
the effects of different evaluation metrics, self-organizing map (SOM) sizes, and reanalysis
data choices. Moreover, correlations among various evaluation metrics were explored.
The results showed a positive correlation between the size of the study area and observed
differences, which was consistent across different evaluation metrics. Among the evaluation
metrics used in both large-scale and small-scale spatial domains, the highest correlation
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coefficient was found between Evaluation Metric MC and MS (0.96 for large scale and 0.97
for small scale), while the correlation between Evaluation Metric MS and MR was relatively
lower (0.79 for large scale and 0.86 for small scale). It can be inferred that the choice of
evaluation metrics had a minor impact on model rankings.

Additionally, a significant positive correlation was observed when comparing correla-
tion coefficients calculated for different-sized regions using the same evaluation metrics.
Specifically, the correlation coefficients between the three evaluation metrics in the two
spatial domains were 0.74, 0.79, and 0.63, respectively. These findings suggest that changes
in the size of the study area did not significantly affect the model rankings.

To further investigate the relationship between model performance and different SOM
sizes, the models were ranked using various SOM sizes. The results indicated a significant
positive correlation, with average correlation coefficients of 0.63 for small-scale and 0.64 for
large-scale scenarios.

Furthermore, model rankings were compared using different reanalysis datasets
(NCEP and ERA-40), revealing a high level of consistency. Correlation coefficients between
the two ranking results were 0.77 and 0.74 for the large-scale scenario and 0.94 and 0.95 for
the small-scale scenario. This consistency enhances the reliability of the model rankings.

Considering the different evaluation metrics employed in this study and the impact of
two reanalysis datasets on model rankings, significant variations in model rankings were
observed. Visualization of the rankings using different colors demonstrated consistent
high rankings for models such as ACCESS1-0 and GISS-E2-R, while models like MIROC-
ESM-CHEM and MIROC-ESM consistently ranked lower. The top five models based on
cumulative rankings were determined to be ACCESS1-0, GISS-E2-R, GFDL-CM3, MIROC4h,
and GFDL-ESM2M.

In conclusion, the choice of evaluation metrics, SOM sizes, and reanalysis data selection
exerted influence on model performance assessments. Different spatial domain sizes may
lead to variations in model rankings, while SOM size and reanalysis data selection play a
role in the consistency and stability of these rankings. These findings hold great significance
for optimizing and enhancing climate model evaluation methods. This study underscores
the impact of factors such as evaluation metric choice, study area size, and SOM size on
model rankings, providing valuable insights for future research.
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Abbreviations

SOM—Self-organizing map; CMIP5—Coupled Model Intercomparison Project Phase 5; GCMs—
Global Climate Models; REF—Validation data; PTH—The Pacific Subtropical High; TLP—Tropical
Low Pressure; MSLP—Mean sea level pressure; PR—Precipitation; NCEP-NCAR—National Center
for Environmental Prediction/National Center for Atmospheric Research; ECMWF—European Cen-
tre for Medium-Range Weather Forecasts; ERA-40—The 40-year European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis; CHEN05—Gridded precipitation (PR) data provided by
Chen et al.; PCMDI—Program for Climate Model Diagnosis & Intercomparison; EPPs—Extreme
precipitation patterns; Trained_A—The filtered extreme precipitation data were used as input for
training via the Self-Organizing Map (SOM) to obtain the training results; Trained_B—The filtered
daily mean sea level pressure (MSLP) data corresponding to extreme precipitation events were used
as input, and the Self-Organizing Map (SOM) was employed for training to obtain the training results;
PROB_O—Frequency analysis enabled the construction of a two-dimensional binary matrix, where
each element represents the probability of a specific circulation pattern being associated with extreme
precipitation events. The calculation is based on the analysis of validation data; PROB_M—Frequency
analysis enabled the construction of a two-dimensional binary matrix, where each element represents
the probability of a specific circulation pattern being associated with extreme precipitation events.
The calculation is based on GCMs output data; JJA—The defined summer period includes the months
of June, July, and August.
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