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Abstract: Tropospheric ozone is a powerful oxidant that can damage living organisms; it is widely
monitored, as air concentrations have more than doubled since the Industrial Revolution. However,
in general air quality monitoring stations are limited spatially to large urban centres; accordingly,
accurate prediction of concentrations outside of cities is important for protecting human and plant
health. Land-use regression has been successfully used for modelling air pollutant concentrations by
establishing a relationship between observed concentrations and landscape features representing
sources and sinks. In this study, we developed a land-use regression model that explained 68% of the
variance of summer average ozone concentrations in the Republic of Ireland. Ozone was measured
at 14 active and 20 passive monitoring sites; air concentrations varied spatially, with the highest
ozone measured in rural upland (64.5 µg/m3) and Atlantic coastal (50.2–60.5 µg/m3) sites and the
lowest generally in urban centres (38.9–45.7 µg/m3). A total of 74 land-use predictor variables were
tested, and their inclusion in the model was based on their impact on the coefficient of determination
(R2). The final model included variables linked primarily to deposition processes and included
“forest woodland and scrub area” and “distance to coast”. The meteorological variable “rain” and
an indicator for NOx emissions “distance to EPA Integrated Pollution Control facilities” were also
included in the final model. Our results demonstrate the potential effectiveness of land-use regression
modelling in predicting ozone concentrations, at a scale relevant for ecosystem protection.
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1. Introduction

Tropospheric or ‘ground-level’ O3 is a powerful oxidant that is harmful to human [1,2]
and plant [3] health. In vegetation, O3 enters through the leaf stomata, initiating a plant-
derived oxidative burst leading to damage, which reduces photosynthesis and negatively
impacts plant growth and ecosystem health [4–6]. Further, O3 is an important greenhouse
gas [7] due to its properties as a radiative forcer. Ground-level O3 is a secondary pollutant
as it is not emitted directly but formed in the atmosphere from the reaction of precursor
compounds, including nitrogen oxides (NOx) and volatile organic compounds (VOCs), in
the presence of sunlight. As such, O3 concentrations are highly variable over space and time
due to the complex nonlinear processes of chemical creation from precursors, destruction
through titration, and removal by deposition. Nitrogen oxides in the form of either nitric
oxide (NO) or nitrogen dioxide (NO2) are mainly produced by the combustion of fossil fuels,
with power generation and motor vehicle emissions being the dominant sources [8], much
larger than formation by lightning [9]. In addition to biogenic emissions, anthropogenic
sources of VOCs include emissions from the incomplete combustion of fossil fuels and
from agricultural organic and inorganic fertilisers, solvents, and adhesives [8]. It is well
established that O3 production increases with increasing concentrations of NOx and VOCs,
where the emissions of both precursors are not limited, and increases less as the regime
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becomes NOx- or VOC-limited [10–12]. Ground-level O3 tends to be lower in urban areas
due to removal by fresh traffic emissions of NO, leading to a downward flux gradient and a
VOC-limited regime, meaning less formation of O3 [13,14]. In these regimes, a reduction in
the emissions of NOx can lead to a transitional regime with increases in O3 formation [15].
This process was evident during COVID-19 restrictions when NOx emissions from traffic
were reduced, resulting in increased O3 concentrations in European cities [16]. Further,
O3 can be removed through dry deposition to surfaces, and the rate of O3 removal by
deposition decreases with temperature [17] and increases with surface roughness, e.g.,
forests have higher rates of O3 removal than open water [18–20]. This deposition takes
place in the form of uptake in plant stomata and non-stomatal destruction through surface
contact and chemical destruction [17], with non-stomatal deposition dominating during
drought conditions [21].

One of the challenges of estimating regional O3 concentrations is its variability, often
varying with altitude, geographic location, season, temperature, humidity, and atmospheric
composition [22]. The global average photochemical lifetime of tropospheric O3 is 20 to
25 days [23] but generally less than 5 days in the summertime surface boundary layer,
with considerable spatial variation. In contrast, the lifetime of O3 is long enough in the
free troposphere to allow for long-range transport [24], with high emissions in one area
influencing concentrations far from the source.

In Europe, the highest concentrations are observed along the Mediterranean [25], and
the lowest concentrations in cities [16]. Similarly, on the Atlantic edge of Europe, in the
Republic of Ireland, the highest concentrations are experienced at stations along the west
coast, and the lowest in the cities [26]. In Ireland, O3 levels increased during the 1990s until
the year 2000, and thereafter levelled off up to the year 2008 [27,28]. However, this plateau
was short-lived, as almost half of the stations measuring ozone had significant increases
during the 15-year period 2005–2019 [26]. Increases were most frequent in winter with
significant increases at seven stations, while three stations in rural and coastal locations
had significant increases during the spring period, when peak values occurred.

Given the negative impacts of exposure to high levels of O3, it is important to effec-
tively predict O3 exposure especially where monitoring data are not available. There are
currently 24 stations measuring O3 in the Republic of Ireland (area: 70,273 km2). This spa-
tial paucity of O3 monitoring makes the accurate prediction of concentrations at fine spatial
scales difficult, due to the wide range of local influences that determine concentrations at
a given location. Land-use regression (LUR) modelling has been widely used [29–34] to
understand the relationship between air pollutant concentrations (response variable) and
land-use characteristics (explanatory variables). Land-use regression is a prediction method
that aims to maximise the explained variance (R2) and has been successfully applied for
NO2, PM10, and PM2.5 [31], and for O3 [35]. In Ireland, there is a growing need for a better
understanding of the drivers of local-scale O3 variations, and fine-scale concentration maps
for the growing season to determine where exposure limits may be exceeded, especially
given recent increasing O3 trends.

The objectives of this study were to identify the covariates of summer O3 concentra-
tions in Ireland, and to develop a fine spatial-scale O3 concentration map using LUR mod-
elling. Firstly, O3 passive samplers were deployed across Ireland during June–September
2022 in locations not represented by active monitoring stations. Secondly, each sample
location (n = 34, including both active and passive) was characterised based on a wide,
exploratory set of O3-relevant predictor or explanatory variables such as land-use, traffic,
and elevation. Thirdly, a regression model was created using measured O3 data, and
determinants were assessed based on maximizing the explained variance. The resulting
model was used to map local O3 levels across the country at a spatial scale needed for
ecosystem protection (1 km × 1 km). In general, the sampling and modelling protocols
used in this study followed those from the ESCAPE (European Study of Cohorts for Air
Pollution Effects) project [29,31].
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2. Materials and Methods
2.1. Sample Site Selection

In total, 34 sites across the Republic of Ireland were used in this study (see Figure 1).
These included 14 active O3 monitoring stations under the national monitoring network
and 20 passive sampling locations, which were established to improve the spatial coverage
of O3 during summer (May–September) 2022. To maximise spatial coverage between the
14 long-term active monitoring sites, 16 short-term passive sampler locations were chosen
from the centre of spatially balanced strata that were mapped using k-means clustering in
R (see Figure S1; SPCOSA package; [36]). The passive sampling sites were supplemented
with four additional sampling sites that were part of an ongoing O3 vegetation experiment.
The selected passive sampler locations were inspected for access and to select nearby
power transmission poles that were free from airflow obstruction on all sides for sampler
deployment. In locations near major roads, the nearest minor road was selected, to allow
for safe access and to lessen the impact from local NO traffic emissions. All study sites
were classified as urban, suburban, rural, or coastal.
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Figure 1. Location of Ireland within Europe with inset showing ozone monitoring sites in the Republic
of Ireland used in the study (n = 34); red-filled diamonds indicate active monitoring stations (n = 14),
and blue-filled diamonds indicate passive sampling sites (n = 20) established during summer 2022 to
ensure national-scale coverage of ozone data.

2.2. Measurement of Ozone

Continuous tropospheric O3 was measured using UV photometric analysers (Thermo
49i and API models (Thermo Fisher Scientific, Waltham, MA, USA)) and archived on-
line under the national air quality monitoring network. Hourly O3 concentrations were
downloaded from the EPA SAFER database (https://eparesearch.epa.ie/safer/iso19115
/display?isoID=66, accessed on 15 November 2023). To ensure that mean values were
representative during the sampling period, the data were assessed for missing values and
sites were included in the study if they met a data completeness threshold of 75%, as set
out by the Tropospheric Ozone Assessment Report [37].

The average monthly tropospheric O3 was also passively measured using “Palmes-
type” diffusion tubes [38], where the reaction of O3 with a nitrate-coated absorbent mem-
brane in the passive sampler was quantified using ion chromatography. Tubes were made
from fluorinated ethylene polymer and were fitted with two caps—one containing the
absorbent and one containing a one-micron porosity filter to avoid airborne particulate
nitrate from entering. The O3 diffusion tubes used in this study were obtained from Gradko
International (Winchester, UK), a UKAS (United Kingdom Accreditation Service) accred-
ited laboratory. The diffusion tubes were exposed for four weeks, under three consecutive

https://eparesearch.epa.ie/safer/iso19115/display?isoID=66
https://eparesearch.epa.ie/safer/iso19115/display?isoID=66
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deployments during June–September 2022 (referred to as the “summer period” in this
study). Sampling sites covered a distance of more than 2000 km; therefore, deployment and
sample changeover took four days. The first exposure began on the week of 13–19 June,
with changeovers on 11–14 July and 8–11 August, and final collection on 5–8 September.
At each site, one O3 tube was attached vertically to a transmission pole at a height of 3 m
to avoid interference and secured to the pole using a 20 cm spacer to allow free airflow
around the diffusion tube. Deployment blanks were travelled during each exposure period,
while laboratory blanks were not travelled. Measured passive concentrations may be ele-
vated when tubes are exposed to intense direct sunlight due to the breakdown of NO and
NO2; as such, the tubes were also co-located at two active monitoring stations to facilitate
calibration of passive sampling data. The passive data were separately calibrated for each
exposure by reducing each value proportionally by the average percent difference between
the co-located active and passive samplers (see Table S1). For each exposure, triplicate
samplers were deployed at three different locations to assess variation among the tubes.
Following the sampler collection, the diffusion tubes were returned to Gradko for analysis.
Variation between sites and triplicate samples was assessed using percent coefficient of
variation—calculated by dividing the standard deviation by the mean and multiplying by
100. The significance of the difference between the sampling periods was assessed using
a Kruskal–Wallis test. The calibrated passive sampler concentrations during each period
along with averaged data from the active monitoring stations was assessed for spatial and
temporal variation.

2.3. Characterising Locations by Landscape Features

For each study location (n = 34), contributions of candidate determinants (predictor
variables) to model R2 were quantified. The predictor variables represent potential sources
and sinks of O3 concentrations such as land-cover, road type, altitude, and distance from
the coast. In total, 74 predictor variables were used to build the LUR model. These predictor
variables were selected based on their suspected relationship with O3. Determinants were
further divided based on different buffer sizes, where circles with radii ranging between
100 m and 5000 m were placed around the sample points and the determinant value
was extracted within each buffer size (see Table 1 for variables and buffer sizes used).
The buffers aimed to capture the spatial scale of impact from predictor variables and the
dispersion patterns associated with O3. The coordinates of each sample point were taken
from Google Earth. The land cover data were extracted from the national land cover map
for Ireland (https://www.tailte.ie/surveying/products/professional-mapping/national-
land-cover-map/, accessed on 15 November 2023). A Geographical Information System
was used to generate determinants such as distance from the coast and major roads for
each study site. Emissions of CO, NH3, nonmethane VOCs, NOx, PM10, PM2.5, and CH4
on a 1 × 1 km spatial scale for Ireland were obtained from the MapEire project ([39];
projects.au.dk/mapeire/spatial-results/, accessed on 15 November 2023; emissions based
on 2017 data).

Table 1. List of predictor variables used for modelling ozone, with units and buffer sizes. Temperature,
Rain, and Sun based on a 30-year mean.

Predictor Variable Unit Buffer Radius (m)

Easting m
Northing m
Elevation m

Maximum temperature ◦C
Minimum temperature ◦C

Mean temperature ◦C

https://www.tailte.ie/surveying/products/professional-mapping/national-land-cover-map/
https://www.tailte.ie/surveying/products/professional-mapping/national-land-cover-map/
projects.au.dk/mapeire/spatial-results/
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Table 1. Cont.

Predictor Variable Unit Buffer Radius (m)

Rain mm/year
Sun hour/year

Distance to coast m
Distance to major road m
Distance to IPC facility m

Distance to EPA Licenced facility m
Distance to waste facility m

CO tonne/year
NH3 tonne/year

NMVOC tonne/year
NOx tonne/year
PM10 tonne/year
PM2.5 tonne/year
CH4 tonne/year

Population person 100, 200, 300, 500, 1000, 5000
Buildings area m2 100, 200, 300, 500, 1000, 3000

Forest, woodland and scrub area m2 100, 200, 300, 500, 1000, 3000
Grass, marsh, swamp area m2 100, 200, 300, 500, 1000, 3000

Waterbodies area m2 100, 200, 300, 500, 1000, 3000
Total road length m 100, 200, 300, 500, 1000, 5000

Secondary road length m 100, 200, 300, 500, 1000, 5000
Service road length m 100, 200, 300, 500, 1000, 5000
Tertiary road length m 100, 200, 300, 500, 1000, 5000

2.4. Data Analysis and Model Building

The measured O3 data and selected determinants were tested for normality using the
Shapiro–Wilks test, and all determinants were log-transformed. As some determinants had
zero values, a value of one was added to all the variables before transformation. While
more than 80% of the determinant variables remained nonnormal after transformation
(including four used in the final model), normality was nonetheless improved, and the
response variable was normally distributed. Secondly, all the determinants were tested
for correlation using the Pearson correlation to avoid multicollinearity in the model, and
were considered colinear if the correlation coefficient was greater than 0.65. Finally, using a
stepwise forward and backward procedure for model development, the determinants were
evaluated with the aim to maximise the explained variance (R2) for the measured summer
O3 concentration (using Kyplot, version 2.0; [40]). The determinants were separated and
grouped into five uncorrelated groups, and one per group was sequentially introduced,
with their impact on the R2 value ultimately determining their inclusion in the final model.
The process was repeated until all the variables were tested, and the adjusted R2 value
was maximised. To assess the individual impact of the final model determinants on the
predicted concentrations, the values were normalised by dividing by their mean, allowing
comparison of their regression coefficients. The top five regression models with the highest
adjusted R2 values were retained, and the final model was chosen based on the highest
adjusted R2 value. The final model was tested using a cross validation method [41], where
90% of the sites were selected at random and the model was developed using these sites
and the selected determinants, with the remaining 10% of sites being used to validate the
model. This process was repeated until all sites had been used for model testing.

3. Results and Discussion
3.1. Distributions of Measured Concentrations

Ozone concentrations varied spatially, with the highest concentrations measured in
rural and Atlantic coastal sites and the lowest concentrations measured at urban sites.
Active and passive mean concentrations ranged between 38.8 and 64.5 µg/m3 (see Table 2).
The mean value for all the station concentrations was 50.7 µg/m3, with a standard deviation
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of 5.96 µg/m3 and coefficient of variation of 17%, indicating a low level of variability
between stations. Across the three exposures, the highest concentrations were measured
during the third exposure (see Figure 2), and the first exposure was significantly different
(lower concentration) to the second (p-Value = 0.01) and third (p-Value < 0.001). Laboratory
and deployment blanks had a mean O3 value < 1 µg/m3; as such, observations were not
blank-corrected. Passive O3 concentrations at co-located sites were on average 21–29%
higher each month than the active concentrations during the same period (see Table S1).
Triplicate samples taken from four sample locations had low variability, with a mean
coefficient of variation of 6%. Sampler recovery was 96% during the study, as one site
(Wexford) had samples removed during the third exposure.

Table 2. Site details of passive and active sites used in the study with mean measured ozone
concentration (µg/m3) during summer (May–September) 2022.

Site Latitude Longitude Elevation Sampling Method Site Classification Measured O3

m µg/m3

Athlone 53.458388 −7.9797343 34 Passive Rural 46.6
Ballinamore 54.046680 −7.8395779 89 Passive Rural 47.4

Belmullet 54.220789 −9.9907000 5 Passive Atlantic 60.5
Belmullet east 54.168465 −9.8176626 24 Passive Rural 58.1

Bray 53.187458 −6.1227087 47 Active Sub-urban 48.7
Carnsore point 52.177439 −6.3677987 5 Active Rural 53.2

Castlebar 53.850875 −9.3001777 40 Active Sub-urban 46.1
Clare 52.930413 −9.0481050 24 Passive Rural 46.8

Clonskeagh 53.311796 −6.2352999 29 Active Sub-urban 49.9
Cloone 53.944651 −7.7860829 60 Passive Sub-urban 47.3
Cork 52.236575 −8.8144707 152 Passive Rural 54.2

Donegal 54.853548 −8.0401895 156 Passive Rural 58.7
Dublin Airport 53.433065 −6.2300683 57 Active Urban 44.1

Emo 53.107601 −7.1983042 104 Active Rural 47.9
Galway 53.459443 −8.7942903 45 Passive Rural 55.3

Glanmire Road 51.901705 −8.4620361 9 Active Urban 38.9
Henry street 52.661299 −8.6316064 9 Active Urban 43.4

Kerry 52.358371 −9.5134263 172 Passive Rural 50.5
Kilkenny 52.638296 −7.2676008 65 Active Sub-urban 51.6

Kilkitt 54.072618 −6.8859336 159 Active Rural 47.5
Louth 53.830967 −6.5284172 74 Passive Rural 56.5

Mace Head 53.326668 −9.9044606 3 Active Atlantic 60.4
Mohill 53.918458 −7.8824764 59 Passive Rural 49.8

Palmerstown 53.357943 −6.3617630 20 Passive Sub-urban 38.8
Rathmines 53.321997 −6.2671960 27 Active Urban 45.7

Sligo 54.122192 −8.5003447 97 Passive Rural 55.0
Tipp north 52.952582 −8.0724211 81 Passive Rural 49.6
Tipp south 52.272570 −7.9401642 100 Passive Rural 49.9

Valentia 51.938309 −10.240149 24 Active Atlantic 50.2
Waterford 52.247032 −7.1416570 21 Active Sub-urban 58.5
West Cork 51.774208 −9.3485513 181 Passive Rural 51.3
Westmeath 53.565862 −7.1302202 83 Passive Rural 46.8

Wexford 52.567809 −6.6084266 23 Passive Rural 48.7
Wicklow 52.946317 −6.5350960 439 Passive Rural 64.5



Atmosphere 2023, 14, 1711 7 of 13

Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 13 
 

 

at urban sites in Dublin and Cork city, which is consistent with previous studies in Ireland 

[26,28]. 

 

Figure 2. Monthly average ozone (O3) concentrations for all study sites (n = 34; active = 14, passive 

= 20) during June, July, and August. The boxplot represents the 95th, 75th, 50th = median, 25th, and 

5th percentiles. Passive samplers were deployed during four-week periods starting 13–19 June, 11–

14 July, and 8–11 August, with sampling finishing on 5–8 September. Boxplot labelled “A” was sig-

nificantly different (lower) from Boxplots labelled “B”. 

3.2. Predictors of O3 in Ireland, and Insights from a Finer Spatial-Scale Concentration Map 

3.2.1. Land-Use Regression Model 

The final model explained 68% of the measured O3 variance (adjusted R2 = 0.63), and 

included the variables “distance to coast”, “distance to Integrated Pollution Control (IPC) 

facility”, “rain”, “area of waterbodies within a radius of 1000 m”, and “area of forest, 

woodland, and scrub within a radius 500 m” (see Table 3). 

Table 3. Final land-use regression model output R2 values and regression coefficients. 

R2 Adjusted R2 Intercept Dist. Coast Dist. IPC Rain 
Forest Area 

500 m 
Waterbodies Area 1000 m 

0.68 0.63 35.6535 −3.1137 3.5064 9.7495 −1.0596 −2.3110 

The intercept is the background O3 concentration in Ireland, around which O3 con-

centration will increase or decrease in response to the effects of the predictor variables. In 

general, the predictor variables represented sources and sinks of O3, and three of the five 

predictors had a negative slope, indicating a reducing effect on concentrations as the pre-

dictor value increased. As distance to the coast increased, O3 concentrations decreased, 

which reflected the higher rate of O3 deposition inland from the coast. Where forest, wood-

land, and shrubs are more common, the rate of O3 deposition onto vegetation surfaces and 

within leaves is higher, leading to lower concentrations in the air. Further, forest areas 

reduce ambient daytime maximum temperatures [44], which may reduce ambient O3. 

Plants are a source of biogenic VOCs [45], which would be expected to increase O3 con-

centrations; however, the negative slope may be explained by lower NOx emissions in 

these forested areas, leading to lower O3 production in these NOx-limited regimes [12]. 

Figure 2. Monthly average ozone (O3) concentrations for all study sites (n = 34; active = 14,
passive = 20) during June, July, and August. The boxplot represents the 95th, 75th, 50th = me-
dian, 25th, and 5th percentiles. Passive samplers were deployed during four-week periods starting
13–19 June, 11–14 July, and 8–11 August, with sampling finishing on 5–8 September. Boxplot labelled
“A” was significantly different (lower) from Boxplots labelled “B”.

The highest summer concentration was measured at the relatively high elevation site
(439 m) of Wicklow, followed by the Atlantic coastal sites of Belmullet and Mace Head (see
Table 2). High elevation locations experience higher levels of O3 as a result of the lower rate
of deposition, especially overnight when temperatures are more stable [14,42]. Locations
in rural areas close to coastlines experience higher O3 levels also due to lower levels of
deposition and higher insolation [43]. The lowest concentrations were measured at urban
sites in Dublin and Cork city, which is consistent with previous studies in Ireland [26,28].

3.2. Predictors of O3 in Ireland, and Insights from a Finer Spatial-Scale Concentration Map
3.2.1. Land-Use Regression Model

The final model explained 68% of the measured O3 variance (adjusted R2 = 0.63),
and included the variables “distance to coast”, “distance to Integrated Pollution Control
(IPC) facility”, “rain”, “area of waterbodies within a radius of 1000 m”, and “area of forest,
woodland, and scrub within a radius 500 m” (see Table 3).

Table 3. Final land-use regression model output R2 values and regression coefficients.

R2 Adjusted R2 Intercept Dist. Coast Dist. IPC Rain Forest Area
500 m

Waterbodies
Area 1000 m

0.68 0.63 35.6535 −3.1137 3.5064 9.7495 −1.0596 −2.3110

The intercept is the background O3 concentration in Ireland, around which O3 con-
centration will increase or decrease in response to the effects of the predictor variables.
In general, the predictor variables represented sources and sinks of O3, and three of the
five predictors had a negative slope, indicating a reducing effect on concentrations as the
predictor value increased. As distance to the coast increased, O3 concentrations decreased,
which reflected the higher rate of O3 deposition inland from the coast. Where forest, wood-
land, and shrubs are more common, the rate of O3 deposition onto vegetation surfaces
and within leaves is higher, leading to lower concentrations in the air. Further, forest
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areas reduce ambient daytime maximum temperatures [44], which may reduce ambient
O3. Plants are a source of biogenic VOCs [45], which would be expected to increase O3
concentrations; however, the negative slope may be explained by lower NOx emissions in
these forested areas, leading to lower O3 production in these NOx-limited regimes [12]. As
distance from IPC facilities increased, O3 concentrations were predicted to also increase.
The EPA IPC facilities are indicators of higher urban atmospheric emissions, as they are
often located in urban or industrialised areas and produce a wide range of materials from
metals and cement for construction to food and beverage processing [46]. These urban or
industrialised areas are associated with lower O3 concentrations from NOx titration. While
known indicators of NOx sources such as road length and population did not increase the
R2 value sufficiently to be included in the model, IPC facilities may be associated with
larger NOx emitting centres, making them a better predictor of O3 titration. Higher annual
rainfall coincidently occurred with higher concentrations of O3; in general, high elevation
locations experience more rainfall, while O3 is also higher in these areas due to higher rates
of UV radiation and potential stratospheric intrusion [47]. The presence of waterbodies
within a 1000 m buffer, including both marine and fresh waterbodies, had a negative slope.
When determinants were normalised to compare their contribution individually, distance
to coast had a greater effect (nearly double) than that of the area of waterbodies within
1000 m (–1.06 and –0.63 respectively), indicating that distance to coast had a greater impact
on concentrations in locations where the area of waterbodies was also high.

Cross validation of the final model led to an R2 value of 0.52; however, this value was
strongly influenced by one station (Waterford) that experienced extreme O3 concentrations
during a summer heatwave. When Waterford was removed from the validation, the R2

value increased to 0.65 (see Figure S2).

3.2.2. Modelled Ozone Concentrations

Ozone concentrations on a 1 km × 1 km spatial scale were mapped by extracting the
explanatory variables at the same resolution across Ireland and combining them with the
model regression coefficients to predict O3 at centre of each grid cell. Median O3 from the
final model was 52.5 µg/m3 (range 40.2–78.0 µg/m3), which is higher than the measured
median of 50.6 µg/m3 (see Figure 3; Table S2; Figure S3). The lowest predicted value
(40.2 µg/m3) was also higher than the lowest measured value (38.8 µg/m3). The areas of
highest modelled values were in rural, high-elevation, and coastal areas (see Figure 4), with
3% of estimated 1 km × 1 km points (2108 km2) above the average of the highest measured
O3 (Wicklow; 64.5 µg/m3).
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3.3. Land-Use Regression Studies

We successfully developed a land-use regression model that explained 68% of the
variance in summer average O3 concentrations (see Table 3). The efficacy of land-use
regression models in predicting pollutant concentrations varies across different pollutants.
Land-use regression studies for NO2 have reported R2 values of 0.86 [48] and 0.92 [29]. In
contrast, lower values are generally reported for PM10 and PM2.5 (median R2 = 0.77 and
0.71 respectively; [31]). Particulate matter predictions are lower due to the complex mix
of sources that contribute to concentrations and the formation of secondary fine PM from
precursor gases. Similarly, due to the secondary-formation nature of O3, it is more difficult
to predict compared to directly emitted pollutants such as NO2. A European study of O3
concentrations at rural background sites achieved an R2 value of 0.62 using a 1 km × 1 km
spatial resolution [49]. A land-use regression analysis similar to this study [35], which
looked at a cross section of site types, achieved a slightly better performance with an R2

of 0.71 (adjusted R2 0.69) and had a higher concentration for the background intercept
(48.32 µg/m3). In contrast to this study, the main drivers of concentrations in the Nether-
lands were related to the impact of NOx scavenging, with traffic intensity, road length, and
urban indicators included as determinants in the final model.

A recent review of O3 modelling methods by De Marco [50], highlighted how linear
regression modelling has been widely used because of the simplicity in establishing a direct
relationship between the measured O3 and local variables. However, the nonlinear nature
of O3 formation and the problem of multicollinearity in the model were highlighted as
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limitations. However, as linear regression models are informed by measured observational
data, they are effective compared to coarse regional chemistry–climate models, which have
difficulty reproducing ground observations, and validation is limited to where ground
observations are available [51].

Success of the model presented here demonstrates how land-use variables can be effec-
tively used to predict O3 concentrations in Ireland (see Figure 4). While the current study
focused on summer average concentrations, it may be possible to increase the temporal
resolution, which would be important given the variable nature of O3 concentrations, as
meteorological conditions during sampling may have caused differences between sites
that may be more or less pronounced across the year. The exclusion of Northern Ireland
from this study was a result of the lack of comparable predictor variables, which may be
available in a future study.

4. Conclusions

Through the development of a land-use regression model, which explained 68% of the
variance in summer mean O3 concentrations, we identified covariates that represented de-
position and removal processes in the Republic of Ireland. Measured concentrations varied
spatially, with higher concentrations in rural upland and Atlantic areas and lower concen-
trations in urban centres, consistent with previous studies. The modelled 1 km × 1 km
map provided a novel spatial interpretation of O3 concentrations related to deposition
environments, topography, and landcover. This study contributes to our understand-
ing of the distribution of O3 concentrations in Ireland, with implications for pollution
control. The model demonstrates the efficacy of land-use regression in predicting sec-
ondary air pollutants, which is important for the effective protection of human and
vegetation health.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/atmos14121711/s1, Table S1: Average co-located passive
and active ozone data (µg/m3) for Clonskeagh (CSK) and Kilkenny (SVL) and the reduction as % of
the passive value used to calibrate the passive results; Table S2: Predictor variable values used in final
model; Figure S1: The 16 existing monitoring stations (triangles) and 14 new sampling sites (circles).
New sample points were chosen from the centre of spatially balanced strata that were mapped using
k-means clustering in R (SPCOSA package; [36]); Figure S2: Scatter plot and R2 values of predicted
and measured ozone with Waterford site included (A) and Waterford site removed (B); Figure S3:
Frequency distribution of modelled ozone data (µg/m3) for summer 2022.
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