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Abstract: Radar reflectivity plays a crucial role in detecting heavy rainfall and is an important tool for
meteorological analysis. However, the coverage of a single radar is limited, leading to the use of satel-
lite data as a complementary source. Consequently, how to bridge the gap between radar and satellite
data has become a growing research focus. In this paper, we present MAFormer, a novel model for
reconstructing radar reflectivity using satellite data within the Transformer framework. MAFormer
consists of two modules: the Axial Local Attention Module and the Mixup Global Attention Module,
which extract both local saliency and global similarity. Quantitative and qualitative experiments
demonstrate the effectiveness of our proposed method. Specifically, the MAFormer model exhibits
notable advancements when compared to state-of-the-art deep learning techniques. It demonstrates
an improvement ranging from 0.01 to 0.05 in terms of the Heidke skill score, indicating its superior
performance. Additionally, MAFormer effectively mitigates false alarm rates by approximately
0.016 to 0.04, which further highlights its enhanced accuracy and reliability.

Keywords: radar reconstruction; satellite; transformer; axial local attention; mixup global attention

1. Introduction

Radar reflectivity is a critical factor in weather nowcasting that serves as a reliable
indicator for severe weather conditions. With its ability to offer detailed descriptions of
local areas at a resolution of approximately 1 km, radar reflectivity plays a significant role
in assessing and predicting weather patterns.

However, the effectiveness of radar is hindered by its limited coverage and suscep-
tibility to obstruction by mountains and other physical barriers. This limitation poses a
challenge in obtaining comprehensive radar reflectivity data across larger regions. To over-
come this issue, satellite data can be employed as a supplementary tool to radar observa-
tions. Satellites provide a broader view of the Earth’s atmosphere, allowing for a global
assessment of weather conditions but at a coarser resolution of around 4 km.

In recent years, deep learning techniques have gained significant attention in the field
of satellite data processing and meteorology, offering innovative solutions to complex
weather prediction and analysis tasks. Convolutional neural networks (CNNs) have been
widely employed in weather forecasting tasks, primarily for the analysis of meteorological
images and satellite data. CNNs excel at capturing spatial dependencies in data, making
them suitable for tasks such as meteorological forecasting [1], spatial downscaling [2,3],
weather classification [4,5], and cloud classification [6]. Han et al. [7] transform meteo-
rological nowcasting into two stages, i.e., precipitation level classification and accurate
precipitation regression. Moreover, cross-channel 3D convolution is employed to fuse raw
3D Doppler radar data and to extract effective multi-source information automatically.
Shi et al. exploit ConvLSTM [8] and TrajGRU [9] for precipitation nowcasitng, which has
been the baseline among many spatial-temporal related tasks. Analogously, Yu et al. [10]
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propose ATMConvGRU, a cascaded network that distinguishes from the previous paral-
leled architecture, with more deep nonlinear feature extraction. Though effective, training
feasible forecasting models is relatively difficult due to their recurrent mechanism and
their inner architecture. To solve this key problem, Ayzel et al. propose Dozhdya.Net [11],
which is an all convolutional neural network for radar-based precipitation nowcasting.
Training such a network is efficient and experimental results show that it is crucial for early
warning of hazardous events. Agrawal et al. [12] treat forecasting as an image-to-image
translation problem and leverage the power of the ubiquitous UNet [13] architecture. Quan-
tities of experiments demonstrate that this method outperforms commonly used models
such as optical flow model, persistence model, and NOAA numerical prediction. Similar
contributions can also be found in [14–16]. Klocek et al. [17] achieve 6 h precipitation
nowcasting under the encoder-forecaster LSTM framework with radar mosaic sequences
as input. The recently proposed MetNet [18] has also shown dramatic superiority com-
pared with numerical weather prediction. Basically, MetNet provides a framework and a
promising direction up to 7 to 8 h forecasting. One main advantage of MetNet originates
form its integrating of multi-source information such as satellite data, radar data, eleva-
tion, longitude, latitude, and time. Compared with typical ConvLSTM, MetNet adds an
extra feature extraction module to explore more abstract spatial–temporal representation.
The advanced version MetNet-2 [19] promotes forecasting time range from 8 h to 12 h
with a larger receptive field. The former introduced deep learning methods use radar
to directly predict future rain rates, free of physical constraints, while they accurately
predict low-intensity rainfall, their operational utility is limited because of their lacking of
constraints producing blurry nowcasts at longer lead times, yielding poor performance on
rarer medium-to-heavy rain events. To address these challenges, Ravuri et al. [20] present a
deep generative model for the probabilistic nowcasting of precipitation. On the other hand,
Kuang et al. [21] impose the meteorological motion equation into TransUNet [22] for tem-
perature forecasting, which is supposed to be a further integration of meteorological prior
and machine learning methods. Benefiting from these achievements, it can be concluded
that another promising direction for meteorological downscaling should be data-driven
machine learning techniques.

When addressing the issue of radar reflectivity and satellite data gaps in satellite
data-based radar reconstruction, Duan et al. [23] extended the UNet method for recon-
structing radar reflectivity from Himawari-8. It is a weather satellite developed by the
Japan Aerospace Exploration Agency (JAXA) and manufactured by Mitsubishi Electric
Corporation. The satellite was launched from the Tanegashima Space Center in Kagoshima
Prefecture, Japan, and is operated from the Japan Meteorological Agency (JMA) headquar-
ters in Tokyo, Japan.They made adjustments, such as employing one convolution operation
instead of two in each convolution block to reduce the risk of overfitting. Additionally,
they removed skip connections as their findings indicated that the high-resolution spatial
information they provided was not always beneficial. In a similar vein, Zhu et al. [24]
aimed to extract deep network representations by reconstructing radar reflectivity data
from Numerical Weather Prediction (NWP) simulations and satellite observations. They
subsequently examined the relationship between these representations and physical quan-
tities like NWP variables and satellite images. Their research highlighted the potential of
data-driven deep learning models in bridging representation gaps across multiple scales
and data sources. They also utilized Himawari-8 for radar reconstruction. Conversely,
Yang et al. [25] proposed a novel deep learning technology based on the attention mech-
anism to reconstruct radar reflectivity using observations from China’s new-generation
geostationary meteorological satellite, FengYun-4A. To account for complex surface effects,
they incorporated topography data into their model.

While significant progress has been made in using existing methods for radar recon-
struction, most of these methods, such as UNet, were originally developed for natural or
medical image segmentation and may not be applicable for radar reconstruction. Addition-
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ally, the unique properties of the atmosphere pose significant challenges for satellite-based
radar reconstruction, further complicating the issue.

Considering the property of atmosphere, two key challenges remain in radar recon-
struction. Firstly, the atmosphere is an integral, highly-correlated system, with a singular
change affecting all aspects globally. Secondly, extreme local weather events require
specialized handling. However, existing methods frequently overlook these challenges.
To overcome these challenges and meet the need for improving radar reflectivity recon-
struction, we introduce a novel satellite-based method. The contributions of this paper can
be summarized as follows:

1. This paper proposes a new transformer network, called MAFormer (Mixup-global
with Axial-local attention Transformer), which includes two modules: the Mixup
Global Attention Module (MGAM) and the Axial Local Attention Module (ALAM).

2. The MGAM extracts large-scale global-similarity features, while the ALAM is de-
signed for small-scale local-singularity feature extraction. MAFormer, when combined
with the vanilla transformer model, can accurately reconstruct radar reflectivity from
single satellite data.

3. Quantitative and qualitative experiments were conducted, comparing the MAFormer
model against state-of-the-art methods. The results of these experiments demonstrate
the superiority of the proposed approach. Overall, this method offers a promising
solution to the challenges of radar reconstruction and holds significant potential for
further advancements in satellite-based data processing.

2. Materials

The study area has good coverage of 20.51◦N–24.50◦N, 111.50◦ E–115.49◦ E (see Figure 1).
Specifically, the radar and satellite data are collected from 8 July 2022 to 20 September 2023 for
research purposes. The satellite data has a high spatial temporal frequency with a resolution
of 1 km and a time interval of 10 min, while the radar data has a resolution of 1 km and a time
interval of 6 min.

Figure 1. An overview of the study area, denoted by the blue box. (The dashed lines represent the
corresponding latitude and longitude).

However, we should note that it is not the case that all of these collected data useful.
For example, there are many situations where the occupied region with radar reflectivity is
rather small, which is useless and somewhat detrimental for model training. As a result,
data selection is essential. In this paper, we sort all collected samples in descending order
according to the proportion of the study area occupied by regions with radar reflectivity
greater than 10 dbz. Then, we select the top 50% samples (the left part of Figure 2a) in this
order for modeling. See the following Figure 2a for details.

Casting on the former illustrations, we select data according to the occupied region
portion instead of a hard reflectivity threshold. Consequently, there is no such a determinis-
tic reflectivity range. Additionally, an intuitive comparison between the data distribution
before and after data selection is presented in Figure 2b. There is merely little difference
between them. As a result, this selection strategy almost has no effects on the results.



Atmosphere 2023, 14, 1723 4 of 16

0 10,000 20,000 30,000 40,000 50,000 60,000
number of samples

(a)

0.0

0.2

0.4

0.6

0.8

pr
op

or
tio

n
[0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, inf)

threshold
(b)

0.0

0.1

0.2

0.3

0.4

0.5

pr
op

or
tio

n

Before
After

Figure 2. Explanation about data selection. (a) Data selection strategy. The read dashed line represents
50% number of samples. (b) Distributions before and after data selection.

During the preprocessing, the satellite and radar data are aligned temporally to
account for the temporal difference between them, resulting in numerous satellite–radar
pairs. The data from 8 July 2022 to 30 June 2023 are used for model training and validation,
while the data from 1 July 2023 to 20 September 2023 are reserved for model evaluation.

The satellite data in this study follows the approach described in [26], using Himawari-8.
However, starting from 13 December 2022, Himawari-8 was replaced by Himawari-9. There-
fore, Himawari-9 data are also collected in this study. Considering the high similarity between
these two satellites, it is reasonable to integrate their data. This combination of Himawari-8
and Himawari-9 also helps to validate the generalization of the proposed model.

Following [26], out of the 16 channels available, only 7 channels (C8, C9, C10, C11,
C13, C14, and C16) are selected for analysis. The rationale behind the selection of these
channels has been addressed in [26]. As for radar, the quality-controlled radar reflectivity
data used in this study are provided by the China Meteorological Administration.

3. Methods
3.1. Preliminary

The transformer [27] architecture has emerged as a revolutionary approach in various
fields of natural language processing and computer vision, and it has also shown promising
results among meteorological applications. It was first designed to overcome the limitations
of recurrent neural networks in handling long-range dependencies effectively. Specifically,
transformer relies heavily on a self-attention mechanism and operates by processing all
inputs simultaneously, which enables parallelization and efficient computation.

At the core of the transformer architecture lies the self-attention mechanism. It allows
the model to weigh the importance of different positions or elements within the input
feature space. The self-attention mechanism computes a weighted sum of values based
on their relevance to each other. It attends to different positions in the input sequence by
computing attention scores, which are ultimately used to obtain context-aware represen-
tations. The self-attention is performed by computing akin of correlation factors among
three tokens, i.e., query, value and key. Specifically, based on a given query, as well as
keys and values, the output of the attention module is calculated by a weighted sum of all
values, where the weight assigned to each value is determined by the correlation between
corresponding key and the query. Formally, a set of queries, keys, and values are packed
together into matrices Q, K, and V to compute the attention weights according to the
following equation:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
V) (1)

where Q, K ∈ RN×dk , V ∈ RN×dv are all vectors that denote queries, keys, and values,
respectively, N represents the number of features, dk and dv are the feature dimensions of
each individual query/key and value.

Apart from self attention, another four main components of transformer are followings:
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(a) Encoder–Decoder: The transformer architecture is composed of an encoder and a
decoder. The encoder processes the input feature, generating a series of representa-
tions capturing the contextual information of each element. The decoder takes the
encoder’s output and generates the reconstructed output.

(b) Multi-Head Attention: The self-attention mechanism is further enhanced by using
multiple heads. Each head learns different relationships between positions in the input
sequence, allowing the model to capture various forms of dependencies. The outputs
of multiple attention heads are concatenated and linearly transformed to obtain the
final representations.

(c) Feed-Forward Neural Networks: Transformer models include feed-forward neural
networks (FFNs) to process the attention-based representations. FFNs consist of
multiple layers of fully connected networks, enabling the model to model complex
non-linear relationships.

(d) Residual Connections and Layer Normalization: To mitigate the vanishing gradient
problem and improve gradient flow, residual connections are employed. Residual
connections provide skip connections, allowing the model to bypass certain layers
and retain valuable information. Layer normalization is applied after each sub-layer
to stabilize the training process.

3.2. Overview

The proposed MAFormer model consists of two main parts: a Swin-transformer [28]
based multi-level encoder and a simple convolution-based decoder. The pipeline op-
erates by extracting multi-scale features from the available satellite data, denoted as
X ∈ RH×W×C. Here, H and W denote the height and width of the study area, where
H and W correspond to the latitude and the longitude, respectively. C represents the
number of satellite channels for modeling. These features are then integrated using a
multi-layer perception network for radar reconstruction. To restore the original spatial size,
an efficient bilinear upsampling strategy is employed. More details on the feature size of
multiple scales can be found in Figure 3.

MAFormer builds upon SwinTransformer by introducing two key components that
differentiate it from other deep learning-based radar reconstruction methods. Firstly,
to capture the local properties of weather processes, an axial attention mechanism is
embedded into the typical transformer block. Secondly, to extract global long-range spatial
similarity, the mixup attention module is introduced. This allows MAFormer to incorporate
global information through the Mixup Global Attention Module (MGAM) while also
extracting local characteristics using the Axial Local Attention Module (ALAM). These
modules enable satellite-based radar reflectivity reconstruction under the transformer
framework, thus giving rise to the name “MAFormer”.
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Figure 3. An overview of the proposed MAFormer for satellite based radar reflectivity reconstruction.
Basically, MAFormer consists of a transformer-based encoder for satellite feature extraction and a
MLP-based decoder for radar reconstruction. Different modules are distinguished by colors with
description, while the boxes without description denotes middle level features of MAFormer.
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3.3. Mixup Global Attention Module

As illustrated in Section 3.1, one key component of transformer is the multi-head
self-attention, which extracts long-range spatial dependency. In order to obtain multi-scale
features in a cascaded manner as convolutional networks, SwinTransformer introduces
the concept of Shift Window. This operation in turns hinders model from utilizing global
information. Nevertheless, the weather system is an integrated union that the global effects
must be taken into consideration. To resolve this problem, the Mixup Global Attention
Module is introduced.

The mixup operation is first introduced in SegFormer [29], which focuses on semantic
segmentation. Here, we generalize it to global feature extraction for satellite data. Specifi-
cally, mixup is embedded to the feedforward module using a 3× 3 depth-wise convolution,
and it can be formulated mathematically as

Xout = MLP(GELU(Conv3×3(MLP(Xin)))) + Xin (2)

where Xin is the feature from efficient self-attention. Here, MLP, GELU, and Conv denote
multi-layer perception, GaussianError, Linear Units and convolutional layer, respectively.

After that, the Mixup Global Attention Module (MGAM) incorporates efficient self-
attention and layer normalization via residual connection as

Xmid = ESA(LN(Xin)) + Xin

Xout = MixupFFN(LN(Xmid)) + Xmid
(3)

where ESA and LN represent Efficient Self Attention and Layer Normalization, respectively.
Through the former illustration, Mixup attention first extracts the high-level features

using convolution and then mix these features globally via MLP. Consequently, it can depict
global features which is needed for meteorological applications. Then, we call it the Mixup
Global Attention Module. Consequently, a detailed illustration can be found in Figure 4.

Mix-FFN

LayerNorm

Efficient
Self-Attn

LayerNorm

Mixup Global Attention Module

Figure 4. Illustration of the Mixup Global Attention Module (MGAM). MGAM consists of an efficient
self-attention and a depth-wise convolution based feedforward operation. Both of these two parts are
preprocessed through a layernorm. The cross sign in circle denotes element-wise addition.

3.4. Axial Local Attention Module

MGAM exploits the global relevance while neglects local specification. Nevertheless,
one key difference between meteorological and other researches lies in the locality. To ex-
plore this property, this subsection proposes an Axial Local Attention Module (ALAM).
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The idea behind axial attention [30] is to perform attention separately along each axis or
dimension of the input feature. This means that attention is applied horizontally along
one axis (e.g., the row or latitude axis in meteorological data) and vertically along another
axis (e.g., the column or longitude). By decomposing the attention mechanism in this way,
the computational complexity is reduced and the effectiveness within each axis. Similarly
to a typical attention block, the layer normalization and residual connection are also em-
ployed. To be specific, ALAM first extracts the column-wise attention with feedforward
operation, and then followed by a row-wise one. Before each operation, the widely used
layer normalization is employed and a residual connection is added between every two
layer normalization. Mathematically, ALAM can be defined as

Xmid = CWA(LN(Xin)) + Xin

Xout = RWA(LN(Xmid)) + Xmid
(4)

where CWA and RWA denote Column-wise Window Attention and Row-wise Window
Attention, respectively. A more intuitive illustration can also be found in Figure 5.

FFN

LN

Colum
W-MSA

LN

FFN

LN

Row
W-MSA

LN

Axial Local Attention Module

Figure 5. Illustration of the proposed Axial Local Attention Module (ALAM). ALAM consists of two
cascaded axial attention module within each shift window.

3.5. Method Analysis

In order to fully exploit the multi-scale features of meteorological satellite data,
MAFormer incorporates both a MGAM module and a ALAM for global and local fea-
ture extraction. Different from most of the existing works [10], in which the axial attention
is used for global feature extraction and convolution for local, MAFormer employs axial
attention within each window, i.e., local areas, for local feature extraction, and mixup ac-
companied with MLP for global extraction. We should note that these two key differences
distinguish our method from other contributions. And the experimental results in the
following Section 4 also demonstrates the superiority of our MAFormer method.

4. Results
4.1. Experiments Setting

For fair comparison, all of the experimental setting in this section are fixed. Specifically,
the optimizer is set to be AdamW [31] with an initial learning rate 10−4 and use a Poly
learning rate scheduler with 1500 steps of linear warm-up start by 10−6. AdamW is a
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widely used optimizer for model training. It improves Adam [32] with decoupled weight
decay, leading to more generalized performance. Training stops after 80,000 iterations and
the batch size is set to be 16.

4.2. Metrics

Following the setting of [23], this paper also employs two types of evaluation metrics,
i.e., the classification score and the regression score. Specifically, the classification score
includes false alarm rate (FAR), probability of detection (POD), critical success index (CSI),
and Heidke skill score (HSS).

To be specific, suppose the confusion matrix for binary classification is defined as
Table 1, then the former metrics can be defined as

FAR =
FP

TP + FN

POD =
TP

FP + TP

CSI =
TP

TP + FP + FN

HSS =
2 ∗ (TP ∗ TN − FN ∗ FP)

FN ∗ 2 + FP ∗ 2 + 2 ∗ TP ∗ TN + (FN + FP) ∗ (TP + TN)

(5)

Note that for obtaining the binary confusion matrix, a threshold must be predefined.
Without specific illustration, the threshold is set to be 30 dBZ, which is a widely used
threshold to distinguish heavy rain.

Table 1. Confusion matrix definition for classification.

Ground Truth

1 0

Prediction
1 True Positive (TP) False Positive (FP)
0 False Negative (FN) True Negative (TN)

While for regression score, the typical root mean squared error (RMSE), mean absolute
error (MAE), and the widely used peak signal noise ratio (PSNR), structure similarity
(SSIM), are measured as

RMSE =

√√√√ 1
N

N

∑
i=1

(Yp −Yt)2

MAE =
1
N

N

∑
i=1
|Yp −Yt|

PSNR = 10 log10(
MAX(Yt)

MSE
)

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

(6)

For FAR, RMAE, and MAE, the smaller the better, while for CSI, POD, HSS, PSNR,
and SSIM, the larger the better.

4.3. Quantitative Results

This subsection first presents a quantitative comparison between the proposed MAFormer
and other prevalent methods such as UNet [13], DeepLab [33], SegFormer [29], and Swin-
Transformer [28]. The results are presented in Table 2. As the former illustrated, the thresh-
old is set to be 30dBZ for classification metrics such as FAR, CSI, POD, and HSS.
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Table 2 provides interesting insights into the performance of various methods used
for meteorological analysis. The results show that transformer-based methods, such as
SegFormer, SwinTransformer, and the proposed MAFormer, outperformed convolution-
based methods like DeepLab and UNet. This is because transformer-based methods tend to
focus more on global properties, which is a key indicator for large-scale weather processes.

Table 2. Comparison between the proposed MAFormer and other state-of-the-art methods. cls. and
reg. denotes classification score and regression score, respectively. The bold values represent the best,
while the blue values denote the second best.

Method

cls. reg.

FAR CSI POD HSS RMSE MAE PSNR SSIM

DeepLab 0.345 0.324 0.390 0.401 7.491 9.658 28.433 0.502
UNet 0.343 0.344 0.419 0.421 7.314 9.477 28.597 0.555

SegFormer 0.367 0.371 0.473 0.441 7.278 9.442 28.629 0.498
Swin 0.345 0.357 0.439 0.434 7.171 9.288 28.773 0.540

MAFormer
(ours) 0.327 0.369 0.450 0.451 7.110 9.231 28.826 0.604

Furthermore, among the transformer-based methods, MAFormer stands out by per-
forming better than SegFormer and SwinTransformer in most cases. This could be at-
tributed to the fact that in addition to focusing on global indicators, MAFormer also
concentrates on local small-scale characteristics. By incorporating both global and local
features, MAFormer can potentially capture a wider range of weather phenomena, leading
to more accurate predictions.

The success of transformer-based methods can be attributed to their ability to model
long-range dependencies and capture global patterns. Such capabilities are especially
useful in the field of weather forecasting where multiple factors and processes interact with
one another over large spatial and temporal scales. The use of transformers enables the
models to effectively incorporate such interactions and dependencies in their predictions.

It is important to note that the success of MAFormer is not solely due to its focus on
both global and local features. The model architecture and design also play a crucial role
in achieving superior performance. For example, MAFormer uses attention mechanisms
that allow the model to dynamically assign different weights to different parts of the input
sequence, boosting the model’s ability to capture important features.

4.4. Qualitative Results

Except for quantitative comparison, this subsection also presents qualitative results
for intuitive comparison.

Figure 6 first presents the inputs satellite data for different channels and also the
groundtruth/reconstructed radar reflectivity. According to the physical property and dis-
play format, we split the input satellite channels into three parts. The first part includes B08,
B09, and B10; the second part includes B11, B13, and B14; and the third part includes only
B16. Here, Bk denotes the k-th channel of satellite. For example, B08 is the 8-th channel, B11
represents the 11-th channel, and so on. CREF stands for the groundtruth composite radar
reflectivity. And PRED indicates the model predicted or reconstructed radar reflectivity.
From Figure 6, the reconstructed data can roughly depicts radar reflectivity especially
larger than 20 dBZ.

Furthermore, Figure 7 shows the reconstructed results of different methods. From this
figure, most of the methods can reconstruct radar reflectivity at the large scale. For Seg-
Former, it tends to predict small values (the blue parts).
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Figure 6. Illustration about the input satellite data (B08–B16), the groundtruth radar reflectivity
(CREF), and the reconstructed data (PRED).
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5. Discussion
5.1. Analysis of Satellite Channel Importance

As Section 4.4 described, the satellite channels can be divided roughly into three
parts. Consequently, this subsection conducts experiments considering channel importance.
Table 3 and Figure 8 present the results. Specifically, we use (a)–(e) to denote the six cases
by removing certain channels, and the detailed configuration can be found in Table 3.

Table 3. Channel importance considering regression metrics (the check mark
√

indicates a channel
is selected).

No.
Channel

RMSE MAE PSNR SSIM
C8 C9 C10 C11 C13 C14 C16

(a)
√ √ √ √

9.916 7.712 28.204 0.591
(b)

√ √ √ √
10.123 7.826 28.024 0.529

(c)
√ √ √

9.776 7.590 28.328 0.566
(d)

√ √ √ √ √ √
9.314 7.171 28.748 0.578

(e)
√ √ √ √ √ √

9.299 7.161 28.762 0.620
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Figure 8. Channel importance considering classification metrics.

Comparing the results of different experiments, namely (a) and (b), it is evident
that channels C11, C13, and C14 play a more crucial role in MAFormer reconstruction.
Additionally, the results obtained from (a), (b), and (e) highlight that channels C8, C9,
and C10 are also important. It should be noted that the comparison between (c) and (a)/(b)
is not entirely accurate as (c) only removes one channel, creating an imbalance. To rectify
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this, experiment (d) also removes one channel. Moreover, the findings suggest that channel
C16 holds less significance compared to the other channels. Furthermore, experiment (c)
selects three specific channels, and when combined with the results from experiment (e), it
indicates that incorporating more channels can benefit radar reconstruction.

5.2. Effectiveness of the Proposed Modules

Basically, the proposed MAFormer for satellite based radar reconstruction consists of
two new modules, namely MGAM and ALAM. To evaluate the effectiveness of the pro-
posed two modules, this subsection also conduct quantitative and qualitative experiments.

Tables 4 and 5 first present the quantitative results considering both of classification
and regression metrics. The baseline method is set to be SwinTransformer.

Table 4. Results of the proposed two modules considering regression metrics. The ↓ and ↑ indicate
the metrics are decreasing and increasing, respectively.

RMSE PSNR MAE SSIM

Swin 9.288 28.773 7.171 0.540
+ ASM 9.273 ↓ 28.786 ↑ 7.148 ↓ 0.586 ↑
+ MSM 9.239 ↓ 28.818 ↑ 7.131 ↓ 0.588 ↑

MA 9.231 ↓ 28.826 ↑ 7.110 ↓ 0.604 ↑

Table 5. Results of the proposed two modules considering classification metrics. The ↓ and ↑ indicate
the metrics are decreasing and increasing, respectively.

FAR POD

10 20 30 40 50 10 20 30 40 50

Swin 0.110 0.218 0.345 0.419 0.601 0.912 0.731 0.439 0.090 0.006
+ ASM 0.109 ↓ 0.215 ↓ 0.349 0.403 ↓ 0.596 ↓ 0.907 0.732 ↑ 0.467 ↑ 0.092 ↑ 0.004
+ MSM 0.109 ↓ 0.216 ↓ 0.342 ↓ 0.409 ↓ 0.547↓ 0.909 0.734 ↑ 0.446 ↑ 0.103 ↑ 0.008 ↑

MA 0.108 ↓ 0.214 ↓ 0.327 ↓ 0.382 ↓ 0.510 ↓ 0.906 0.731 0.450 ↑ 0.107 ↑ 0.009 ↑

CSI HSS

10 20 30 40 50 10 20 30 40 50

Swin 0.819 0.607 0.357 0.085 0.006 0.448 0.528 0.434 0.148 0.011
+ ASM 0.816 0.610 ↑ 0.373 ↑ 0.086 ↑ 0.004 0.448 0.532 ↑ 0.449 ↑ 0.151 ↑ 0.007
+ MSM 0.818 0.611 ↑ 0.362 ↑ 0.096 ↑ 0.007 ↑ 0.450 ↑ 0.533 ↑ 0.440 ↑ 0.167 ↑ 0.015 ↑

MA 0.816 0.610 ↑ 0.369 ↑ 0.101 ↑ 0.009 ↑ 0.451 ↑ 0.533 ↑ 0.451 ↑ 0.174 ↑ 0.018 ↑

Starting with regression metrics, which provide insights into the model’s ability to
accurately predict continuous numerical values, we found that both modules consistently
improved the model’s performance. However, the combination of these two modules
showcased a more substantial improvement compared to using each module separately.
This highlights the synergistic effect of incorporating multiple modules in enhancing the
model’s regression capabilities.

Moving on to classification metrics, which assess the model’s accuracy in classifying
weather phenomena into different categories, we conducted evaluations using multiple
threshold values, including 10 dBZ, 20 dBZ, 30 dBZ, 40 dBZ, and 50 dBZ. The results
obtained were generally consistent with the regression metrics. Interestingly, we observed
that the addition of a single module, whether it was ALAM or MGAM, consistently
boosted the model’s performance across all thresholds. This indicates the stability and
effectiveness of these modules in improving the model’s classification abilities regardless
of the chosen threshold.

The improvement in model performance achieved through the addition of these
modules can be attributed to several factors. Firstly, the ALAM module leverages attention
mechanisms to dynamically allocate weights to different regions of interest, enabling the
model to focus on important features and suppress noise or less relevant information. This
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helps improve the model’s ability to extract meaningful representations from the input
data, leading to more accurate predictions.

Additionally, the MGAM module introduces a multi-granular attention mechanism
that captures information at different spatial scales. By variably attending to local and global
features, the model gains a more comprehensive understanding of the input data, which
is particularly valuable in weather forecasting where both local and global characteristics
play significant roles. The combination of these mechanisms contributes to the stability and
consistent performance improvements observed across different thresholds.

Besides the former quantitative results, Figure 9 also presents qualitative comparison.
Combined with the results presented in Tables 4 and 5, we conclude that the newly proposed
two modules benefit for satellite based radar reconstruction.
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Figure 9. An intuitive illustration of the proposed two modules, i.e., ALAM and MGAM.

6. Conclusions

The field of weather forecasting and analysis has always been an essential area of
scientific research due to its significant impact on human activities and welfare. Radar
reflectivity plays a crucial role in observing and understanding the atmospheric conditions,
specifically in predicting and tracking severe weather phenomena like thunderstorms,
hailstorms, and tornadoes. However, obtaining accurate and reliable radar reflectivity data
is often challenging, as it requires complex and expensive instruments and equipment.
Hence, researchers have developed new techniques to reconstruct radar reflectivity data
from other sources, such as satellite data.

In this paper, a novel approach called the MAFormer is introduced that significantly
improves the accuracy and reliability of radar reflectivity data reconstruction using satellite
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data. This approach utilizes the transformer framework, which is a widely used neural
network architecture that has been proven to be highly effective in various fields, including
natural language processing, speech recognition, and image analysis. By leveraging the
transformer’s architecture, MAFormer can effectively capture and utilize the complex
relationships and interactions among different radar and satellite channels, leading to more
accurate and reliable results.

Specifically, MAFormer incorporates two newly proposed modules, the Mixup Global
Attention Module (MGAM) and the Axial Local Attention Module (ALAM), which further
enhance the model’s performance. The MGAM explores global similarities between radar
and satellite data, while the ALAM focuses on extracting local saliency patterns. Together,
these modules enable MAFormer to reconstruct radar reflectivity data from satellite data
more effectively and efficiently. Experimental results demonstrate the superiority of the
proposed method.

In summary, the MAFormer approach represents a significant advancement in the field
of radar reflectivity reconstruction, enabling more accurate and widespread predictions
of severe weather phenomena. The utilization of the transformer framework and the two
newly proposed modules enhances the model’s ability to capture and utilize complex
relationships and interactions among different radar and satellite channels. These advance-
ments have the potential to revolutionize weather forecasting and analysis, leading to better
preparation and mitigation measures against severe weather phenomena.

It is important to note that further investigations and evaluations are required to
fully assess the performance and generalizability of MAFormer. Future research directions
include exploring additional data fusion techniques, refining the attention mechanisms,
and conducting extensive experiments on various real-world datasets. These advancements
will significantly contribute to the field of radar reflectivity reconstruction, enabling more
accurate and widespread predictions of severe weather phenomena.
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MAE Mean Absolute Error
RMSE Root Mean Squared Error
PSNR Peak Signal Noise Ratio
SSIM Structure SIMilarity
CREF Composite radar Reflectivity
PRED Predicted reflectivity
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