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Abstract: Soil erosion is a key factor in soil quality degradation and carbon balance in arid ecosystems.
However, many models ignore the soil erosion process in arid regions, which may lead to limits in
our understanding of ecosystem processes in arid regions. In this study, we added the soil erosion
process according to field observed data of soil hydrothermal regimes and carbon flux. We validated
this coupling version of IBIS (Integrated Biosphere Simulator) and RUSLE (RU–IBIS) by examining
four different vegetation types and the carbon budget in the arid region on the Loess Plateau (LP).
Our results indicated that the coupling model (RU–IBIS) produced more reliable simulations of
the soil water content (with the r from 0.23–0.90 to 0.71–0.97) and evaporation (ET) (the average r
was 0.76) and significantly improved the simulation of the leaf area index (LAI) (the average r was
0.95) and net primary production (NPP) (the average r was 0.95). We also conducted sensitivity
experiments to determine how soil texture and aerodynamic roughness (Z0m) affect the soil water
content. Moreover, it was revealed that specific leaf area (SLA) plays a key role in the simulation of
NPP and NEE. Our study suggests that the coupled soil erosion process and parameterization can
effectively improve the performance of IBIS in arid regions. These results need to be considered in
future Earth system models.

Keywords: IBIS; RUSLE; soil water content; soil erosion process; carbon cycle; Loess Plateau

1. Introduction

As a component of terrestrial ecosystems, arid regions account for about 46% of the
global carbon pool [1]. Arid regions have low precipitation and high solar insolation, and
their evaporation is much higher than their precipitation, making the ecosystem relatively
fragile and more vulnerable to external climate impacts [2]. Insufficient water and human
activities such as overgrazing and excessive land reclamation have also led to serious land
degradation in arid regions [3]. Land degradation releases carbon into the atmosphere
and may form a positive feedback loop within the carbon cycle [4]. Therefore, it is of great
importance to study the processes of carbon cycling in arid region ecosystems in the context
of climate change.

Simulating and predicting the arid ecosystem carbon cycle is inseparable from the
dynamic global vegetation model (DGVM) [5]. Using the DGVM, many studies have been
conducted to simulate the change in the carbon budget and its influencing factors in arid
regions [6–9]. Under the influence of long–term soil erosion, the nutrient–rich topsoil
layer is gradually denuded, and the soil nutrients are lost to runoff and sediment, which
leads to a decrease in soil fertility and thus reduces the erosion resistance of the soil. This
results in a vicious cycle of “soil erosion–nutrient loss–soil erosion” [10,11]. Soil erosion
leads to the thinning of the soil layer and decreases soil aeration, permeability, and soil
quality [12,13]. The soil erosion process strongly affects the energy and water exchange
between the soil and the air and thus definitely affects the simulation accuracy of the carbon
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cycle in arid regions. Soil erosion must be included in the study of the carbon cycle in arid
regions [14,15]. However, in many DVGMs, this process has only been expressed as simple
soil erosion parameterization schemes [16–18].

IBIS was developed to illuminate the interactions between different biosphere factors
on time scales relevant to the carbon cycle process [19]. In recent years, some studies
have started to apply IBIS on a global scale [20]. Further refinements of the IBIS model
include the creation of IBIS 2.0 and Agro–IBIS [21–23], which incorporate other models
of atmospheric circulation, agricultural vegetation, and hydrological processes. In terms
of model improvement, Liu et al. (2005) combined IBIS with the nitrogen cycle model
to simulate the regional nitrogen cycle and to reveal the extent to which the nitrogen
cycle affects the ecosystem [24]. While most ecosystems examined with IBIS are forests
and farmland [25–27], recent updates to IBIS include adding more vegetation types and
statistical models [28,29]. However, the IBIS model does not consider changes to the soil
erosion regime. The absence of this process may produce model results that overestimate
the moisture and carbon budget in arid regions.

It is important to use the DVGM to model the carbon cycle in arid ecosystems. There-
fore, the main contents of this study include (1) incorporating the revised universal soil
loss equation (RUSLE) into the soil erosion and verifying the accuracies of modeling soil
water content, LAI, and NPP simulations in the Loess Plateau (LP) and (2) determining
the sensitivity of the soil hydrothermal regime, ET (evapotranspiration), and the carbon
flux to the changing model parameters. The modified IBIS model provides a useful tool for
understanding the carbon cycle of arid regions in warming climate conditions.

2. Materials and Methods
2.1. Experimental Sites

The Loess Plateau is the largest loess accumulation area in the world [30], which is
located in north–central of China, with soil erosion covering 71%, and the average thickness
of loess in the region is 92.2 m. Due to its vegetation degradation, soil nutrient loss, land
quality degradation, and ecological environment deterioration, the LP is very sensitive
to climate change. We collected data from four regions in the LP (Figure 1). These four
stations are Shapotou (SPT: cropland), Changwu (CW: cropland) Ansai (AS: cropland),
and Eerduosi (ERDS: desert). Detailed information on the four stations is summarized in
Table 1.
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Table 1. Site information for (SPT, CW, AS, and ERDS) in the LP.

Site SPT CW AS ERDS

Observation period 2001–2008 2004–2008 2004–2006 2005
Vegetation type cropland cropland cropland desert

Latitude N◦ 37◦27′ 35◦12′ 36◦51′ 39◦29′

Longitude E◦ 104◦57′ 107◦40′ 109◦19′ 110◦11′

Elevation m 1250 1200 1068 1290
Mean precipitation mm 186 580 500 310
Mean temperature ◦C 9.6 9.1 8.8 6

2.2. Input and Observed Data

The meteorological data were collected at four stations operated under the auspices
of the National Ecosystem Science Data Center, National Science and Technology Infras-
tructure of China (http://www.nesdc.org.cn, accessed on 1 March 2023). The period of
single–point simulation is 1998–2008. The meteorological data include wind speed, relative
humidity, pressure, radiation, daily maximum temperature, daily minimum temperature,
daily average temperature, and precipitation. The basic processing procedures include
anomaly rejection, blank interpolation, half–hourly synthesis of daily data, and unit conver-
sion. The processed meteorological data are used as single–point simulated climate–driven
data. Model validation data include soil water content, evapotranspiration, above–ground
biomass, below–ground biomass, and leaf area index (LAI) [31–34]. In this study, the
measured biomass values were converted to NPP values for model validation [35].

2.3. Model Description and Development

Foley et al. (1996) developed the biosphere–oriented, regional–scale Integrated Bio-
sphere Simulator (IBIS) model [20]. In order to simulate the dynamic changes in the
vegetation cover in Europe and Africa, the second iteration of the IBIS model was coupled
with GENESIS (version 2.0), an atmospheric circulation model. The most recent version of
IBIS is version 2.6 [35]. The IBIS model consists of five modules: land surface processes,
vegetation dynamics, vegetation phenology, subterranean carbon and nitrogen cycling, and
soil geochemistry (Figure 2). Our study focuses on improving and refining the land surface
processes and vegetation dynamics modules.
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Figure 2. Modeling framework and improvement modules (refer to [35]).

(1) Land surface processes module
The land surface processes module is used to calculate the exchange of water, heat,

and carbon dioxide. The thicknesses of the six soil layers, from top to bottom, are 0.10 m,
0.15 m, 0.30 m, 0.50 m, 1.00 m, and 2.00 m. In the soil module, the rate of change in the
liquid soil water content is calculated using the Richard equation, and the vertical flux of
water is determined using Darcy’s law. At the impermeable bottom boundary of the soil
module, there is no diffusion of liquids or heat.

http://www.nesdc.org.cn
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To simulate the soil hydrothermal regime, we calculated the soil temperature, the water
content, and the ice content of a given soil layer with the Richard equation as follows [20]:

∂θ

∂t
=

∂

∂z
[D(θ)

∂θ

∂z
] +

∂K(θ)
∂z

− ST(z, t) (1)

where θ (m3m−3) is the actual soil water content of a soil layer at a certain time and θi
(m3m−3) is the ice rate of the soil layer. D(θ) (mms−1) represents the soil diffusivity of the
soil volumetric water content. K(θ) (mms−1) is the hydraulic conductivity; when the soil
volumetric moisture content is K(θ), it needs to be calculated by the saturated hydraulic
conductivity Ks. b is the index of the Campbell formula. ST(z,t) (s−1) is a sink term resenting
water uptake by plant roots as a function of ET. The Campbell formula is as follows:

K(θ) = KS

(
θ

θS

)2b+3
(2)

Using the heat diffusion equation [20], we can quantify the heat transfer in the soil:

C
∂T(z, t)

∂t
=

∂

∂z

[
λ∂T(z, t)

∂z

]
+ H f m (3)

Hfm = ρiceL f
∂θice

∂t
(4)

where C (Jkg−1k−1) and λ (Wm−1k−1) are the volumetric heat capacity and the thermal
conductivity, respectively, t (s) is the time, and z (mm) is the vertical depth. T (k) is the
temperature. Hfm (Jkg−1) is the latent heat released or consumed during the phase change
of soil water. is the density of ice, The density of ice is ρice (917 kgm−3), θice (m3m−3) is the
partial volume of ice content, and Lf (0.3336 × 106 Jkg−1) is the latent heat of fusion.

(2) Vegetation dynamic module
After registering a change in the biomass for each plant type, this module calcu-

lates the gross primary productivity (GPP), the net primary productivity (NPP), and the
net ecosystem exchange (NEE) in the vegetation coverage and type. The vegetation pro-
ductivity calculation includes both the total photosynthesis and the breathing per hour.
Vegetation biomass is the sum of the root system biomass and the plant leaves. The GPP
calculation [20] is:

GPP =
∫

Agdt (5)

and the NPP calculation is:

NPP = (1 − η)
∫

(Ag − Rleaf − Rstem − Rroot)dt (6)

where Ag (CO2/m2·s) is the net photosynthetic rate of the canopy; Rleaf (CO2/m2·s) is the
leaf respiration rate; Rstem (CO2/m2·s) is the respiration rate; and Rroot (CO2/m2·s) is the
root respiration rate. The rate of photosynthesis is simulated according to the Farquhar
equations [36]. In accord with Amthor [37], η is 0.33 or 0.3, which is the proportion of
carbon loss in tissue construction.

(3) Vegetation Phenology Module
In the phenological module, it is assumed that deciduous plants begin to germinate in

winter when the growth of a particular plant functional type exceeds a certain threshold.
This threshold is defined by the day when two conditions are met: (1) the average temper-
ature (Avt10) is greater than 5 ◦C for 10 consecutive days and (2) at least 100 days have
experienced temperature increases greater than 0 ◦C (GDD0). When Avt10 is less than 5 ◦C,
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the vegetation enters the withered yellow period [38]. This threshold day forms the basis
of the leaf area index (LAI) calculations [20]:

LAI = LAImax × f(T) (7)

f(T) =


(GDD0 − Tb)/b GDD0 > Tb and avt10 > 5

1
f(T)− 1/d f ac avt10 < 5

(8)

where Tb is the threshold of GDD0 in the vegetation green–back period, b is the coeffi-
cient of controlling the leaf spreading speed, and dfac is the coefficient of controlling the
defoliation speed.

(4) Modified soil erosion parameterization scheme
Numerous studies have pointed out that soil erosion and the erosion of poorly veg-

etated land are accompanied by changes in soil nutrients, structure, moisture, texture,
etc. The soil microbial community will also be transformed during the restoration of soil
erosion and erosion–damaged land [39,40]. As the main driver of soil organic carbon
transformation, microbial community changes in erosion and revegetation systems largely
determine the rate of organic carbon mineralization and fixation and the microbial con-
tribution to soil organic carbon. The microbial communities of erosion and revegetation
systems largely determine the rate of organic carbon mineralization and fixation and the
apparent functional redundancy of microorganisms in the soil. Therefore, we used RUSLE
to improve the soil erosion process module. The expression of general soil loss equation is:

A = R·K·LS·C·P (9)

where A is the soil loss (kg km−2), R is the rainfall erosivity factor (J m−2), K is the soil
erodibility factor (dimensionless), LS is the slope length and gradient factor (dimensionless),
C is the vegetation cover and management factor (dimensionless), and P is the soil and
water conservation measures factor (dimensionless).

(5) Model parameterization
Previous modifications of the IBIS model [41] suggested that accurate model results

were dependent upon the accurate calibration of stomatal conductance coefficients (m,
b), leaf respiration parameter (γ), and the maximum rubisco capacity (Vmax). For the
photosynthesis of vegetation in arid regions, these parameters were set to γ = 0.025, m = 4.0,
b = 0.04, and Vmax = 25 molCO2 m−2 s−1 [42]. We set these four parameters in the
vegetation dynamic module.

Aerodynamic roughness is a parameter that is important for describing the aero-
dynamic characteristics in surface heat flux parameterization schemes, which results in
large uncertainties in soil hydrothermal condition calculations at smaller spatial scales [43].
Therefore, we changed the initial Z0m (0.005 m) to be equal to the two annual average Z0m
for the two vegetation types along LP based on the measured data, the cropland (0.29), and
the desert (0.0003) (Table 2).

The specific leaf area (SLA) can be used not only to infer the processes of photosynthe-
sis, evaporation, and ET but also to estimate the net productivity of terrestrial ecosystems.
In an individual plant or group of plants, the amount of light received by the vegetation
is inversely proportional to the SLA value. The SLA value can also reflect the ability of
plants to obtain light; plants with low SLA values can better adapt to poor treatment and
drought environments, while plants with high SLA values can more easily preserve vital
nutrients [44,45]. This study used SLA that correspond to the vegetation conditions in arid
regions to improve the quality of our model results (Table 2) [46,47].
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Table 2. Parameter differences between the O–IBIS and RU–IBIS models (M–IBIS).

Site
SPT CW AS ERDS

O–IBIS RU–IBIS O–IBIS RU–IBIS O–IBIS RU–IBIS O–IBIS RU–IBIS

Z0m (m) 0.005 0.29 0.005 0.29 0.005 0.29 0.005 0.0003

SLA (m2/kg) 20 16.04 20 11.69 20 10.9 20 11.69

Note: Z0m: thermodynamic roughness. SLA: specific leaf area. O–IBIS: original IBIS. RU–IBIS: modified IBIS.
References: [46,47].

2.4. Model Validation
2.4.1. Correlation Analysis

We used many statistical methods to quantitatively evaluate the applicability of our
models, including the relative error (RE), the correlation coefficient r, the root mean square
error (RMSE), and the coefficient of determination R2 between the simulated and mea-
sured values. Detailed descriptions of these statistical tests and formulas are found in
Willmott et al. (1982) [48].

2.4.2. Parameter Sensitivity Analysis

To investigate how parameters within IBIS could influence the simulation results, we
ran 16 experiments. Individual model parameters were individually increased or decreased
by 20% in each run. Overall model sensitivity to NPP, ET, SW, and ST (multilayer soil depth
averages) was evaluated by comparing the simulated annual averages from the modified
parameter runs to the control runs.

2.4.3. Redundancy Analyses

We conducted redundancy analyses (RDAs), both with and without variance partition-
ing to estimate both the climate effects and the nature of the relationship between the site
and the climate effects [49]. Here, RDAs were used to analyze the relationships between
carbon flux and climate variables. These analyses were performed using the vegan package
in R–4.2.2.

3. Results
3.1. Soil Water Content Conditions

A comparison of the simulated and measured soil water content values at the four sites
is shown in Figure 3, where the simulated daily temperature trends are in good agreement
with the observations. RU–IBIS generated improved soil water content estimates for the
four stations, with a higher range of r values (from 0.23–0.90 to 0.71–0.97) and RMSE,
with RE values of 0.15–5.69 m3/m3 and −0.12–0.27 m3/m3, respectively (Table 3). The
underestimation of soil water content was greatly improved. In terms of different depths,
the correlation between the simulated results and the measured values of soil water content
at 10 cm is the weakest. With the increase in soil depth, the deviation value decreases
sequentially with the increase in soil depth, which is related to the fact that the deeper the
soil depth, the smaller the actual amplitude. The RU–IBIS model has the highest simulation
accuracy in the cropland (CW station), and the simulation effect is relatively poor in the
desert region (ERDS). Our statistical analyses for these parameters are shown in Table 3.
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Figure 3. The observed O–IBIS, and RU–IBIS values of monthly soil water content at soil depths of
10 cm, 30 cm, 50 cm, and 100 cm in different regions: (a–d) SPT, (e–h) AS, (i–l) CW, and (m–p) ERDS.
The red and gray lines represent the linear fit of improved and original simulations, respectively.

Table 3. Statistical measures of modeled soil water content at a monthly time scale.

Stations
10 cm 30 cm 50 cm 100 cm

RU–IBIS O–IBIS RU–IBIS O–IBIS RU–IBIS O–IBIS RU–IBIS O–IBIS

SPT

r 0.71 0.45 0.88 0.78 0.91 0.82 0.92 0.90
R2 0.51 0.20 0.78 0.62 0.84 0.67 0.84 0.82

RMSE 3.23 4.42 0.71 1.42 0.60 1.43 1.05 3.58
RE −0.08 0.09 −0.12 0.17 −0.12 −3.02 0.17 −0.04

AS

r 0.87 0.71 0.88 0.58 0.86 0.60 0.82 0.59
R2 0.75 0.51 0.77 0.33 0.73 0.36 0.68 0.34

RMSE 2.67 3.62 1.77 5.60 1.81 5.25 1.89 4.81
RE 0.07 −0.01 −0.03 −0.46 0.08 −0.31 −0.07 −0.43

CW

r 0.94 0.88 0.97 0.46 0.90 0.65 0.91 0.63
R2 0.88 0.77 0.94 0.21 0.82 0.42 0.82 0.40

RMSE 5.69 7.26 1.44 5.29 0.64 3.78 1.06 3.69
RE 0.27 0.37 −0.05 0.09 −0.11 −0.42 −0.09 −0.13

ERDS

r 0.84 0.34 0.87 0.74 0.91 0.60 0.76 0.23
R2 0.70 0.11 0.76 0.55 0.83 0.35 0.58 0.06

RMSE 1.12 1.67 0.29 0.32 0.15 0.26 0.34 0.73
RE −0.08 −0.19 −0.10 −0.39 0.07 −2.91 0.19 −0.35

3.2. ET Simulation Results

Due to the limitation of the monitoring conditions, only monthly average daily ET
data of SPT (2003–2004), AS (2004–2006), and CW (2004) stations were observed. In Figure 4,
it can be seen that the simulation result of evapotranspiration is higher than the measured
data. The r values of ET were 0.61 (SPT), 0.83 (AS), and 0.86 (CW). The RMSE and RE were
2.06 mm, −0.05 mm (SPT), 2.07 mm and −0.20 mm (AS), and 0.75 mm and 0.17 mm (CW)
(Table 4).
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Table 4. Statistical measures of the modeled ET.

SPT AS CW

r R2 RMSE RE r R2 RMSE RE r R2 RMSE RE
RU–IBIS 0.61 0.38 2.06 −0.05 0.83 0.69 2.07 −0.20 0.86 0.75 0.75 0.17
O–IBIS 0.23 0.05 2.97 −23.93 0.41 0.17 3.49 0.76 0.59 0.35 1.18 0.95

3.3. LAI and NPP Simulation

The original IBIS underestimated the LAI values; the RU–IBIS values, which had
smaller uncertainties than the O–IBIS values, generally agreed with the observed LAI
values (Figure 5). The RU–IBIS model generated LAI correlation coefficient (0.95) and R2

(0.90) results that were higher than those of the O–IBIS model (0.70 and 0.50, respectively).
Furthermore, the RMSE and RE values simulated by the RU–IBIS results revealed improving
O–IBIS results on LAI and NPP bases (Table 5). Clearly, the RU–IBIS dynamic vegetation
results are more accurate than those of the O–IBIS model.
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Table 5. Statistical analyses of modeled monthly LAI and NPP.

SPT AS

r R2 RMSE RE r R2 RMSE RE

LAI
RU–IBIS 0.94 0.88 0.60 0.02 0.96 0.92 0.47 −0.06
O–IBIS 0.77 0.60 1.39 0.56 0.63 0.40 1.46 −9.67

NPP
RU–IBIS 0.96 0.92 474.11 0.29 0.93 0.87 318.18 −0.38
O–IBIS 0.23 0.05 1188.11 −0.43 0.81 0.65 467.82 0.38

Figure 5c,d shows the results between the observed O–IBIS and RU–IBIS NPP at SPT
and AS stations, which demonstrated that the RU–IBIS simulations maintained consistency
with the observed NPP. The NPP of O–IBIS was much lower than the observed value.
After modifying IBIS, the underestimation phenomenon improved significantly. The cor-
relation coefficients were 0.52 (O–IBIS) and 0.95 (RU–IBIS), respectively. The statistical
metrics for accuracy and error improved when we used the RU–IBIS results instead of the
O–IBIS results.

3.4. Parameter Sensitivity

As shown in Table 6, the simulation results are most sensitive to changes in the Z0m.
For the cropland, a 20% increase in the Z0m decreased ST and NEE by 26.68% and 18.25%,
respectively, and increased SW, ET, and Re by 86.43%, 42.71%, and 38.07%, respectively.
Therefore, the accuracy of the input parameters plays an important role in the simulation
results. While the +20% change in the SLA value resulted in a moderate NPP increase of
5–8%, the sensitivity of NEE to SLA is much higher than that of NPP.

Table 6. The results of the model parameter sensitivity experiments.

Sites Parameters Value
Sensitivity (+20%) Sensitivity (−20%)

ST SW ET
(%) NPP NEE Re ST SW ET

(%) NPP NEE Re

SPT
Z0m (m) 85 −26.68

※ 86.43 42.71 1.02 −18.25 38.07 −9.62 38.02 16.84 −0.31 −23.09 46.37

SLA
(m2/kg) 6.85 0.17 0.00 0.01 −0.01 −0.15 0.01 −1.20 −0.01 −0.02 0.03 0.28 −0.02

AS
Z0m (m) 66.4 −0.42 −28.13 −15.64 0.16 −10.70 −32.72 8.35 0.39 0.13 −0.17 0.56 0.07

SLA
(m2/kg) 3.55 0.00 0.00 0.00 0.00 0.00 0.00 −0.31 0.01 0.00 0.01 −0.01 0.00

CW
Z0m (m) 80 −1.30 −15.81 −5.27 0.49 −62.27 −23.44 5.69 44.15 22.12 −0.27 10.93 41.47

SLA
(m2/kg) 4.34 0.96 0.00 0.01 −0.02 0.02 0.00 −0.37 0.00 −0.02 0.01 −0.05 −0.01

ERDS
Z0m (m) 40.2 13.15 −22.28 9.20 0.60 −53.31 30.55 3.17 0.10 0.10 −0.11 −4.06 0.12

SLA
(m2/kg) 54.05 22.19 −22.16 9.46 0.34 −54.24 30.81 −4.83 −0.17 −0.09 0.15 7.20 −0.25

Note: +20%: model parameters increased by 20%; −20%: model parameters decreased by 20%; −26.68 ※: when
the Z0m increases by 20%, the soil temperature decreases by 26.68%.

3.5. RDA Analysis

Figures 6 and 7 show that the arid region ecosystem is highly sensitive to changes
in temperature. While warming temperatures are minimally impacted by precipitation,
NPP tends to rise along with the temperature. The two consecutive RDA axes (Figure 6)
suggest the pattern of carbon fluxes with climate change and illustrate that the first RDA
axis (66.84%) is absolutely dominant. The second RDA axis accounts for 17% of the carbon
flux variation. Carbon flux variation on the second axis is indicative of warmer, higher
radiation ecosystems with higher NPP, NEE, and Re values. Cloud amount, temperature,
and soil temperature have the greatest influence on the carbon flux. In the LP, vegetation
growth and soil respiration are very sensitive to temperature and radiation changes.
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Figure 6. Climate–related carbon flux from redundancy analysis (RDA); the colored dots are the
different vegetation sites. The principal variables are net primary production (NPP), net ecosystem
exchange (NEE), and soil respiration (Re). The climate variables are the highest temperature (tmax),
average temperature (tm), minimum temperature (tmin), precipitation (prec), wind speed (windm),
cloud amount (cloud), relative moisture (em), pressure (pm), soil temperature (ST), and soil water
content (SW).
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The pie chart in Figure 7 summarizes the contributions of climate and site to the
different ecosystem carbon fluxes. Climate is shown nested within research sites because
differences in climate are determined by the site location. The three temperature parameters
jointly account for 31% of the NEE variation (Figure 7), the most important controlling
factor of NPP is the cloud amount (29.2%), and soil respiration is most sensitive to changes
in the site (63.2%). Different sites mean different soil textures, vegetation types, and
ecosystems. Different ecosystems and ecosystem locations lead to different growth season
onsets, growth season durations, and carbon emission intensities.

4. Discussion
4.1. Improvement of the IBIS Model

Our results revealed that soil erosion in O–IBIS is not realistic, as it largely underesti-
mates soil water content (Figure 3). Also, the simulated ET, LAI, and NPP in O–IBIS are
significantly lower than our observations (Figures 4 and 5). We tentatively attribute this
deficiency to the original IBIS, as most of the soil hydrothermal regime improvements and
the soil erosion process of arid regions in IBIS require more validation and improvement.
Previous works have suggested that the reduction in soil fertility and the deterioration of
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soil structure under the influence of long–term hydraulic erosion structural deterioration
will further affect the growth and development of plants. In our study, we not only added
the soil erosion process to the IBIS model, but we also recalibrated the physiological pa-
rameters according to the actual climate conditions in the study area. These modifications
resulted in better fits with the observed data and reduced model uncertainties. We suggest
further collection of such detailed ecological factor data at multiple locations to improve
the arid vegetation modeling and reduce errors due to multi–site heterogeneity.

Further development always requires field–measured data for calibration. The LP is
dominated by the C3 plants. The physiological parameters of different vegetation types
differ greatly between the C3 plants. The RU–IBIS model, with its more complete soil
erosion process, may provide better opportunities for parameter calibration in arid regions.

4.2. Parameters Affecting the Simulation Results

Soil water content and ET are greatly affected by dynamic roughness, which reflects
the weakening effect of different ground surface characteristics on the wind speed [43]. The
vegetation characteristics and the wind speed cannot be ignored in sparsely vegetated areas.
Z0m is negatively correlated with wind speed, and wind speed is positively correlated with
ET [50]. An increase in the Z0m parameter represents a decrease in the wind speed, which
in turn leads to a reduction in the ET value.

SLA values can directly affect the efficiency of vegetation in capturing light and
CO2 [49]. Higher SLA values mean that plants usually have higher productivity values and
that plants with lower specific leaf area values experience more efficient photosynthesis
in limited–resource conditions [51]. SLA is involved in the area–based biochemical pa-
rameterization of photosynthetic enzyme concentrations linking LAI to NPP and provides
structural parameters linking leaf carbon distribution to LAI [44,52].

4.3. Potential Effects of Climate Change on the Carbon Cycle

With the concentrated rainfall, heavy storms, and human interference in the Loess
Plateau, soil erosion of the LP is inevitable. Improving the activity and quantity of soil
microorganisms results in accelerated soil respiration and CO2 emissions. Additionally,
the organic carbon in the soil, which was originally sealed in the arid region, was released
into the ground surface and eventually made its way into the carbon cycle. However, the
temperature increase can improve the photosynthetic rate of vegetation and prolong the
growth period of vegetation, resulting in a longer period over which vegetation can draw
CO2 out of the atmosphere. Similarly, arid region erosion results in decreased soil water
content, which inhibits vegetation growth and CO2 absorption. Increased soil erosion can
reduce the soil water content volumetric under the same suction, which is unfavorable
to soil water storage and reduces the drought–resistant performance of the soil. The
infiltration rate of soil in the 0–10 cm layer gradually decreased with the increase in soil
erosion, and the difference in infiltration rate of each soil layer in different vertical depths
gradually decreased with the increase in soil erosion [49]. Therefore, the potential impact
of arid region erosion on ecosystem carbon emissions mainly depends on the arid region
balance between the increase in the soil respiration potential caused by warming and
the diminution of vegetation photosynthesis in conjunction with the increase in the soil
water content [52,53], which is supported by additional field data from the LP [54]. NEE
is numerically equal to the difference between NPP and soil heterotrophic respiration.
Therefore, NPP could be largely canceled out by a higher ER value, which tends to respond
positively to the ecosystem’s annual carbon emissions [52].

5. Conclusions

The IBIS model has been validated in a variety of different ecosystems, regions, and
temperature zones worldwide. We used RU–IBIS to determine the appropriateness of
applying this model to arid regions in the LP. The results showed that:
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1. The O–IBIS model generally underestimates the soil water content in all stations.
After adding the soil erosion process scheme and adjusting the dynamic roughness,
the ability of the IBIS model to simulate soil water content was greatly improved,
though still with underestimated bias (RE = −0.013 m3/m3). These results indicate
that soil erosion plays an important role in controlling soil hydrothermal regimes in
arid regions. We should pay attention to the reliability of the Z0m value in the future
simulation of the barren region with IBIS.

2. The underestimation of NPP and LAI was reduced by 68.7% and 88.5%, respectively,
through the adjustment of the SLA. The modified model (RU–IBIS) accurately repro-
duces the vegetation growth conditions in the cropland region and does a poor job of
constraining the conditions in the desert. The results show that the complexities of
applying to heterogeneous sites remain, and it needs further improvement in a wider
range area.

3. Sensitivity tests showed that the soil hydrothermal conditions and ET were sensitive
to changes in the Z0m values. SLA largely affects the simulated NPP and NEE at all
stations. An increase in the SLA produces corresponding increases in the NPP and
NEE values.

4. We infer that the temperature, radiation, and soil water content dictate the inter–
annual variability of the carbon emission (absorption) strength in this simulation.
Moreover, any soil water content lost during soil erosion may exacerbate water deficits
and thus reduce NPP. However, it is unknown whether the arid region erosion will
result in a net increase or decrease in the total carbon emissions in this region.

The RU–IBIS model improves the accuracy of the soil and vegetation modules. By
incorporating the soil erosion process into IBIS, we hope to extend our single–site simulation
to the whole arid region of the LP and explore the feedback of arid regions on global climate
change in the future.
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