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Abstract: Lightning is directly or indirectly responsible for significant human casualties and property
damage worldwide. A timely prediction of its occurrence can enable authorities and the public to take
necessary precautionary actions resulting in diminishing the potential hazards caused by lightning.
In this paper, based on the assumption that atmospheric phenomena behave in a continuous manner,
we present a model based on residual U-nets where the network architecture leverages this inductive
bias by combining information passing directly from the input to the output with the necessary
required changes to the former, predicted by a neural network. Our model is trained solely on
lightning data from geostationary weather satellites and can be used to predict the occurrence of
future lightning. Our model has the advantage of not relying on numerical weather models, which
are inherently slow due to their sequential nature, enabling it to be used for near-future prediction
(nowcasting). Moreover, our model has similar performance compared to other machine learning
based lightning predictors in the literature while using significantly less amount of data for training,
limited to lightning data. Our model, which is trained for four different lead times of 15, 30, 45, and
60 min, outperforms the traditional persistence baseline by 4%, 12%, and 22% for lead times of 30, 45,
and 60 min, respectively, and has comparable accuracy for 15 min lead time.

Keywords: lightning; nowcasting; machine learning; data-driven; satellite observations; lightning
early warning; U-Net; ResUNet

1. Introduction

Lightning is an atmospheric phenomenon that transfers significant amounts of electri-
cal charge over a short period of time, releasing energies of several gigajoules, and resulting
in electromagnetic radiation over a very large frequency bandwidth. Lightning can cause
human and livestock casualties, infrastructure damage, electromagnetic interference, forest
fires, system failure in aviation systems, and power network disruption [1–8]. Therefore,
a timely and accurate prediction of lightning occurrence combined with appropriate pre-
ventive actions can reduce and avert these unfortunate outcomes. Traditional prediction
models attempt to characterize charge separation and electrification in the clouds and to
predict lightning formation using numerical models [9–14]. Other traditional approaches
rely on cloud-resolving models, i.e., convective cloud numerical simulations [15–21]. In [22],
the weather research and forecasting (WRF) model is used to derive electrical potential
energy, which is related to the probability of lightning occurrence. In [23,24], the product
of precipitation and convective available potential energy, CAPE, is used as an input to a
cloud-to-ground lightning prediction. These models suffer from the following two draw-
backs: (1) Numerical weather models require a high amount of computational resources;
this limits the computation speed, especially for nowcasting applications [25,26]. Moreover,
(2) the available data are only used for calibration instead of modeling.
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In order to utilize the historical recorded data, [27] presented a neural network-based
approach to predict lightning using a combination of ground-based and satellite data and
weather forecasting models. In [28] the authors combined numerical weather models
(WRF) with an encoder-decoder model based on convolutional Long short-term memory
(ConvLSTM [29]). In another model from the previous group, the Channel-wise attention
mechanism is used in order to select between the WRF simulation features and obser-
vations [30]. In the encoder, observed data are passed through a convolutional feature
extractor and ConvLSTM. The output of the encoder is fed to the decoder. The decoder
also gets WRF simulations and passes them through an attention layer that selects the
appropriate channels needed for the prediction. Although these models solve the issue
of the efficient usage of data, they still suffer from relying on numerical weather models,
which are computationally expensive for nowcasting purposes. In [31], a combination of
satellite data recorded over Europe and lightning data recorded by ground-based lightning
detection networks are used to train a residual U-Net model for lightning activity predic-
tion [32–35]. In [36], the GLM data in combination with aerosol features are used to train a
Gradient-boosted decision tree model called LightGBM to perform hourly forecasts.

During the past decade, important progress has been made in the field of weather
prediction using machine learning which can be either directly or indirectly transferred
to lightning prediction as lightning and precipitation are shown to be tightly related [37].
Ref. [38] developed a U-net based model for precipitation nowcasting for 1 to 3 h in
the future. The multi-radar multi-sensor (MRMS) system for precipitation measurement
provided the training and testing dataset for their model. The model was shown to
outperform the numerical model used at that time. Refs. [39,40] presented a new model
called MetNet for 8 h prediction which outperforms the model used by the National Oceanic
and Atmospheric Administration (NOAA). In these models, in addition to MRMS, GEOS-16
channels, latitude, longitude, and elevation are also provided to the model. The model uses
a deep convolutional neural network for feature extraction in the spatial domain followed
by a ConvLSTM for temporal encoding. In the end, two axial attention mechanisms are
used for the final precipitation prediction.

In this work, we propose to utilize a residual U-Net structure for lightning nowcasting
and treat it as a video processing problem. We are using as input lightning data observed by
the GOES-16’s Geostationary Lightning Mapper (GLM) sensor, without utilizing numerical
weather models.

Although there is no simple way to compare the physics-based, numerical models to
our ML-based models directly due mainly to the appreciable difference in the lead times,
the following observations can be made: The prediction of lightning using physics-based
numerical models is not necessarily more accurate since convective storms generating
lightning develop rapidly and occur in limited areas. By solving physical equations,
numerical weather forecast tools provide essential planetary-scale predictions several days
in advance. However, to ensure that the processing time does not exceed the prediction
lead time, these computationally intensive tools can only make predictions for lead times
longer than about two hours. Our approach, which is targeted to nowcasting, fills the gap
in this crucial time interval.

2. Materials and Methods

Our method performs lightning activity prediction by considering only recent light-
ning activity through an autoregressive model. In this section, first, we formally introduce
the problem and then we describe the data used in this study. After that, we present the
baselines and proposed models. Finally, we explain the training process.

2.1. Problem Formulation

The desired target for a large area lightning predictor is a 2-D map of the area under
study that expresses the probability of lightning occurrence in each location for the next
hour. In order to reach this, the system needs to be fed with appropriate data based on
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which it could make predictions. In this work, an autoregressive model has been utilized to
capture the inherent patterns of lightning activity and build a baseline for future lightning
prediction research. It has been shown that the model, despite only using lightning activity
data, can achieve reasonable performance for lead times greater than 15 min.

Suppose that the two-dimensional map Xn of size H ×W describes the lightning
activity at time step n, where each pixel can take either the value 1 or the value 0 depending
on whether or not any lightning activity occurred between time steps n− 1 and n. The goal
is to find the same map that describes the lightning activity at time step n + 1. More
formally, we want to find out a mapping F ∈ Rn×H×W → RH×W such that:

Xn+1 = F (X1, . . . , Xn−1, Xn) (1)

Finding the exact function is challenging due to the chaotic behavior of atmospheric
phenomena, lack of contributing atmospheric factors, high dimensional data, discrete-
time sampling, computational limits, and the complex nature of lightning. Therefore,
an approximate function needs to be found, the output of which is a probability map
describing the presence of lightning in each pixel for the next time steps as close as possible
to actual observations. To that end, the following minimization problem needs to be solved:

minimize
F̂∈Rn×H×W→RH×W

L(Yn+1, Xn+1) (2)

Yn+1 = F̂ (X1, . . . , Xn−1, Xn) (3)

where L is a loss function that measures the distance between the prediction Yn+1 and the
target Xn+1. As it will be explained later in detail, the data are divided into time intervals
of 15 min, which require 4 outputs in order to fulfill the one-hour lead-time prediction.
Hence, the final optimization problem can be described as follows:

minimize
F̂∈Rn×H×W→R4×H×W

L(Yn+1, Xn+1, . . . , Yn+4, Xn+4) (4)

[Yn+1, Yn+2, Yn+3, Yn+4] = F̂ (X1, . . . , Xn−1, Xn) (5)

2.2. Data

The input and output of the training/prediction system are lightning occurrence
maps over the Americas which are collected by the Geostationary Lightning Mapper
(GLM) installed on the GOES-16 satellite in a geostationary orbit. The Geostationary
Lightning Mapper is a single-channel, near-infrared optical transient detector that can
detect the momentary changes in an optical scene, indicating the presence of lightning.
GLM measures total lightning activity (in-cloud, cloud-to-cloud and cloud-to-ground)
continuously over the Americas and adjacent ocean regions with a nearly-uniform spatial
resolution of approximately 10 km. The raw data are records of energy, area, latitude,
and longitude of lightning events during 2019. These data are converted to a map of
lightning flashes in the region shown in Figure 1. The figure also shows a snapshot of the
lightning flashes at any arbitrary time in 2019. The data have been discretized in time by
time steps 15 min apart and in space by squares of around 10 km × 10 km, hence forming
a series of two-dimensional matrices of dimension 1086 × 1086 corresponding to spatial
locations where each pixel can take either the value 1 or the value 0 depending on whether
or not any lightning activity occurred in the past 15 min.

In order to feed the data to the system, some adjustments need to be made to the raw
data. First of all, we limited our analysis to a region in the northern part of South America
(covering Brazil) characterized by a relatively high lightning activity compared to the rest
of the continent [41]. Hence, instead of matrices of size 1086 by 1086, the considered region
is described by matrices of size 500 by 500, highlighted with red boundaries in Figure 1.
Also, due to the computational limits, the data were cropped to avoid out-of-memory
problems. Cropping is also needed to increase the training speed. The final cropped area is
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a random region inside the mentioned highlighted area and is different from one sample to
another in order to reduce the statistical dependency of the model on the region. Therefore,
the matrices were further cropped to a size of 256 by 256.

Figure 1. GOES-16 field of view, region of interest, and sample lightning occurrences seen by GLM
installed on GEOS-16, red dots represent the lightning events in an arbitrary time interval of 15 min.

In the next step, two matrix sequences corresponding to the input and the target are
generated. As the input, a sequence of 8 matrices which correspond to 2 h is selected [42].
Based on this sequence, the predictors need to generate lightning probability maps for the
four upcoming time steps, namely one hour lead time. This lead time has been selected as
it has been used in previous works (e.g., [43,44]). An overview of the data preparation is
illustrated in Figure 2 and a sample of input/target sequence pairs of the lightning maps is
shown in Figure 3.

A short discussion on the limitations associated with the used data is in order. First
of all, the spatial resolution is limited to 10 km. Moreover, due to the extremely long
time required to download the data used in the present study (of the order of months),
as well as the time required to convert records of lightning data into images, we were
obliged to limit the data to single year. Converting lightning records into images that are
processable by the model requires several considerations. Each lightning record in the
dataset consists of several parameters, including latitude, longitude, amplitude, and area.
In order to convert all the records into an image, we need to snap each record into a two-
dimensional grid and assign its value to the corresponding pixel. This requires a huge
amount of processing as, for each image, we need to map lightning records that occurred
in the past 15 min to the pixels of the image. Another limitation is the 15-min granularity
of the images. Although the GLM sensor provides lightning data every 20 s, the ABI
(Advanced Baseline Imager) sensor, which provides images at 16 different wavelengths, is
limited to a granularity of 15 min. Since we would like to integrate these two data types
together in our future work, we have adopted the same time resolution to make our future
models comparable to the present study. Finally, we are using zero-one lightning maps
despite the fact that several other attributes of the lightning are also reported by the GLM
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instrument, such as the flash energy and the flash area (which is the area on the Earth’s
surface where lightning flashes are detected and recorded by GLM). This is again due to
the computation limitation of converting several lightning flashes into images. We have
tried to make images considering each lightning flash as a circle with the area mentioned
in the record entry and painting the images with a circle instead of a single pixel based on
the ratio of energy to area. However, this is a computationally expensive process that will
be considered in our future work.

Figure 2. An overview of the data preparation procedure.

Figure 3. Sample data. The first and second rows correspond to input and the third row corresponds
to the target output. Red dots represent the lightning occurrences between time t and t-15 min for
each timestep t.

2.3. Baselines

In order to evaluate the performance of our model and assess its relative effectiveness,
a simple but frequently used baseline called Eulerian persistence is used. The Eulerian
persistence, from now onward referred to as persistence, states that the best prediction for
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the next time frame is a replica of the current situation. Suppose that X1, X2, . . . , Xn are
available. The persistence model predicts lightning activity Y as follows:

Ypred
n+1 = sgn(Xn) (6)

where sgn() is the sign function, equal to one for positive values and equal to zero for zero
input. Since Xn is the last available data point (lightning map), it is used in generating the
persistence model output. For our four-output system, we have:

Ypred
n+1 , Ypred

n+2 , Ypred
n+3 , Ypred

n+4 = sgn(Xn) (7)

A more common baseline for atmospheric phenomena predictions is Lagrangian per-
sistence. In Lagrangian persistence, the prediction for the next state is the current observed
state shifted by the amount of predicted movement [27]. This method uses dense maps
like clouds or precipitation to calculate the movement. However, in Leinonen et al., 2022,
the performance gain from using Lagrangian persistence was negligible compared to simple
Eulerian persistence. Moreover, The calculation of storm movement is not computationally
stable if one only uses sparse lightning maps, as is the case in our study. Hence, in this
paper, we do not use Lagrangian persistence. The Vanilla autoencoder is the second and
more sophisticated baseline used in this work [45–48]. Autoencoders consist of (i) an
encoder that reduces the dimension of the input gradually through its layers and produces
a compressed representation, and (ii) a decoder that uses this compressed representation
and reconstructs the output by gradually expanding it. In the first part, a combination of
convolution and pooling reduces the dimensions of the input while extracting features.
In the second part, transposed convolution is used along with convolution for up-sampling
and recovering the desired output.

In this work, three different models with various numbers of layers have been trained.
One is a baseline (Autoencoder) and the other two are our proposed models (U-Net and
ResUnet). All convolutional layers have a kernel size of 3 × 3 except the last layer, which
generates prediction by combining extracted features from the previous layer using a
1 × 1 convolutional layer. Moreover, Maxpooling 2 × 2 is used for spatial dimension
reduction [49]. A detailed description of the models is presented in Appendix A.

2.4. Proposed Models

Our first attempt towards finding a reasonable lightning prediction model is U-Net [50].
Compared to autoencoder’s architecture, U-Net provides a highway path, a direct connec-
tion without network processing from the input to the output of the corresponding layers,
for the information and forces the model to use the input and learn necessary modifications
in order to generate the output. Since no abruptness is present in the nature of atmospheric
phenomena, an adjustment to the previous state would be sufficient to predict the future
state as opposed to fully regenerating it from scratch, hence the U-Net has an apparent
advantage over autoencoder thanks to the highway path.

The second model used in this work is a residual U-Net. Residual U-Net has the
same general structure as U-Net consisting of a contraction path followed by an expansion
path as well as direct copying of each level’s input to its output. However, each level of
the encoder and decoder is itself a residual sub-network. In other words, the network
is made of blocks with a highway path from their inputs to their outputs in parallel to a
sub-network of alternating convolutional layer, batch normalization, and Relu activation
layer. These blocks are connected together by upsampling and downsampling layers and
copy-through connections [32–35]. Figure 4 shows the base autoencoder architecture as
well as the modifications that lead to U-net, and then ResUnet.
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Figure 4. Schematic representation of the autoencoder, Unet and ResUnet architecture.

In order to compare the results, the same number of layers with the same filter sizes
as autoencoder is used. By doing this, the number of parameters is kept approximately
identical across corresponding networks. Therefore, a fair comparison can be made.

2.5. Loss, Metrics, and Training Process

In the following, the details of the training process including optimization goal (i.e., losses),
evaluation parameters (i.e., metrics), hyperparameters, and codes are explained.

The models are trained with the aim of minimizing the total loss, which is a weighted
sum of the Dice loss and cross-entropy loss. The cross-entropy loss is the common loss
used in classification problems and is defined as:

Lce =
1
N

ΣN
n=1Xn log Yn (8)

where it captures the pixel-wise inconsistency of the prediction and the ground truth,
and by minimizing it, the leaning process can be done more efficiently. The Dice loss
(continuous Dice loss) is defined as in [51]:

Ldice = 1− 2× |Xn ∩Yn|
c|Xn|+ |Yn|

(9)

where | • | is the summation over all the elements of the operand, ∩ is the intersection of
the two sets, which in this case is element-wise product of the elements, and finally:

c =
ΣXi

nYi
n

ΣXi
nsign(Yi

n)
(10)

where the index i identifies each pixel in Xn and Yn. Dice loss is a region-based loss and
can capture the cumulative discrepancy between prediction and ground truth. Therefore,
by minimizing it, the model improves its prediction capability by optimizing the overlap
and alignment of the segmented regions. The total loss is:
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L = βLce + Ldice (11)

where a value of β = 5 has been selected through hyper-parameter tuning. In order to track
the performance of the model during training, precision, recall, and f1-score are tracked.
Since the model predicts four lead times, these values are measured for each lead time
separately. The definition of these values are given as follows:

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

f 1− score =
2 ∗ precision× recall

precision + recall
=

2TP
2TP + FP + FN

(14)

where TP (true positive) is the number of correctly predicted lightnings, FP (false positive)
is the number of false alarms i.e., pixels falsely detected to contain lightning, and FN (false
negative) is the number of missed lightning detections. Precision, recall, and f1-score are all
between 0 and 1, with higher values indicating better performance. Precision is an indicator
of how often the model incorrectly predicts a lightning event, meaning that the predicted
lightning did not happen. On the other hand, recall is an indicator of how often the model
misses predicting a lightning event, meaning the lightning discharge occurred but the
model failed to predict it. In general, there is always a trade-off between a high precision
score and a high recall score. In an extreme case, a model that predicts the occurrence
of lightning for every time slot and position would not miss any lightning and the recall
would be equal to 1. However, there would be excessive amounts of false positives, which
would lead to the degradation of precision. On the other hand, a model that does not
predict any lightning event would have no false positives and the precision would be 1,
but at the cost of increasing false negatives which, in turn, results in a low recall score.
Therefore, the f1-score is used to indicate a balance between precision and recall since it is
the harmonic mean of the two former scores. For the f1-score to have a high value, both
precision and recall should be high. The equivalent metrics used in the IEC-62793 standard
on “Protection against lightning—Thunderstorm warning systems” are POD (probability
of detection) and FAR (false alarm ratio) which are related to recall and precision as follows:

POD =
TP

TP + FN
= recall (15)

FAR =
FP

TP + FP
= 1− precision (16)

One important remark is that the predictor network outputs continuous values between
zero and one indicating the probability of lightning in each pixel. Therefore, a thresholding
process is needed to convert probability values to zero/one so that the mentioned metrics can
be calculated. In Appendix B, the threshold used in this work is presented and justified.

Regarding the training process, the following steps have been performed and, if one
wishes to reproduce the results, these remarks should be taken into account. The data
were divided into three different sets, “train”, “validation”, and “test” with ratios 70%,
15%, and 15%, respectively. The train dataset is used during the feed-forward and back-
propagation steps of training, the validation dataset is used for hyperparameter tuning,
and the test set is used for the final evaluation of the system. The choice of train, valida-
tion, and test datasets is of crucial importance in the development of data-driven models.
The datasets should be independent of each other and in the case of time-series meteorologi-
cal data, they should not overlap. However, these datasets should reflect the same statistical
distribution of the data. Therefore, the training, validation, and test sets were selected
periodically every 5 days (120 h) according to the mentioned ratio from the lightning data
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of the year 2019. The first 3.5 days (84 h) of each cycle are for training, the next 0.75 days
(18 h) for validation, and the last 0.75 days (18 h) for testing. [52] The model is trained
using the ADAM optimizer [53], which uses a checkpointer for tracking the best model
and utilizes the reduce on plateau learning rate scheduler based on the overall f1-score.
The codes are written in Python and the deep learning framework of Keras with Tensorflow
as its backbone is used. The codes and data used in this research are accessible through
the links presented in the Data Availability Statement section.

3. Results

In order to evaluate the performance of the proposed model, two experiments have been
devised. In the first experiment, all models, i.e., Autoencoder (baseline), U-Net, and ResUNet
both proposed models) were trained with three different sets of layer composition (number
of filters/channels) to have a better understanding of the performance dependency on model
size. The different architectures, i.e., Autoencoder, U-Net, and ResUNet, share the same
number of layers and parameters (except the extra parameters needed for each specific
architecture) so that the performance comparison becomes legitimate. The model with the
most number of parameters, which we denote by “-large”, consists of layers that increase the
depth dimension of the processed data by 16, 32, 64, 128, 256, 512, 1024, and 2048 sequentially
until the data reach the model information bottleneck in the center and then decreases the
data dimension in the reverse order to generate the prediction in the output (see Appendix A
and Figure A1 for more details). The model indicated by “-medium” (“-small”), lacks the
layer 2048 (layers 1024 and 2048).

In the first experiment, the last layer of the model is set to output four different im-
ages (predictions), each for one of the four different lead times, i.e., 15, 30, 45, and 60 min.
Therefore, The objective of the model is to predict for these lead times and the training is
done by minimizing the loss function between predicted lightning maps and the ground
truth available from historical data. After the training, the performance of the trained models
are evaluated using the unseen historical data during training. The same is done for the
persistence model, although due to its definition, there is no training involved. The mentioned
metrics (Section 2.5), i.e., f1score (f1), precision (p), and recall (r), which are evaluated for each
lead time by comparing predicted lightning maps and the ground truth, are presented in
Table 1 (indexed by ’−15’, ’−30’, ’−45’, and ’−60’). Some cherry-picked examples are shown
in Figures 5–8. As a first observation, it can be seen from Figures 5–8 that the autoencoder
model tends to predict contiguous regions while U-Net and ResUNet can better capture
the sparsity of lightning and predict maps with a lower false positive rate.

Table 1. Multi output models’ comparison.

Model Name Parameters f1-15 p-15 r-15 f1-30 p-30 r-30 f1-45 p-45 r-45 f1-60 p-60 r-60

persistence 0 0.75 0.75 0.75 0.62 0.62 0.62 0.52 0.52 0.52 0.43 0.43 0.43

Autoencoder-small 7M 0.52 0.42 0.67 0.50 0.42 0.64 0.48 0.41 0.61 0.46 0.38 0.58

Autoencoder-medium 28M 0.40 0.32 0.57 0.40 0.32 0.55 0.39 0.31 0.54 0.38 0.30 0.53

Autoencoder-large 113M 0.30 0.22 0.46 0.29 0.22 0.46 0.29 0.22 0.45 0.29 0.22 0.44

U-Net-small 8M 0.69 0.59 0.85 0.64 0.55 0.76 0.59 0.52 0.69 0.55 0.48 0.63

U-Net-medium 31M 0.69 0.59 0.84 0.64 0.55 0.76 0.59 0.52 0.69 0.54 0.48 0.64

U-Net-large 126M 0.69 0.59 0.84 0.64 0.55 0.76 0.59 0.52 0.69 0.55 0.49 0.63

ResUNet-small 8M 0.70 0.59 0.85 0.64 0.55 0.77 0.59 0.52 0.71 0.55 0.48 0.64

ResUNet-medium 33M 0.70 0.59 0.85 0.64 0.55 0.78 0.59 0.51 0.71 0.55 0.48 0.65

ResUNet-large 133M 0.70 0.59 0.86 0.64 0.55 0.78 0.59 0.51 0.70 0.55 0.48 0.65
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Figure 5. Prediction capability of the models, From top to bottom, (1) persistence, (2) Auto Encoder,
(3) U-Net, and (4) ResUNet. Green dots represent the correctly predicted lightning, i.e., true positives.
Yellow dots represent regions where the model falsely predicted a lightning occurrence, i.e., false
positives. Finally, red dots show the occurred lightnings missed by prediction, i.e., false negatives.

Based on the scores presented in Table 1, one can see that the performance of the
proposed models, i.e., U-Net and ResUNet, is almost independent of the model size and it
appears that the performance has been saturated. Considering the amount of computation
and memory usage required for operating medium and large models and the fact that
there is no significant performance gain by their deployment, the small size model is the
most practical solution for our problem. Moreover, by comparing the U-Net and ResUnet
models, one can see that there is a small performance gain in using ResUnets. Therefore,
the ResUnet-small has been chosen as the best working model for lightning prediction.
From now on, we only consider the small models in the comparisons.

In order to better visualize the values presented in Table 1, in Figure 9, the metrics
are presented against lead time for four models, namely: persistence, autoencoder-small,
U-Net small, and ResUnet-small. Examining Table 1 and Figure 9, three observations can be
made. First of all, as expected, the quality of prediction drops as one looks further into the
future. The same can be seen for lightning prediction as the metrics show smaller values
for larger lead times.
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Figure 6. Sample prediction comparison. From top to bottom, (1) persistence, (2) Auto Encoder,
(3) U-Net, and (4) ResUNet. Green dots represent the correctly predicted lightning, i.e., true positive.
Yellow dots represent regions where model falsely predicted a lightning occurrence, i.e., false positive.
Finally, red dots show the occurred lightnings missed by prediction, i.e., false negative.

Furthermore, it can be seen that for a lead time of 15 min, persistence works quite well
and outperforms other models but falls behind for further lead times. On the other hand,
the proposed residual U-Net and U-Net models suffer less degradation and maintain better
performance as the lead time increases, overcoming the persistence for larger lead times.
These models outperform persistence and autoencoders by about 20% depending on the
lead time.

As mentioned earlier, the models consistently predict smaller lead times with higher
f1 scores. Although we did not present any analysis of prediction performance for periods
longer than one hour, we expect that the performance will decrease for these longer lead
times as well due to the model limitations, absence of parameters involved in lightning
initiation, and of course, the chaotic characteristics of the atmosphere. In the second ex-
periment, the models were also trained on the same dataset but the objective was set to
only predict one of the four lead times, 15, 30, 45, or 60 min. Each model has the same
structure of layers except the last convolutional layer, which produces one output channel
corresponding to the selected lead time as opposed to four output channels for all four lead
times simultaneously. In addition to evaluating the model prediction capacity, it is also
possible to verify whether predicting all the frames simultaneously is beneficial for learning
the thundercloud and lightning activity movement pattern. The results are shown in Table 2
for four different lead times corresponding to “ResUNet-small”. By comparing the corre-
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sponding values of the two tables, the same performance can be observed, contradicting
the limited network capacity hypothesis. Therefore, this degradation in performance can be
attributed to the complex atmospheric behavior and hopefully can be addressed, at least to
some extent, by deploying more complex models with fundamentally different structures
and/or using more inclusive datasets.

Figure 7. Sample prediction comparison. From top to bottom, (1) persistence, (2) Auto Encoder,
(3) U-Net, and (4) ResUNet. Green dots represent the correctly predicted lightning, i.e., true positives.
Yellow dots represent regions where model falsely predicted a lightning occurrence, i.e., false positives.
Finally, red dots show the occurred lightnings missed by prediction, i.e., false negatives.

This second experiment can be interpreted from another angle. As we observe no per-
formance gain by using a separate predictor for each lead time, we can use the architecture
in the first experiment with a four-channel output, one for each lead time. By sharing the
base encoder/decoder and using a four-channel output only in the last layer, the memory
usage and computation cost can be reduced by a factor of four. in other words, the sec-
ond experiment costs four-folded compared to the first one since it runs almost the same
network for each lead time individually.

By examining the results of the two experiments, an efficient lightning predictor using
a mixture of persistence for lead times of 15 min or less, and ResUnet for larger lead times
could be proposed.
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Figure 8. Sample prediction comparison. From top to bottom, (1) persistence, (2) Auto Encoder,
(3) U-Net, and (4) ResUNet. Green dots represent the correctly predicted lightning, i.e., true positives.
Yellow dots represent regions where model falsely predicted a lightning occurrence, i.e., false positives.
Finally, red dots show the occurred lightnings missed by prediction, i.e., false negatives.

Due to the inherent structure of our proposed method, a direct comparison of its
performance is not possible with the ones available in the literature. These include the fact
that we only utilize lightning data for prediction, we train our model on significantly less
amount of data, and the fact that there is a different temporal and spatial granularity for
each model. However, by considering the work of Tippett et al. [23], Leinonen et al. [27],
and Song et al. [36], we can see that our metrics, namely precision (POD) and recall (1-FAR)
lies in the same range as the ones presented by these papers. This is an advantage point for
our model as it uses less data for training.

Table 2. Single output models’ comparison.

Model Name Parameters Loss Precision Recall f1-15 f1-30 f1-45 f1-60

persistence 0 1.33 0.57 0.58 0.74 0.62 0.51 0.42

ResUnet 15 min 8M 0.68 0.65 0.79 0.72 - - -

ResUnet 30 min 8M 0.77 0.58 0.73 - 0.65 - -

ResUnet 45 min 8M 0.86 0.53 0.67 - - 0.59 -

ResUnet 60 min 8M 0.93 0.46 0.66 - - - 0.54
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Figure 9. Recall, Precision, and f1score vs. lead time for different models (small version).

4. Conclusions

In this work, we presented an autoregressive approach based on deep neural networks
to nowcast lightning for lead times of up to one hour in 15-minutes increments. The model
uses solely lightning data as an input parameter and has similar performance in terms of
precision (POD) and recall (1-FAR) compared to existing models in the literature. However,
the advantage of our model is that it uses a significantly lower amount of data for its
training. We have seen that by using U-Net and ResUNet, we can improve the lightning
prediction for lead times greater than 15 min with respect to the persistence model. More
precisely, we can see an improvement of 0.02 to 0.12 in the f1 score of different channels, see
Table 1. It was also found that the persistence model’s performance was comparable to and
even outperforming U-Net and ResUNet for small lead times, namely 15 min. Furthermore,
we observed that the prediction capability saturates as we increase the model’s size. This
encourages us to use smaller models to reduce memory usage and computation costs.
Moreover, we showed that the computation cost can be reduced by predicting all lead
times simultaneously without suffering from performance loss. Therefore, as an improved
baseline for future lightning activity prediction, we propose a combination of ResUNet-
small for lead times greater than 15 min and the persistence model otherwise.

To summarize and conclude, in this work, we have used the recent lightning activity
data to predict the future lightning activity by treating the problem as an autoregressive
model. Training a machine learning-based model requires huge amounts of data and,
for this paper, we have used only one year of data. In our future work, we are planning
to extend the study using more data spanned over several years. Moreover, other net-
work architectures should be considered, including recurrent models, diffusion models,
and transformer-based models like ViT, to deal with the problem of lightning nowcasting.
So far, we have analyzed the satellite lightning data over the American continent, specifi-
cally the northern part of South America. However, our model is portable to other regions
of the Earth. In our future work, we will collect data from satellites over Europe/Africa
and East Asia, and we will investigate the model’s performance for these regions as well.
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Abbreviations
The following abbreviations are used in this manuscript:

WRF Weather research and forecasting
CAPE Convective available potential energy
LSTM Long short-term memory
ConvLSTM Convolutional LSTM
ResUNet Residual U-Net
MRMS multi-radar multi-sensor
NOAA National Oceanic and Atmospheric Administration
GLM Geostationary Lightning Mapper
ABI Advanced Baseline Imager
GOES Geostationary Operational Environmental Satellites
TP True positive
FP False positive
FN False negative
POD Probability of detection
FAR False alarm ratio

Appendix A. Models’ Architecture

In this section, the architecture of Residual Unet, used in this paper, is described.
Moreover, the architecture of autoencoder and U-Net are also briefly described as they are
simplified versions of ResUnet. The schematic architecture of ResUNet-small is shown
in Figure A1. (The network structure is generated with the VisualKeras library [57]).
ResUNet consists of many building blocks which are described as follows. The first
layer that acts on the input image is a convolution layer with a kernel size of 3 × 3,
increasing the number of channels in the output of the layer. The output is passed through
a batch normalization layer helping to keep the values in the same range for numerical
stability, and also ensuring proper and efficient backpropagation of the loss. Then, a similar
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convolution layer, batch normalization layer, and convolution layer are applied with the
only difference that convolution layers maintain the same number of output channels.
In order to improve the training efficiency and backpropagation of the gradient, there are
short skip connections (residual connections) from the output of the first convolution layer
to the output of the last convolution layer, where the output and skip connections are added
together. These short skip connections utilize 1 × 1 convolutions to match the number of
channels from the input to the output. Then, a batch normalization layer followed by a
max-pooling layer reduces the spatial dimensions of the output. This block, i.e., convolution
layers, batch normalization layers, and max-pooling layer, forms an encoder block and
is cascaded several times to generate a latent space representation of the image, which
has more channels compared to the initial image and has less spatial resolution. These
consecutive layers increase the number of channels from 8 to 64, 128, 256, 512, and 1024
sequentially while reducing the spatial resolution by a factor of 2 from one block to the
next. The intention is to summarize the image in a compressed latent variable to avoid
overfitting. After summarizing the input image into the latent space, a series of up-scaling
blocks are applied sequentially to the original image to restore the spatial resolution. Each
upscaling block consists of a 2D upscaling layer to counter the effect of max-pooling applied
in the encoder part. In order to learn more efficiently and keep the initial structure of the
data, a series of long skip connections are utilized that connect the output of each encoder
block to the input of each decoder block. The long skip connections bring the output of
the encoder blocks into the input of the decoder where they are concatenated with the
output of the upscaling layer. The concatenated output is followed by three sets of batch
normalization and convolution layers where they reduce the number of output channels
to keep the density of information consistent. There are again short skip connections
from the output of the first batch normalization layer to the output of the last convolution
layer. This combination of upscaling, concatenation, batch normalization, and convolution
layers along with the short skip connection form the decoder block. These decoder blocks
sequentially change the number of channels in reversed order compared to the encoder,
namely 1024, 512, 256, 128, and 64. Finally, at the output of the last convolution layer
(output with 64 channels), another convolution layer with a kernel size of 1 × 1 is applied
which will perform the lightning map generation. The U-Net and autoencoder models
have a similar structure and number of layers. The only difference for U-Net is the absence
of short skip connections between the input and the output of each encoder or decoder
block. For the autoencoder, both short skip connections and long skip connections are
absent. Therefore, there is no direct connection from input to output to facilitate the flow of
gradients, and that is the reason why the autoencoder is not trained well on the data.

Figure A1. ResUNet. For visualization purposes, this is a smaller version (less layers) compared to
the actual models used in this work.
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Appendix B. Optimal Threshold

As the output of the presented models are probability of lightning (between zero and
one after applying a sigmoid function), a thresholding process is needed to carry out the
generation of final prediction, i.e., assuming values above the threshold to represent a lightning
occurrence. All of the previous figures and results are generated by thresholding the output
of the model with a value of “0.1”. This value has been selected using the following approach.
The threshold was varied from zero to one and the corresponding precision, recall, and f1
score were recorded. Figure A2 reflects the change in f1 score for each individual time frame
with respect to the threshold value. In Figure A3, the precision and recall corresponding to the
same threshold are drawn against each other. As in can be seen from both figures, the choice
of “0.1” for the threshold results in the highest value for the f1 score.

Furthermore, in these curves one can observe that the persistence model curve is
higher than the rest in the 15 min lead time, but drops below them for the rest of the lead
times. This is the same behavior mentioned in Tables 1 and 2.

Figure A2. f1 score vs. detection threshold.

Figure A3. Precision vs. recall curve made by changing the detection threshold.
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