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Abstract: Air quality is a highly relevant issue for any developed economy. The high incidence of
pollution levels and their impact on human health has attracted the attention of the machine-learning
scientific community. We present a study using several machine-learning methods to forecast NO2

concentration using historical pollution data and meteorological variables and apply them to the
city of Erfurt, Germany. We propose modelling the time dependency using embedding variables,
which enable the model to learn the implicit behaviour of traffic and offers the possibility to elaborate
on local events. In addition, the model uses seven meteorological features to forecast the NO2

concentration for the next hours. The forecasting model also uses the seasonality of the pollution
levels. Our experimental study shows that promising forecasts can be achieved, especially for
holidays and similar occasions which lead to shifts in usual seasonality patterns. While the MAE
values of the compared models range from 4.3 to 15, our model achieves values of 4.4 to 7.4 and thus
outperforms the others in almost every instance. Those forecasts again can for example be used to
regulate sources of pollutants such as, e.g., traffic.

Keywords: air pollution forecasting; neural networks; embedding; SensorThings API; NO2 forecasting;
IoT sensors

1. Introduction

Air quality forecasting has become a topic of high interest for all societies since
it represents a great threat to health and the climate. Air toxicity kills approximately
seven million people worldwide each year, as a result of increased mortality from stroke,
heart disease, chronic obstructive pulmonary disease, lung cancer, and acute respiratory
infections (https://www.who.int/health-topics/air-pollution, accessed on 10 December
2022). Statistics published by the WHO (World Health Organization) show that nine out of
ten people breathe air that contains high levels of pollutants, exceeding the limits of the
WHO guidelines. According to the WHO, the top six air pollutants include particulate
pollution, ground-level ozone, carbon monoxide, sulphur oxides, nitrogen oxides, and
lead. Nitrogen dioxide (NO2) is a gaseous atmospheric pollutant that arises mostly as a
result of road traffic and other fossil fuel combustion processes. Its presence in the air
helps the formation and modification of other air pollutants, such as ozone and particles,
as well as acid rain. The negative effects of NO2 on health have been extensively studied
[1–3], and authors have shown a high correlation between certain diseases and exposure to
high concentrations of NO2 [4,5]. In this research, we focused on the short-term forecast
of NO2 in the city of Erfurt, Germany. We forecasted the NO2 concentration for the
next 24, 72 or 120 h using a deep-learning (DL) approach, which is based on neural
networks and embedding layers to encode time variables. Data access was realised using
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the standardised OGC SensorThings API (http://docs.opengeospatial.org/is/15-078r6/15
-078r6.html, accessed on 10 December 2022) (implemented by FROST https://fraunhof
eriosb.github.io/FROST-Server/, accessed on 10 December 2022). Since this covers both
the historical sensor data as well as the meteorological variables, all input data could
be retrieved through a unified interface. Historical NO2 values were imported from the
European Environment Agency (https://datacoveeu.github.io/API4INSPIRE/datanes
ts/ad-hoc.html, accessed on 10 December 2022), whereas the meteorological variables
were obtained from Meteomatics (https://www.meteomatics.com/de/, accessed on 10
December 2022), a provider of weather data and forecasts. Our findings are embedded in the
project Bauhaus.MobilityLab (https://bauhausmobilitylab.de/, accessed on 10 December
2022), which has the goal of making urban living spaces more liveable. The resulting NO2
forecasts were used, e.g., for measures influencing the inhabitants of the living lab. A
further application is to adapt public transport rates to the expected NO2 values. In this
way, one can counteract peaks in air toxicity which are dangerous to health. The remainder
of this paper is organised as follows. In Section 2, we provide an introduction to the air
pollution forecasting task and the current state-of-the-art methods. In Section 3, we analyse
the seasonality of the data collected by the sensors in the city of Erfurt. We use graphs to
show the high seasonality in our data, as well as the difference that exists between the data
of different locations. In Section 4, we introduce deep neural networks, as well as the use
of embedding layers to encode categorical variables. In Section 5, we explain the setup
of the experimental study, including a description of the benchmark algorithms used for
comparison and present and discuss the results.

2. NO2 Emissions and Short-Term Forecasting

Our study was focused on NO2, a polluting gas that seriously affects human health.
According to international statistics [6], in the year 2019, Germany ranked 22nd in the
list of countries that emit the most NO2 per inhabitant, with 13.6 kg per year. Although
this number is quite encouraging when compared to the 107.7 kg that each inhabitant of
Australia generates, there is still much that can be done to reduce it. Several studies have
shown that road traffic has the highest incidence of NO2 emission [7–9]. Figure 1a shows
the contribution made by different sectors to emissions of nitrogen oxides in 2011. As can be
seen, road transport constitutes 41% of total NO2 emissions, being the sector with the most
emissions. A study carried out in [10] states that Germany’s climate footprint has improved
considerably since the 1990s and that the reasons are mainly the successful reform of the
European trade system for emissions, the former low price of gas, the expansion of wind
and solar energy and the closure of the first coal-fired power plants. However, the incidence
of traffic is still a serious problem, which has been increasing in recent years according to a
further study [10].

(a) (b)

Figure 1. Main sources of NO2 emissions of nitrogen oxides. (a) Contribution made by different
sectors to emissions of nitrogen oxides in 2011. (b) Different emission sources in traffic 2017, Germany.

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
https://fraunhoferiosb.github.io/FROST-Server/
https://fraunhoferiosb.github.io/FROST-Server/
https://datacoveeu.github.io/API4INSPIRE/datanests/ad-hoc.html
https://datacoveeu.github.io/API4INSPIRE/datanests/ad-hoc.html
https://www.meteomatics.com/de/
https://bauhausmobilitylab.de/
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However, as shown in [10], not all forms of transport pollute to the same level. In
Figure 1b, we can see that, at more than 60%, motorised individual transport in the form
of cars had the highest incidence of emissions in the transport sector during 2017. In
contrast, rail transport contributed only 0.6%. It is important to mention that the fact that
the highest incidence is in “street cars” gives us some hope about taking action to reduce
emissions. A good example is the city of Stuttgart, Germany. The action plan “Nachhaltig
mobil in Stuttgart” (sustainable mobility in Stuttgart) was approved on 18 July 2017, by the
Municipal Council. The action plan outlines more than 100 individual measures in nine
fields of action including local public transport, individual motorised transport, pedestrian
and bicycle traffic, commercial traffic, commuter traffic, city-specific mobility, mobility in
the region and public relations work, such as intermodality and networking. The mobility
package is complemented by other measures of the “Alliance for Mobility and Clean Air” of
the City Council. Optimising traffic flow and changes of the model split have been proven
to be the most effective measures with the least negative impact. Our NO2 forecasts were
applied to two use cases of the project Bauhaus.MobilityLab which targets an enhanced
quality of living in the city of Erfurt. First, to optimise the individual traffic with regards
to air quality and second, to change the modal split by giving incentives to people who
use public transport when there is bad air quality. For both use cases, good knowledge
about the current air quality is required. This also includes a fundamental understanding
of the sources and current dispersion of bad air in the city. For example, if we know
that tomorrow at 17:00 we will have an excessively high NO2 peak in the inner city, we
could try to incorporate this information into route planning algorithms, which then again
could prioritise park and ride solutions. These use cases can become blueprints for urban
planning in further cities.

Using Machine-Learning to Predict Pollutant Concentrations

The use of machine-learning (ML) has become popular as a powerful tool for accurate
forecasts [11–13]. In the following, we carry out a review of the most significant methods
within the state-of-the-art that make short-term forecasts of pollutants in the air. The
short-term forecasting of NO2 concentration has attracted the attention of the scientific
community [14,15]. Statistical models have been used widely for prediction tasks. However,
recently, ML methods have begun to be used more often [14].

In Table 1, we show some important features about the most representative meth-
ods from the state-of-the-art. As can be observed, long short-term memory (LSTM) and
light gradient-boosting machine (LGBM) have been widely used in comparative studies.
Furthermore, most of the models focus only on predicting NO2 concentrations one hour
in advance, which is not functional in our case study. Only four of them, one statistical
model and three based on ML, predict 24-h time horizons. Therefore, we used three of
those methods in our experimental study. Incorporating other methods might be part of
future work.

Table 1. State-of-the-art literature overview.

Paper Algorithm Horizon Compared Data

[16] Hybrid statistical 24 h - Irish EPA
[11] LSTM encoder-decoder 5 h, 10 h, 120 h LSTM, sequence-to-scalar Beijing
[12] 1D CNN-GRU a 1 h SVR b , DTR c , LSTM, BGRU d UCI-repo
[17] Prophet 1 h Box-Jenkin Bhubaneshwar
[14] ANN e - BT f , LSVM g Belisario, Cotocollao
[13] Adaboost 1 h, 8 h, 24 h SVM, ANN, Random Forest Taiwan EPA
[18] LGBM - XGB h , LGBM South Korea
[19] LSTM 1 h XGB, LGBM, LSTM South Korea
[20] Random Forest - BRT i , SVM, XGB, GAM j , Cubist Hong Kong
[21] BC-LSTM k 6 h C-LSTM, LSTM Madrid
[22] IMDA-VAE l - GRU, BGRU, LSTM, VAE, C-LSTM,

B-LSTM
Arizona, California,
Pennsylvania,Texas

[23] DLSTM m 48 h LSTM China
a 1-D deep convolutional gated recurrent neural network, b support vector regression, c dynamic treatment regime,
d bidirectional GRU, e Artificial neural networks, f boosted trees, g linear support vector machine, h extreme
gradient boosting, i boosted regression trees, j generalized additive model, k bidirectional convolutional LSTM,
l integrated multiple directed attention variational autoencoder, m developed LSTM.
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3. NO2 Seasonality Analysis in the City of Erfurt

The analysis of the NO2 concentration was based on four air quality sensors dis-
tributed in the city of Erfurt (Figure 2). This data are publicly available from the European
Environment Agency (EEA).

In the following we will refer to them by their official names, neglecting the prefix
STA.DE:

• STA.DE_DETH117
• STA.DE_DETH020

• STA.DE_DETH043
• STA.DE_DETH081

Figure 2. Location of the sensors in the city of Erfurt.

Traffic and land use have a high impact on the NO2 concentration [24–26]. There are
two main factors related to traffic, influencing the NO2 concentration. First, is the location
itself. Since most of the NO2 emission is caused by traffic, the distance to main roads and
air circulation (dense buildings or rural areas) is a crucial aspect. Second, the air quality
is influenced by the amount of traffic. While the location of a sensor is constant, there is
a high variation in the traffic over time, due to commuter traffic and working hours or
special events.

As can be seen in Figure 2, sensor DETH117 is quite far from the city, so it was expected
that it will be the least affected by traffic. Sensor DETH020 is the next farthest from the
centre and the busiest highways. On the other hand, sensors DETH081 and DETH043
are located in the city and near important highways. In the case of sensor DETH081, it
is located very close to a major highway, the K35 (highlighted in red in Figure 2), so we
expected its NO2 concentration measurements to be high. Next, we analysed in detail the
data of each sensor, in order to know their characteristics and thus suggest possible ML
models that allow accurate forecasts to be made. We analysed the historical NO2 data
distribution per sensor in the first step.

The other sensors DETH043 and DETH081 behave in a very similar way, as can be
seen in Figure 3. Both have almost the same IQR and average, as well as maximum and
minimum values, although the maximum of sensor DETH081 is slightly higher than that of
sensor DETH043. These two sensors are the closest to the city (most affected by traffic) and
this is evident in the metrics shown by the box plots.
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Figure 3. Box plots for the four sensors.

Next, we analysed the relationship between the days of the week and the NO2 level,
as well as with holidays. The objective of this analysis was to show the high seasonality of
our data and the relationship that exists between the days of the week (including holidays)
and the levels of NO2. The study was divided by sensors because each of them is located in
a different area and therefore the measurements may be conditioned by different factors.

In Figure 4, we have plotted the NO2 concentrations for the four sensors during the
first two weeks of September 2020. For the urban sensors (close to the city) we have used
similar colours red and magenta, while for the rural sensors we have used the colours green
and blue. As indicated before, the sensors located closer to the urban area show significantly
higher concentrations of NO2 than the sensors in rural areas. In Figures 5 and 6, we can
observe the differences in details.
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Figure 4. NO2 concentration for the four sensors, first two weeks of September 2020.
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Figure 6. NO2 concentration for urban sensors, September 2020, first two weeks sensors.

The high seasonality of the concentrations of NO2 is a proven fact, as can be seen in
Figure 7 and as some authors have previously shown [27]. On weekdays, much higher
concentrations are reached than at weekends. Sunday, especially, is a day in which the
concentrations of NO2 are very low. We can also observe the existence of two peak times per
day, with Thursdays and Fridays being the days when these peaks are highest. Although
only one example week is shown in the figure, this pattern is repeated every week of
the year, although there are differences between the different seasons of the year. We also
observe a difference between the sensors located in urban areas and rural areas. The closer a
sensor is located to the city, the higher the NO2 concentration, especially during peak hours.
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Figure 7. Weekly seasonality NO2 concentration for the four sensors (DETH020 blue, DETH043 violet,
DETH081 red, DETH117 green), week from 9 November until 15 November 2020.

Another interesting pattern observed in our data is that public holidays have a similar
influence as Sundays. The concentration of NO2 is very low compared to the other days of
the week. We also observe that those, known as “bridge days”, that is, those days trapped
between holidays and weekends, have NO2 concentrations very similar to Saturdays, that
is, lower than the other days of the week, but not as low as Sunday. In Figure 8, we have
plotted the NO2 concentrations for three of our sensors (Unfortunately for sensor DETH081,
it was not possible to retrieve the data for that date) during the week of October 1 to 5,
2018. As seen in Figure 8, despite being Wednesday (a day of very high concentrations),
the concentrations are extremely low since October 3rd is a public holiday in Germany
(German Unity Day). In Section 6.1, we will address more on this topic.
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Figure 8. NO2 concentration for three sensors, from October 1 until 5 October 2018.

4. On the Use of Embedding Layer in Neural Network: Encoding Traffic

Although neural networks can be considered a fairly old concept in the field of artifi-
cial intelligence [28,29], for some years their popularity declined and become practically
ignored. However, this began to change in 2006 when Dr. Geoffrey E. Hinton introduced
the deep belief networks [30]. It completely revolutionised the area of neural networks,
giving rise to deep learning. One of DL’s greatest contributions has been in the area of
natural language processing [31], where the introduction of embeddings achieved unprece-
dented improvement. An embedding is a mapping of a categorical variable to a vector of
continuous numbers. In the context of neural networks, embeddings are low-dimensional,
learned continuous vector representations of discrete variables [32].

4.1. DNN + Embedding

In this study, we used a dense neuronal network with an embedding layer to encode
calendar information. Dense Neuronal Networks (DNN) are fully connected networks.
This means each neuron in a layer receives input from all the neurons in the previous layer,
as outlined in Figure 9, which shows a representation of our network. Embeddings, as well
as meteorological variables, serve as input features (features layer). Finally, we used two
hidden layers with Relu-activation (Rectified Linear Unit). The output was one neuron
with linear activation.

Input 
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Figure 9. General scheme for DNN with an embedding layer.
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Embedding Layer for Calendar Features

The embedding layer was used to encode calendar information. We considered the
following embedding variables:

1. Hour: The categorical variable hour takes values in {0 . . . 23}, so in a one-hot-encoding
it has dimension 24. For its embedding dimension, we chose six, which follows
recommendations to use 25% of the input dimension for the embedding space [33].

2. Weekday: The categorical variable weekday takes values in {0 . . . N}, where N de-
pends on the representation of holidays outlined below. Its dimension is two. In
our study, we defined: weekday as {0 . . . 9}, considering seven weekdays and three
types of holiday; partial holiday, public holiday and bridge day (bridge, partial, and
public holiday describe days with influence through public holidays; public is the
actual public holiday, partial is a public holiday in only parts of Germany and bridge
describes days between a public holiday and weekends). A list of holidays used in
this study can be found in the Appendix A.

3. Month: The categorical variable month takes values in {1 . . . 12}, its dimension is three.

The dimension of the vector embeddings was fixed in accordance with the recommen-
dations by the authors of [33] for the use of embeddings in calendar variables.

5. Experimental Study

In this section, we describe the experimental study we carried out for the prediction of
the NO2 concentration in the city of Erfurt. Firstly, we will refer to the data that we used
as well as the source from which they were obtained; next we will show the setup of our
experiments, then the results and finally, our conclusions about the results.

5.1. Data

As indicated in Figure 9, two sets of data were needed: the historical NO2 measure-
ments and meteorological variables. The calendar model uses only the historical NO2
time series and the meteorological model uses the historical NO2 and the meteorological
variables, a multivariate time series with 7 variables.

The basic calendar information (day of the week) was directly provided by the used
programming language (Python). Additional information such as about partial holidays,
public holidays and bridge days was provided as a dedicated data set (CSV file) to the
model. The classification of the days is described in Appendix A.

For the time series data , an integrative approach was chosen. In the first step, external
data were imported from external sources and then transformed into a unified data model.
Afterwards, these data were used to train the model, using a common interface for data
access. It turned out that the OGC SensorThings API [34] provides an intuitive data model
and an easy-to-use interface to access time-series data. In this case study, we relied on
historical NO2 values from the European Environment Agency. This dataset was already
available through the SensorThings API (https://datacoveeu.github.io/API4INSPIRE/dat
anests/ad-hoc.html and https://airquality-frost.docker01.ilt-dmz.iosb.fraunhofer.de/v1.1,
accessed on 10 December 2022).

In addition, commercial weather data were used to provide the meteorological vari-
ables. Those data sources were imported into FROST® (https://github.com/FraunhoferI
OSB/FROST-Server, accessed on 10 December 2022), an open-source implementation of
the SensorThings API. Our forecast model uses seven weather variables, which have been
recommended by Bosch (Product Area Air Quality Solutions Passenger Car (PS/PAQ-PC),
Robert Bosch GmbH) experts. The considered variables are the following:

1. Wind speed (km/h);
2. Wind direction (degree);
3. Precipitation (mm/h);
4. Temperature (°C);
5. Pressure (hPa);

https://datacoveeu.github.io/API4INSPIRE/datanests/ad-hoc.html
https://datacoveeu.github.io/API4INSPIRE/datanests/ad-hoc.html
https://airquality-frost.docker01.ilt-dmz.iosb.fraunhofer.de/v1.1
https://github.com/FraunhoferIOSB/FROST-Server
https://github.com/FraunhoferIOSB/FROST-Server
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6. Cape (J/kg);
7. Radiation (W/m2).

Since all variables have a different scale, we used the Z-score normalisation, i.e., we
computed (x− µ)/σ for each value x, where µ is the mean and σ the standard deviation of
the corresponding data.

Table 2 shows the time periods for each of the considered sensors, where historical
data are available. As can be seen, the last three months were used as a test sample
and the rest of the data (all available data) were used to train the model. The chosen
approach allows decoupling of the training of the model from data provisioning. There is
an abstraction for the data source-specific interfaces: zipped CSV files from the European
Environment Agency’s proprietary JSON-based interface for the meteorological variables.
Only a standardized SensorThings API endpoint needs to be queried when training the
model. In the future, it will be possible to exchange data sources (e.g., choosing a different
provider for the meteorological variables) to obtain even better prediction results. In this
case, only the import needed to be adapted, whereas the model itself kept unchanged.

Table 2. Training and testing period per sensor.

Sensor Data Points Training Testing

DETH043 16959 2018, 2019, 2020 until August September, October and November 2020
DETH020 25127 2018, 2019, 2020 until August September, October and November 2020
DETH117 15967 2019, 2020 until August September, October and November 2020
DETH081 15010 2019, 2020 until August September, October and November 2020

5.2. Parameters, Data Structure and Models Configuration

The parameters and configuration of most of the models used in the study were ob-
tained from those recommended by the authors of the papers studied. Detailed parameters
are shown in Table 3. In some cases where they were not mentioned, we used the default
values, and in the case of DNN+embedding, we used those parameters recommended
in [33].

Table 3. Parameter and model configuration for methods used in our study.

Model Parameters Input Data

DNN Table 4 model 1: calendar
model 2: cal+met

LSTM hidden layer = 2 cal+met
neurons/layer = 64

epochs = 30

dropout = 0.4

optimizer = Adam

loss = MSE

LGBM_Bosh parameter max_depth: −1 cal+met
learning_rate: 0.005

num_iterations: 4837

feature_fraction:0.6

bagging_fraction: 0.9

bagging_freq: 5

LGBM_bayesian_opt max_depth: 15 cal+met
min_split_gain: 0.1

num_iterations: 100

feature_fraction:1.0

bagging_fraction:1.0

num_leaves:5
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Table 3. Cont.

Model Parameters Input Data

LGBM_Qadeer max_depth:-1 cal+met
learning_rate:0.005

num_iterations: 4837

feature_fraction:0.6

bagging_fraction:0.9

bagging_freq:5

Adaboost base_estimator = Decision_tree cal+met
n_estimator = 50

learning_rate = 1.0

LSTM-encoder-decoder dropout = 0.4 cal+met
loss = MSE
epochs =30

optimizer = Adam

encoder_LSTM

embedding layer = 1

embedding layer neurons = 16

encoder_rnn_hidden = 224

decoder_LSTM

embedding layer = 1

embedding layer neurons = 16

decoder_rnn_hidden = 224
cal+met: calendar variables and meteorological variables forecasting.

Table 4 shows the configuration of the DNN+embedding used in our study. It is
important to mention that for the selection of the parameters of our DNN we did not carry
out any process of selection/optimisation of the hyperparameters. The selection was based
on a recent study and the authors considered that, for future work, an optimisation study
of the hyperparameters and the architecture of the DNN should be carried out [33].

Table 4. Dense neural network parameters.

Parameters DNN
Model Sequential
Hidden layers 2
Neurons per layer 60/60/1
Loss function mse
Type of layer dense
Activation output linear
Activation hidden layers relu/relu
Epoch 100
Optimizer RMSprop(0.001)

6. Results

As we saw in the previous section, most state-of-the-art methods only predict pollutant
concentrations for the next hour, which is not sufficient for our use case. Our goal was
to predict 24 h of NO2 concentrations and thus make decisions that help avoid high NO2
concentrations. That is why in our experimental study we defined three time horizons:

1. Forecast the next 24 h;
2. Forecast the next 72 h;
3. Forecast the next 120 h.

As Table 2 shows, our test set is, in all cases, from September 2020 until the last day
available in the data (in some cases November, in others 17 December). The training proce-
dure followed was: starting on 1 September, we iteratively forecasted the next time horizon
hours, we calculated the evaluation metric, mean absolute error (MAE Equation (1)), added
the current testing period to the training set, and again we forecasted the next time horizon
period. The idea behind this daily recalibration schema was to have a mean error of several
testing periods (every time horizon).
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MAE =
1
H

H

∑
i=1

∣∣Nr − Np
∣∣, (1)

where H is the number of hours, Nr is the real NO2 concentration and Np is the predicted
NO2 value.

We used the standard scaler for the meteorological variables.
An important observation is that the results do not vary as the time horizon varies.

This is because we used the real measurements of the meteorological variables and not
the forecasts, the history of the meteorological forecast is not available in the Meteomatics
API. In the final application, the model will be trained with the historical data (NO2 and
meteorological variables) but the forecast of NO2 will be made from the forecast of the
meteorological variables.

Table 5 shows the results of training the model with historical pollution data and
meteorological variables for all the studied models. As can be seen in Table 5, the most
competitive methods are model 2 of DNN+embeddings and the LGBM model used by
Bosch, which significantly outperform the rest of the models.

Despite the Bosch LGBM model and model 2 using DNN+embeddings behaving very
similarly, for the DETH081 sensor the difference is significant when the DNN+embedding
outperforms the LGBM model by almost 1 point. In this sense, we must point out that this
was what we were waiting for. As we described in Section 3 and as observed in Figure 2,
sensor DETH081 is very close to a road with a lot of traffic, which makes it the sensor (of
the four studied) most affected by traffic.

These results confirm our theory that, for those sensors that cover areas highly affected
by traffic, the use of embedding variables to encode the calendar information in a dense neural
network is a significantly superior solution to the rest of the methods with which we have
compared it in this study.

In order to offer more details about the performance of our models, below we will
present some plots, where it is possible to see how our model is able to predict (quite
accurately) the month of September 2019, a month in which quite unusual behaviour of
NO2 concentrations was observed.

In Figures 10–13, we show the real and predicted values for the month of September
2019. The time horizon used in the prediction was 120 h (5 days). As can be seen, despite the
fact that our model has a fairly accurate behaviour in the prediction, there are some peaks
in which our prediction is very far from the real value. Looking in detail at those peaks,
and comparing them with similar days, we discover that these values are exceedingly high
and outliers. Something out of the ordinary (not meteorological) could cause this increase
in the NO2 level. From our research, we know that traffic and meteorologic conditions are
the main causes of variations in the levels of NO2 , leading us to the assumption that an
increase in traffic may be the cause of these high levels of NO2 .

However, we have drawn an important conclusion from this unusual behaviour: for
future improvements of our model, it would be very beneficial to have a new input variable,
related to local festivities (carnivals, concerts, festivals), as well as accidents that occurred
in the neighbourhood of the sensor, for the model. Although it is obvious that accidents are
not predictable, and therefore this variable could not be used as input to the model to make
future predictions, it could be used to explain unusual peaks.
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Table 5. Mean absolute error average for all the compared methods.

Sensor Method Data/Encode 24 h 72 h 120 h

DE_DETH043 DNN+embedding
model 1 9.1929 9.1248 9.3957
model 2 7.1700 7.3858 7.4489

LGBM
ordinal 7.2325 7.3216 7.4517
one_hot 7.2789 7.4297 7.4600

LGBM-BOSCH ordinal 6.9420 7.0837 7.1495

LSTM
input = 10 8.7743 8.4007 8.1686
input = 24 10.7109 11.2327 10.8840

Adaboost
onehot 13.2796 13.3503 13.1704
ordinal 12.5644 12.3406 12.5564

LSTM-AE seq len 5 11.0249 14.0768 14.3268

DE_DETH020 DNN+embedding
model 1 6.5689 6.7591 6.8499
model 2 4.9559 5.1095 4.9550

LGBM
ordinal 5.2947 5.2884 5.3362
one_hot 5.3856 5.4101 5.3858

LGBM-BOSCH ordinal 5.1039 5.1641 5.2147

LSTM
input = 10 5.3348 5.3718 5.4127
input = 24 6.4097 6.5072 6.2651

Adaboost
onehot 8.2344 8.0955 7.9516
ordinal 9.3091 9.1417 9.3261

LSTM-AE seq len 5 7.9955 9.3003 9.4265

DE_DETH117 DNN+embedding
model 1 6.6708 6.6076 6.7113
model 2 4.3912 4.5071 4.4123

LGBM
ordinal 4.3028 4.3722 4.4029
one_hot 4.3391 4.4280 4.4166

LGBM-BOSCH ordinal 4.1809 4.2906 4.2971

LSTM
input = 10 4.6209 4.7725 4.8600
input = 24 5.9599 5.8841 6.0775

Adaboost
onehot 7.4650 7.4633 7.5334
ordinal 7.4651 7.3091 7.2455

LSTM-AE seq len 5 7.4113 7.7973 7.7239

DE_DETH081 DNN+embedding
model 1 7.5889 8.0022 8.1991
model 2 6.4381 6.3969 6.8792

LGBM
ordinal 7.4838 7.7298 7.9176
one_hot 7.3926 7.5320 7.7081

LGBM-BOSCH ordinal 7.2872 7.5083 7.5210

LSTM
input = 10 8.2826 7.9086 7.7629
input = 24 11.3915 11.5506 11.3960

Adaboost
onehot 13.3968 13.5412 13.4224
ordinal 13.5186 13.6836 13.1394

LSTM-AE seq len 5 10.8096 15.0223 14.6538
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Figure 10. Real and predicted NO2, Sensor DETH043, September 2019, horizon: 120 h.
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Figure 11. Real and predicted NO2, Sensor DETH081, September 2019, horizon: 120 h.
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Figure 12. Real and predicted NO2, Sensor DETH020, September 2019, horizon: 120 h.
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Figure 13. Real and predicted NO2, Sensor DETH117, September 2019, horizon: 120 h.

Despite the four studied sensors registering the high outliers, sensors DETH043 and
DETH081 reached the highest values, with almost 120 µg m3, and sensor DETH117 (the
one located in the rural area) registering the lowest peaks.
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6.1. Interpretability through the Embedding Space

The embedding vectors resulting from neural network training are often very useful
for finding behaviour patterns in categorical variables that cannot be distinguished with the
naked eye. Following this assumption, we show the use of the embedding vector obtained
during the training of the DNN to graphically understand how the models use the calendar
information in the forecast. To visualise the resulting embedding vectors, we coded some
functions that recreated what Tensorflow Projector does https://projector.tensorflow.org/,
accessed on 10 December 2022).

Figure 14 shows in three dimensions the resulting embedding vectors for the 24 h. As
can be seen, the hours form a cycle, but they do not behave like a clock.

1 
 

 

Figure 14. Hours in the embedding space.

In Figure 15 we show the projection of the resulting embeddings vectors for the
dimension “day of the week”. In this case, the way in which the embedding vectors have
been grouped is very interesting. Sundays and holidays are very close as well as Saturdays
and bridge days; the weekdays have also created two well-defined groups, which makes
total sense and is in total correspondence with what was observed in the study carried out
in Section 3.

Figure 15. Weekdays in the embedding space.

https://projector.tensorflow.org/
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Finally, Figure 16 shows the projection of the embeddings obtained for the months of
the year. In this case, although not all the months belong to well-defined groups, it can be
seen, for example, that the winter months are quite close together, although partially mixed
with the autumn months. Something similar happens with the spring and summer months.

Figure 16. Month in the embedding space.

As has been observed in the projection of the embeddings resulting from the training of
our dense neural network, the use of embeddings not only guarantees a better encoding of
the categorical variables within the neural networks but also gives us some clues about the
interpretability of the results. The grouping of the categories observed in Figures 14–16 can
help users of our model to understand, for example, a very low forecast for a Wednesday
(day of very high NO2 levels) only if that Wednesday is a holiday. It can also be useful in
making decisions related to reducing NO2 levels.

6.2. Our Contribution to the Sustainable Development Goals

The Sustainable Development Goals (SDGs), also known as the Global Goals, were
adopted by the United Nations (UN) in 2015 as a universal call to action to end poverty,
protect the planet, and ensure that by 2030 all people enjoy peace and prosperity [35].

The 17 SDGs enunciated by the UN have become a priority for many countries, and in
this sense Germany is a leader within them. Of the 17 goals stated by the UN, we believe
that our work contributes to three of them (highlighted below):
1. No poverty;
2. Zero hunger;
3. Good health and well-being;
4. Quality education;
5. Gender equality;
6. Clean water and sanitation;
7. Affordable and clean energy;
8. Decent work and economic growth;
9. Industry, innovation and infrastructure;
10. Reduced inequalities;
11. Sustainable cities and communities;
12. Responsible consumption and production;
13. Climate action;
14. Life below water;
15. Life and land;
16. Peace, justice and strong institution;
17. Partnerships for the goals.
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Good health and well-being : The reasonable, controlled and environmentally com-
mitted use of transportation, as well as the measures taken by local governments after
knowing the forecast of pollutants in the air, will undoubtedly result in big health benefits.

Sustainable cities and communities: Using an application such as the one suggested
in this research can help considerably with achieving more sustainable cities. Letting the
population and local governments know the quality of the air they breathe, and at the same
time making them participate and be responsible for reducing polluting gases, will achieve
more sustainable cities and citizens more committed to the environment.

Climate action: From our point of view, this application puts more responsibility in
the hands of citizens and local governments, telling them in a closer way, “you can do a
lot for the planet”. Somehow it is a popular thought to believe that climate change is a
matter for big industries and governments at very high levels and that one person cannot
do anything. However, this application goes to show that if "you only use your bicycle” or
“take public transport” (that the government has reduced the price of), you will be able to
breathe cleaner air; then, indeed, we are all taking action against climate change and taking
care of the planet.

7. Conclusions and Future Work

In this paper, we have presented a study to forecast NO2 concentrations in the city of
Erfurt, Germany, 1, 3 and 5 days in advance. We used some of the most significant methods
within the state-of-the-art to forecast pollutants. We also introduce the use of DNN using
embedding variables to encode calendar information. The comparative study carried out
shows the most competitive methods the LGBM model with the hyperparameters currently
used by the “Robert Bosch GmbH” and our proposal.

Although for three of the four sensors studied, there is no difference regarding the
Bosch LGBM model and ours, for one of the sensors (the one that is very close to a highway
with a lot of traffic) this difference is significantly in favour of our model. This result
corroborates our hypothesis and allows us to conclude that, in the forecast of the NO2
concentration time series, the use of embedding variables to encode the calendar information,
in a dense neural network, also encodes the traffic behaviour in a very efficient way. For this
reason, we highly recommend our proposal for all those pollutants forecast applications
(associated with traffic), in which the traffic data are unknown, as in our case. The second
important conclusion that we can draw from our study is that the visualisation of the
embedding vectors resulting from the training of the DNN can be considered a very useful
tool for finding relationships between categorical variables and associated concepts, and for
making decisions that in some way contribute to the reduction of emissions. In future work,
we intend to improve our model by using the calendar service currently being developed
by the Fraunhofer-IOSB, incorporating new meteorological variables, and optimising the
DNN hyperparameters as well as the network architecture.

We like to believe that, in a very modest way, the use of our models by users at different
levels (from high government officials with decision-making power to citizens who can
decide whether to use a bicycle or a car) will contribute to reducing emissions of NO2 .
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Appendix A. Detailed Classification of Public Holidays

The embedding for calendar features builds upon the following classification of holidays:

• public holidays : Christmas, Day After Christmas, New Years Day, First of May (In-
ternational Workers Day), Day of German Unity, Good Friday, Easter Sunday, Easter
Monday, Ascension Day, Pentecost Monday,

• partial holidays: assumption of Mary, Reformation Day, All Hallows Day, Day of Prayer
and Repentance, Pentecost Sunday, the Christmas week,

• bridge days: all days between public holidays, Fridays if Thursdays are public holidays
and Mondays if Tuesdays are public holidays.
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