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Abstract: Chinese loess provides the most detailed terrestrial records of paleoclimate changes. We
employed the grain-size components of aeolian sediments to reconstruct the history of the East
Asian winter monsoon (EAWM) on the Chinese Loess Plateau (CLP). Here, using the grain-size class
vs. standard deviation method, we extracted the environmentally sensitive grain-size components
of nine last glacial loess sections. The grain-size class vs. standard deviation diagrams showed
two major grain-size components (fine and coarse), which varied from section to section. Material
resource distances and post-depositional pedogenesis were the main factors affecting environmentally
sensitive grain-size components. The coarse grain-size components of the Yulin, Baicaoyuan, Xifeng,
and Luochuan sections were influenced by the transportation distance, while we attributed the fine
grain-size components of the Weinan, Shaoling, Duanjiapo, and Chaona sections to pedogenesis. At
the same time, the Mianchi section’s sensitive grain-size component was also coarse, and was affected
by the local circulation from the nearby Yellow River terrace. Our comparison of sensitive grain-size
components and EAWM revealed that the coarse grain-size components were progressively finer
along with the EAWM from the northwest to the southeast on the CLP, and they can be regarded as
the most suitable proxy indicator of the EAWM on the CLP.

Keywords: aeolian; grain size; atmospheric circulation; last glacial loess; East Asian winter monsoon

1. Introduction

The near-continuous Quaternary loess-paleosol sequences and the Neogene red clay
deposits on the CLP have provided important information about paleoclimatic and pale-
oenvironmental changes, with the global climate cooling since the Cenozoic Era and the
appearance of inland drought [1–14]. The effects of alternations to loess-paleosol sequences
on the CLP are well documented, including the changes brought by the East Asian mon-
soon (EAM) over the past 2.6 Myr [3,4,7,11–16]. The grain-size proxy exhibits high-quality
information on the variability of the EAWM [3,4,7,8,10,14–16]. The grain size and thickness
of the last glacial Malan loess (L1) exhibit a clear decreasing trend from northwest to
southeast across the CLP [1,17–27], indicating that the EAWM weakened gradually.

Sedimental grain size is a widely used indicator for studying climatic changes and
environmental evolution because of its close links to sedimental sources, transport dy-
namics, and depositional environments [22,28–47]. Previous studies on the grain-size
characteristics of modern dust and loess deposits suggested that the grain-size components
of aeolian sediments have been employed to reconstruct the history of EAWM, which
can provide important information about its provenance and changes in the sedimental
environment [26,29,32–34,42,48–51]. A stronger EAWM results in a larger median size and
higher coarse-fraction content of dust and loess samples [48,50,52–55]. Grain-size parame-
ters, such as median and mean grain size, size ratio, and coarse-fraction content, are widely
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selected for reconstructions of winter monsoon variations [10,24,26,56–58]. Therefore, the
grain sizes of loess/paleosol sequences are considered proxies for winter monsoon strength,
which can be correlated with Northern and Southern Hemisphere proxy records [26,50].

The grain-size class standard deviation method permits easy identification of the
grain-size intervals, with the largest variability along the sedimentary sequences [59].
Additionally, this method has been applied successfully in the research of loess [52,60], lake
sediments [61], and marine deposits [53,55,59,62,63]. However, much less is known about
the spatial variation characteristics of the environmentally sensitive grain-size components
of the last glacial loess. Here, using the grain-size class standard deviation method, we
performed an analysis of environmentally sensitive grain-size components from the last
glacial loess on the CLP [64–70]. Our objective is to better determine which grain sizes of
the loess deposits can be used to delineate variations in EAWM strength.

2. Materials and Methods

In our study, we logged nine last glacial loess sections in the CLP (Table 1), located at
Yulin, Baicaoyuan, Xifeng, Luochuan, Chaona, Mianchi, Weinan, Duanjiapo, and Shaoling
(Figure 1).

Table 1. Nine last glacial loess sites on the Chinese Loess Plateau.

Sampling Sections
Samples

Latitude Longitude Altitude L1 Thickness L1 MGS 1

Site Abbreviations ◦ N ◦ E m m µm

Yulin YL 200 38.271 109.792 1197 11.60 62.75
Baicaoyuan BCY 210 36.218 105.024 1830 13.35 41.33

Xifeng XF 205 35.783 107.623 1352 11.80 29.41
Luochuan LC 56 35.752 109.416 1065 8.04 22.37

Chaona CN 208 35.147 107.224 1464 6.18 21.32
Mianchi MC 130 34.772 111.777 535 7.12 24.87
Weinan WN 288 34.415 109.562 787 8.20 18.62

Duanjiapo DJP 209 34.188 109.233 593 5.00 18.41
Shaoling SL 91 34.138 108.965 443 6.70 18.15

1 MGS is mean grain size.

We prepared grain-size samples according to Lu et al.’s pretreatment method [71].
We first pretreated the dry bulk samples weighing 0.3–0.5 g with 30% hydrogen peroxide
(H2O2) to remove organic matter, and then 10% hydrochloric acid (HCl) to remove calcium
carbonate, which ensured that our results reflected the grain-size distribution of the silici-
clastic loess fraction. We then suspended the treated samples in deionized water, dispersed
with 10 mL 10% (NaPO3)6 solution, and sonicated and oscillated in an ultrasonic bath for
10 min to completely separate the fine particles. We measured the grain-size distributions
using a Mastersizer 2000 which manufactured Malvern, Britain. Replicate analyses indi-
cated that the mean grain size had an analytical error of <3%. We calculated the standard
deviation with all samples for each 100-grain-sized class within a measurement range of
0.02–2000 µm with a 0.1 Φ interval. The standard deviations evidenced the sensitive degree
of each grain-size component to the distance variation along the dust conveying direction.
Here, we used the grain-size classes vs. the standard deviation method to identify the
grain-size intervals with the most variability along a depositional sequence. We derived
the percentage contents of samples for each grain-size level (generally divided into the
100-grain grade) from grain-size data. Additionally, we calculated the standard deviation
from the grain-size data. We calculated the grain-size classes vs. standard deviation figures
by taking the grain size as the X-axis and the standard deviation as the Y-axis, from which
sensitive grain-size components could be clearly obtained.
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Figure 1. Map showing location of loess sections (black spot) (a) on Chinese Loess Plateau (b). YL:
Yulin; BCY: Baicaoyuan; XF: Xifeng; LC: Luochuan; CN: Chaona; MC: Mianchi; WN: Weinan; DJP:
Duanjiapo; SL: Shaoling; EASM: East Asian summer monsoon; EAWM: East Asian winter monsoon.

3. Results

According to the grain-size records of the nine loess sections, the grain-size class vs.
standard deviation values are displayed in Figure 2.

Figure 2 shows that two or three typical peaks are observed in the grain-size classes
vs. standard deviation curves of nine sections. The grain-size variations in the aeolian
sediments are controlled by many factors. The Yulin section shows two standard deviation
peaks at 39.9 µm and 141.6 µm, with size-range boundaries of 71.0 µm (Figure 2a). However,
the Baicaoyuan section also has the three standard deviation peaks at 0.4 µm, 16.0 µm,
and 69.2 µm corresponding to size ranges which are <0.8 µm, 0.8–31.7 µm, and >31.7 µm
(Figure 2b). The three standard deviation peaks appear in the Xifeng section as 0.6 µm,
11.9 µm, and 56.9 µm, corresponding to size ranges of <0.8 µm, 0.8–26.1 µm, and >26.1 µm,
respectively (Figure 2c). The Luochuan section also has two standard deviation peaks at
14.2 µm and 56.4 µm, with size ranges of <28.3 µm and >28.3 µm, respectively (Figure 2d).
For the Chaona section, there are three obvious peaks on the grain-size class vs. standard
deviation curves, namely 3.9 µm, 14.1 µm, and 50.2 µm, which correspond to size ranges of
<5.6 µm, 5.6–28.3 µm, and >28.3 µm, respectively (Figure 2e). The Mianchi section shows
two standard deviation peaks at 39.9 µm and 87.5 µm, which have size-range boundaries
of 56.4 µm (Figure 2f). The Weinan and Shaoling sections show two standard deviation
peaks at 2.9 µm and 30.2 µm, and 12.6 µm and 35.6 µm, respectively, which have size-range
boundaries of 6.6 µm and 17.8 µm, respectively (Figure 2g,i). The Duanjiapo section has
many peaks on the grain-size class vs. standard deviation curves, with the two main peaks
at 10.8 µm and 46.8 µm, which have size ranges of <21.4 µm and >21.4 µm, respectively
(Figure 2h).

We obtained the fine and coarse sensitive grain-size components data by performing
the Mann–Whitney U statistic. The Mann–Whitney U statistic process is as follows.
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Chinese Loess Plateau.

The computation of the Mann–Whitney U statistic begins by arbitrarily designating
two samples as fine- and coarse-size groups. The data from the two groups are combined
into one group (Table 2), with each data value retaining a group identifier of its original
group. The pooled values are then ranked from 1 to n, with the smallest value being
assigned a rank of 1. The fine and coarse grain sizes are designated as Group 1 and 2,
respectively (Table 3). n1 is the amount of Group 1, while n2 is the amount of Group 2 (both
are 9). We computed and designated the sum of the ranks of the values from Group 1 and 2
as W1 and W2, respectively. According to Table 2, W1 is 49 and W2 is 122.

We hypothesized that there were no differences between the fine and coarse grain-size
components except for their average values. We tested that H0 had no difference the
between fine and coarse grain size, whereas we tested that H1 had a difference between the
fine and coarse grain size.
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Table 2. Ranks of fine and coarse grain size from nine loess sections.

Ranks Grain Size Ranks Grain Size

1 2.90 10 39.80
2 10.80 11 39.90
3 11.90 12 46.80
4 12.60 13 50.20
5 14.10 14 56.40
6 14.20 15 56.90
7 16.00 16 69.20
8 30.20 17 87.50
9 35.60 18 141.60

Table 3. Groups of fine and coarse grain size from nine loess sections.

Group 1 Group 2

Grain Size Ranks Grain Size Ranks

39.90 11 141.80 18
16.00 7 69.20 16
11.90 3 56.90 15
14.20 6 56.40 14
14.10 5 50.20 13
39.80 10 87.50 17
2.90 1 30.20 8
10.80 2 46.80 12
12.60 4 35.60 9

The U1 and U2 values are calculated as follows

U1 = n1n2 +
n1(n1 + 1)

2
− W1 (1)

U2 = n1n2 +
n2(n2 + 1)

2
− W2 (2)

where the values n and W have been obtained, and we calculated the Mann–Whitney U
statistic statistics, in which U1 and U2 are 77 and 4, respectively. The Uα (α = 0.05) can be
obtained from the U statistic schedule, which is 17 in this study. Because of U2 < Uα, the
test rejects H0 and accepts H1. Our results show that the fine and coarse components have
significant differences. The grain-size class vs. standard deviation curves of our selected
loess sections display the coarse and fine sensitive grain-size components. The fine and
coarse components presented the CLP’s spatial particle aggregation.

4. Discussion
4.1. Spatial Variations in Sensitive Grain-Size Components of Last Glacial Loess on CLP

The grain size of aeolian deposits is mainly affected by the source area, wind intensity,
and weathering [10,17,29,38,56]. The loess deposits in the northern and northwestern
regions have been relatively greater affected by the source area, and the weathering degree
and pedogenesis have influenced and changed the particle-size distribution of the southeast
loess [1,2,7,10,62]. According to the curves of the grain-size class vs. standard deviation
(Figure 2), apart from the standard deviations of coarse and fine sensitive components
in the Weinan and Mianchi sections being comparable, the sensitive coarse grain-size
compositions of the Luochuan, Yulin, Xifeng, Shaoling, and Baicaoyuan sections have a
higher standard deviation than the fine grain-size components. This indicated that the
content of coarse particles can better reflect the sedimentary environment changes. The
sensitive grain-size components of the Yulin, Baicaoyuan, Xifeng, and Luochuan sections
were coarser, being more influenced by the distance from material resources, whereas the
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Weinan, Shaoling Duanjiapo, and Chaona sections were finer as they were more influenced
by the weathering degree and pedogenesis. The sensitive grain-size components of the
Mianchi section were also coarser, which may be affected by local circulation and the nearby
Yellow River terrace.

Because the size ranges define the limits of classes, the grain-size component of
the maximum peak belongs to the sand component, which with the intermediate peak
belongs to the silt component [10,28,62], while the minimum peak mainly belongs to the
silt component. Figure 2 shows that the sand component of the nine loess sections has the
highest standard deviation value. Thus, the sand component displays a decreasing trend
from northwest to southeast on the CLP. The silt component of the nine loess sections also
decreases gradually. The clay and fine silt components from Xifeng, Luochuan, Shaoling,
Weinan, Baicaoyuan, and Duanjiapo are mainly delivered in suspension transport by
the high-level air current far away from the source area. Therefore, the fine grain-size
component is not a suitable proxy indicator for the loess from the CLP. The standard
deviation went to zero in the grain-size data of some loess sections, which mainly appeared
in the superfine and coarse powder in the grain size-standard deviation curves (Figure 2).
However, the superfine grain-size intervals were very small and divided into many more
grain-size classes, which was one of the main reasons for the standard deviation to zero.

According to the two sensitive components, the coarse component in most loess
sections has the largest standard deviation (Figure 2), with the highest degree of sensitivity
for paleoclimatic changes, suggesting that this component is the most sensitive to the
variation in source-to-sink distance. Thus, the coarse particle component is the most
suitable proxy indicator of the last glacial loess.

4.2. The EAWM Implicated by Coarse Sensitive Grain-Size Component

Grain size is commonly used as a proxy for EAWM intensity, with higher values
in glacial loess and lower values in interglacial paleosols [2,3,10,26,40,42]. Furthermore,
magnetic susceptibility (MS) is also commonly used for EASM intensity, with the loess and
paleosols layers showing lower and higher MS values, respectively [3,72–75]. Therefore,
in our study, we used mean grain size (MGS) and low-frequency MS. The coarse grain-
size component and MGS from the selected loess sections have a decreasing trend from
northwest to southeast on the CLP (Figure 3), indicating the EAWM’s gradually weakening
trend.
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Figure 3. Variations in coarse particle size by scatter plot (a) and bar graph (b) from nine last glacial
loess sections.

To further explore the variations in the EAWM, we selected MGS and MS to study
the spatial changes (Figures 4 and 5). The results showed that the MGS decreased from
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the northwest to the southeast on the CLP (Figure 5a), whereas the MS increased from the
northwest to the southeast (Figure 5b). This indicated that the EAWM intensity gradually
weakened following the variations in MGS. At the same time, the EASM intensity gradually
enhanced following the variations in MS. The decreased coarse grain size and increased
fine grain size corresponded with the distance of the EAWM from the Asian high-pressure
center and dust source. In addition, the fine grain-size components that were linked to
pedogenesis were affected by the EASM’s rainfall.
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Above all, the spatial variations in the coarse grain-size component of the last glacial
loess can better reflect the evolution of EAWM on the CLP. We interpret the decreasing
trend in grain size and coarse sensitive size component from northwest to southeast as
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gradually weakening from the EAWM. The sedimental grain size appears to be arranged
from large to small in the northwest and southeast, respectively, which indicates that the
sensitive coarse grain-size component is a sensitive proxy for the EAWM’s variability.

5. Conclusions

Using the grain-size class vs. standard deviation method, we extracted the environ-
mentally sensitive grain-size components based on the grain size of the nine last glacial
loess sections. Among the sensitive grain-size components, the coarse particle size in most
loess sections has the highest standard deviation. It also has the most degree of sensitivity,
suggesting that the coarse-particle component is the most sensitive to the variations in
source-to-sink distance. The coarse grain-size components also have a decreasing trend
from northwest to southeast on the CLP. Comparisons between the coarse grain-size com-
ponent and mean grain size reveal that the coarse grain-size components decrease along
with the weakening of the EAWM from the northwest to the southeast on the CLP, which
can be regarded as a suitable proxy indicator of grain size and the EAWM on the CLP. More
evidence regarding grain size is needed in the future to reflect the evolution process of the
EAWM and atmospheric circulation.
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