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Abstract: An exact analytical expression for the electric field of the return stroke as excited by a
propagating step current source is derived in this paper. This expression could be advantageously
used to evaluate the disturbances caused by lightning on overhead lines. There are three equivalent
procedures to evaluate the voltages induced by lightning on power lines, namely, the Agrawal–Price–
Gurbaxani model, the Taylor–Satterwhite–Harrison model, and the Rachidi model. In the case of a
vertical return stroke channel, the coupling model developed by Rusck becomes identical to these
three coupling models. Due to its simplicity, the Rusck model is frequently used by engineers to
study the effects of lightning on power distribution and transmission lines. In order to reduce the
time involved in the electromagnetic field calculation, the Rusck model is incorporated with an
analytical expression for the electromagnetic fields of the return stroke excited by a propagating step
current pulse. Our research work shows that the Rusck expression can be used to calculate the peak
values of lightning induced voltages to an accuracy of about 10%. However, the use of this analytical
expression to calculate the time derivatives of lightning induced voltages may result in errors as
large as 50%. The derived expression in this paper can be used to correct for this inaccuracy. We also
provide an exact expression for the electric field at any given point in space when the propagating
current is an impulse function. This expression can be combined with the convolution integral to
obtain the electric field corresponding to waveforms similar to measured return stroke currents.

Keywords: lightning; return stroke; transmission lines; distribution lines; induced voltages;
electromagnetic coupling models; Rusck model; accelerating charges; electromagnetic fields

1. Introduction

Lightning is one of the natural causes of disturbance and disruption in power transmis-
sion and distribution lines [1–3]. Lightning can affect these systems either through direct
strikes or indirectly through electromagnetic field coupling [4]. The mitigation of these indi-
rect effects requires information concerning the temporal behavior of the lightning induced
voltages in power transmission and distribution lines. Since the direct measurements of
these voltages and currents in live power systems are difficult, engineers have developed
procedures to evaluate the features of these disturbances through computer simulations.
Such analyses require information on the electromagnetic fields generated by lightning
return strokes and coupling models to represent the interaction of these electromagnetic
fields with the lines. There are several field-to-line coupling models in the literature, namely
those introduced by Rusck [5], Agrawal et al. [6], Taylor et al. [7], and Rachidi [8]. The latter
three models have been shown to be equivalent to each other, even though each represents
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the field-to-line coupling equations in terms of different excitation sources [9]. The Rusck
model, which neglects one of the source terms, is equivalent to the other three only in the
case where the lightning channel is vertical [10]. However, since the analysis of indirect
effects of lightning on power distribution and transmission lines is commonly conducted
by assuming that the lightning channel is vertical, Rusck’s coupling model can be used in
these engineering studies without any disadvantages in comparison to the other coupling
models. This fact, combined with its simplicity, made this model an important engineering
tool in the assessment of lightning induced voltages in power transmission and distribution
lines [1–3,11–13]. As mentioned earlier, in order to evaluate lightning induced voltages
on power transmission lines, in addition to the field-to-line coupling model, one needs
to know the electromagnetic fields generated by lightning at different distances from the
lightning channel (along the line). In general, these fields are calculated using return stroke
models. There are many return stroke model types in the literature. These models can be
classified into gas dynamic models (or physics based models), Electromagnetic models,
waveguide models, transmission line models, and engineering models [14–17]. Due to their
simplicity and their ability to successfully reproduce the salient features of the lightning
electromagnetic pulse (LEMP), return stroke models belonging to the engineering model
type are frequently used in practical studies. The engineering models can be divided into
current propagation, current generation, and current dissipation types [14]. It is the current
propagation type models that are being used frequently in the analysis of lightning-induced
voltages in power systems. The most frequently used current propagation type models are
the transmission line model (TL model) [18] and its modifications, namely, the modified
transmission line model with exponential current decay (MTLE model) [19,20] and the
modified transmission line model with linear current decay (MTLL model) [21]. Cooray
and Orville [22] developed a modified transmission line model where both the current
attenuation and dispersion are taken into account. More recently, a new modified trans-
mission line model (called the MTLD model) in which the current attenuation function is
derived from the lightning electromagnetic field was developed by Cooray et al. [23].

In the analysis of induced over-voltages in power lines due to lightning, the elec-
tromagnetic fields generated by lightning appear as inputs to the coupling model. Since
this requires the calculation of electromagnetic fields from lightning at a large number
of distances, the use of analytical expressions for the electromagnetic fields generated
by return stroke models makes the calculation process much faster [24–26]. In Rusck’s
field-to-line coupling model, the electromagnetic fields are calculated using the classical TL
model. In its original formulation, the return stroke current in the Rusck model is assumed
to be a step function and analytical field expressions are derived for the vertical field over
a perfectly conducting ground. This field expression can be extended to any other return
stroke current waveform by using the Duhammel’s integral [12].

It is also important to mention that Rusck’s coupling model is based on the assump-
tion of a perfectly conducting ground. The electromagnetic field generated by lightning
at a given distance will be modified both by the conductivity of the ground [27] and the
terrain features [28,29]. The most important effect of the finitely conducting ground is the
generation of a horizontal electric field that has a considerable influence on the magnitude
and features of the induced voltages [1]. Even though the Rusck model was originally de-
veloped to work with lines over a perfectly conducting ground, it can easily be modified to
account for the finitely conducting ground by adding the contributions from the horizontal
electric field into the induced voltages [30].

The analytical expression given by Rusck provides a quick means to compute the
electric field from the lightning return stroke. However, as mentioned earlier, the field
expression of Rusck is not exact and, as we will show later, it can lead to significant errors
(as large as 50%) in the field derivatives. The goal of the present paper is to provide accurate
field expressions for the TL model excited by a step current pulse and thus remove this
drawback in the Rusck’s coupling model.
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In the paper, we will also provide an exact expression for the electric field at any given
point in space when the propagating current is an impulse function. This expression can be
combined with the convolution integral to get the electric fields corresponding to current
waveshapes similar to those measured in lightning return strokes. The field equations
will be obtained over a perfectly conducting ground. The reason for this choice is the
following: First, the original Rusck formulation was given assuming a perfectly conducting
ground. Second, to account for the presence of a finitely conducting ground, the common
approach is to use the Cooray–Rubinstein formula [31,32], which actually uses as inputs
the field components (magnetic field and horizontal electric field) evaluated for a perfectly
conducting ground.

It is important to point out that the goal of this paper is to present exact electromagnetic
field expressions for a transmission line return stroke model where the current is described
by a step function. This is identical to the return stroke model used by Rusck in his lightning
field-to-transmission line coupling model. Note that we will give the equations necessary in
the derivation of the final expressions since this will enable other researchers to reproduce
and implement the procedure in their research work.

2. Problem Formulation

Let us consider the transmission line (TL) model of the return stroke. In this model,
the return stroke is simulated by a current pulse that propagates upwards with uniform
speed and without dispersion or attenuation. In the calculation of voltages induced by
lightning on power lines, the induced voltages within the first few tens of microseconds are
of interest. Due to this, there is no need to consider the effects of the channel termination
inside the cloud. For this reason, without loss of generality, we can assume that the return
stroke channel extends to infinity. According to this model, the return stroke current at any
given height z along the return stroke channel is given by

i(z, t) = 0 for t ≤ z/v
i(z, t) = ib(t− z/v) for t > z/v

(1)

In the above equation, ib(t) is the current at the channel base, v is the return stroke speed,
and z is the height along the return stroke channel. In the present analysis, we consider the
channel–base current to be a step function with an amplitude i0. With such channel–base
current, Equation (1) reduces to

i(z, t) = 0 for t ≤ z/v
i(z, t) = i0 for t > z/v

(2)

The next step is to derive an expression for the electromagnetic fields generated by
this current distribution.

3. Electric Field of the Return Stroke

The geometry relevant to the problem at hand is shown in Figure 1. The vertical
lightning channel is located over a perfectly conducting ground plane. The z-axis is
directed perpendicularly out of the ground plane and the unit vector directed along the
positive z-axis is az. The lightning strike point coincides with the origin O of the coordinate
system. The point of observation P is located on the x-z plane, at a height ζ from the ground
and at a horizontal distance d from the lightning strike point. Due to rotational symmetry,
the fact that we have selected the observation point to be in the x-z plane does not affect
the generality of the results to be derived. The distance OP from the strike point O to
the observation point is r. A generic infinitesimal channel element located at a height z is
denoted by dz and the distance from this channel element to the point of observation is
denoted by rs. The effect of the perfectly conducting ground plane is taken into account
by the image of the return stroke channel with respect to the ground plane. The distance
from the image of the infinitesimal channel element to the point of observation is ri. The
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vectors ar, ars , and ari are directed along the direction of increasing r, rs, and ri respectively.
The vectors aθ , aθs , and aθi can be calculated by way of ar × (ar × az),ars × (ars × az), and
ari × (ari × az), respectively. The distances rs and ri are given by

rs =

√
d2 + (ζ − z)2 (3)

ri =

√
d2 + (ζ + z)2 (4)

Figure 1. Geometry relevant to the parameters used to describe the electric field.

The angles θs and θi are given by

θs = cos−1({ζ − z}/rs) (5)

θi = cos−1(−{ζ + z}/ri) (6)

The goal of this paper is to derive an analytical expression for the vertical electric field
at point P. First, we will give the approximate expression derived by Rusck [5] for this field
component. After that, we will develop an exact expression for this field component.

3.1. Expressions for the Vertical and Horizontal Electric Fields Based on Rusck’s Formulation

According to Rusck, the vertical electric field as a function of time at point P, following
the physics sign convention, is given by [5] (see also [11])

Ev,Rusck(ζ, t) = E0(ζ, t0)

+ ZEi0λ
4πvr

{[
(vt− ζ)2 + λd2

]− 1
2
+
[
(vt + ζ)2 + λd2

]− 1
2
}

(7)



Atmosphere 2023, 14, 350 5 of 16

with
E0(ζ, t0) = − ZEi0λ

4πvr{[
(vt0 − ζ)2 + λd2

]− 1
2
+
[
(vt0 + ζ)2 + λd2

]− 1
2
} (8)

In the above equations, t0 =
√

d2 + ζ2, vr = v/c, λ = 1− v2

c2 , and ZE is the impedance
of free space.

Following the same procedure used by Rusck to obtain the vertical electric field, one
can derive an expression for the horizontal electric field [33]. This results in the following
expression for the electric field parallel to the ground and directed away from the lightning
channel (i.e., along the x-axis when the point of observation P is located on the x–z plane

Eh,Rusck(ζ, t) =

ZEi0
2πvr

[
λd{(

vt−ζ+
√

(ζ−vt)2+λd2
)(√

(ζ−vt)2+λd2
)}
]

+ ZEi0
2πvr

[
d{(√

ζ2+d2
)(

ζ−
√

ζ2+d2
)}
]

− ZEi0
2πvr

[
λd{(

vt+ζ+
√

(ζ+vt)2+λd2
)(√

(ζ+vt)2+λd2
)}
]

+ ZEi0
2πvr

[
d{(√

ζ2+d2
)(

ζ+
√

ζ2+d2
)}
]

(9)

This expression was derived by Barbosa and Paulino [33] by taking the gradient of the
scalar potential at point P.

3.2. Exact Expressions for the Electric Field at Any Point in Space

At present, there are four methods developed in the literature to evaluate the electro-
magnetic fields once the spatial and temporal distribution of the current are given [34–36].
These are known as the dipole (Lorentz) technique, the continuity equation technique and
two versions of the procedures based on moving and accelerating charges. Although the
various components that constitute the total field are different in each technique, all these
techniques give rise to the same total field. Here, we will use the moving and accelerating
charge procedure, which will make it possible to express the resulting electromagnetic
fields analytically. In the case of the transmission line model [18] excited by a step current
pulse, the total electric field consists of radiation field and velocity field components. The
radiation field is generated by the accelerating charges and the velocity field is generated
by the uniformly moving charges. In the problem under consideration, there are no fields
generated by static charges because there is no accumulation of charges along the return
stroke channel. Since the current moves with constant speed along the channel and since
radiation only comes from accelerating charges, the radiation from the channel is generated
only at the initiation of the lightning current at the bottom of the channel. The radiation
field generated at point P by the initiation of the source current is given by [36]

Es,r,θ(t, ζ) =
i(t− r/c)v sin θ

4πε0c2r(1− vr cos θ)
aθ (10)

The component of this field directed along the z-axis (the vertical field) is given by

Es,r,z(t, ζ) = − i(t− r/c)v sin2 θ

4πε0c2r(1− vr cos θ)
(11)

Note that in Equation (11) and in the subsequent equations, the first of the comma-
separated sub-indexes indicates whether the field is from the source or from the image (in
this case, ‘s’ stands for source and ‘i’ stands for image). The second sub-index indicates if
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the field is the radiation (‘r’) or the velocity field (‘v’). The third sub-index, when present,
denotes the specific component of the field.

The velocity field generated by the current element dz located at a height z along the
channel is given by

dEs,v(t, ζ) = − i(0, t− z/v− rs/c)λ

4πεor2
s c[1− vr cos θs]

2 az +
i(0, t− z/v− rs/c)λ

4πεor2
s v[1− vr cos θs]

2 ars (12)

The total velocity field generated by the source at point P directed along the z-axis is
then given by

Es,v,z(t, ζ) = −
zsu(t)∫
0

dz i(0, t− z/v− rs/c)λ

4πεor2
s [1− vr cos θs]

2

[
1
c
− cos θs

v

]
(13)

In the above equation, the upper integration limit zsu(t) (the subscripts s and u stand
for source and upper limit, respectively) is the length of the source channel that contributes
to the electric field at point P at time t. This length can be obtained by solving the equation

zsu(t)/v + rsu(t)/c− r/c = t (14)

with
rsu(t) =

√
(ζ − zsu(t))

2 + d2 (15)

Plugging Equation (15) into Equation (14) leads to the following quadratic equation,

z2
su(t)

{
1/v2 − 1/c2}+ zsu(t)

{
2ζ/c2 − 2(t + r/c)/v

}
+
{
(t + r/c)2 − ζ2/c2 − d2/c2

}
= 0

(16)

which can be solved to obtain zsu.
Now, in our case, the current is a step function and Equations (11) and (13) can be

written as

Es,r,z(t, ζ) = − i0v sin2 θ

4πε0c2r(1− vr cos θ)
(17)

Es,v,z(t, ζ) = −
zsu(t)∫
0

dz i0λ

4πεor2
s [1− vr cos θs]

2

[
1
c
− cos θs

v

]
(18)

Similarly, the image channel also contributes to the field and the two corresponding
field components are

Ei,r,z(t, ζ) = − i0v sin2 θ

4πε0c2r(1 + vr cos θ)
(19)

Ei,v,z(t, ζ) = −
ziu(t)∫
0

dz i0λ

4πεor1[1− vr cos θi]
2

[
1
c
− cos θi

v

]
(20)

In the above equation, ziu(t) (the subscripts i and u stand for image and upper limit,
respectively) is the length of the image channel that contributes to the electric field at point
P at time t. This length can be obtained by solving the equation

ziu(t)/v + riu(t)/c− r/c = t (21)

with
riu(t) =

√
(ζ + ziu(t))

2 + d2 (22)
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Substitution of Equation (22) into Equation (21) results in the following quadratic
equation that can be solved to obtain ziu(t),

z2
iu(t)

{
1/v2 − 1/c2

}
+ ziu(t)

{
−2ζ/c2 − 2(t + r/c)/v

}
+
{
(t + r/c)2 − ζ2/c2 − d2/c2

}
= 0 (23)

Adding the contributions of the source and the image given by Equations (17) and (19),
the vertical component of the total radiation field is then given by

Er,z(t, ζ) = − i0v sin2 θ

2πε0c2r(1− v2
r cos2 θ)

(24)

Similarly, the vertical component of the total velocity field is given by

Ev,z(t, ζ) = − i0λ
4πεo

zsu(t)∫
0

dz
r2

s [1−vr cos θs ]
2

[
1
c −

cos θs
v

]
− i0λ

4πεo

ziu(t)∫
0

dz
r2

i [1−vr cos θi ]
2

[
1
c −

cos θi
v

] (25)

Equations (24) and (25) define the vertical electric field generated by the return stroke
at any given point in space.

The horizontal electric field (directed away from the channel) at point P generated by
the source can be obtained directly from Equation (10) and the result is

Es,r,h(t, ζ) =
i(t− r/c)v sin θ cos θ

4πε0c2r(1− vr cos θ)
(26)

The horizontal component of the velocity field generated by the current element dz
located at a height z along the channel can be obtained from Equation (12) and it is given by

dEs,v,h(t, ζ) =
i(0, t− z/v− rs/c)λ sin θ

4πεor2
s v[1− vr cos θs]

2 dz (27)

The horizontal component of the total velocity field generated by the source at point P
is then given by

Es,v,h(t, ζ) =

Zsu(t)∫
0

dz i(0, t− z/v− rs/c)λ sin θ

4πεor2
s v[1− vr cos θs]

2 (28)

Similarly, the image channel also contributes to the horizontal field and the two
corresponding field components are

Ei,r,h(t, ζ) =
i0v sin θ cos θ

4πε0c2r(1 + vr cos θ)
(29)

and

Ei,v,h(t, ζ) = −
Ziu(t)∫

0

dz i0λ sin θi

4πεoriv[1− vr cos θi]
2 (30)

The horizontal component of the total radiation field is then given by

Er,h(t, ζ) =
i0v sin θ cos θ

2πε0c2r(1− v2
r cos2 θ)

(31)
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and the horizontal component of the total velocity field is given by

Ev,h(t, ζ) =
i0λ

4πεov

Zsu(t)∫
0

dz sin θs

r2
s [1− vr cos θs]

2 −
i0λ

4πεov

Ziu(t)∫
0

dz sin θi

r2
i [1− vr cos θi]

2 (32)

These expressions for the vertical and horizontal electric fields are exact and they can
be used to test the validity of Rusck’s expressions numerically. This is done in the next
section.

4. Comparison of Rusck’s Expression with the Exact Vertical Electric Field at any
Given Point in Space

In the analysis of the coupling of lightning electromagnetic fields (LEMP) to transmis-
sion and distribution lines, it is the first 10 microseconds or so that are of interest in the
development of procedures to mitigate the effects of these voltages. This is the case because,
in most of the cases, the peak of the lightning induced voltages and the peak derivative are
reached within this time. For this reason, we will concentrate here mainly on those initial
microseconds of the electric field.

Figure 2 shows the vertical electric field at ground level calculated at different dis-
tances for a step current using the two formulations presented earlier, namely (i) Rusck’s
original formulas (Equations (7) and (9)), and (ii) the derived expressions using the field
components associated with moving and accelerating charges (Equations (24) and (25)). In
this calculation, the propagation speed of the current pulse is assumed to be 1.5 × 108 m/s.
Figure 3 depicts the vertical electric field obtained from the two formulations when the
step function return stroke current is replaced by currents corresponding to those of first
and subsequent return strokes. In the case of first return stroke, the speed of propagation
was fixed at 1.0 × 108 m/s. The derivatives of the vertical electric field of a subsequent
return stroke, obtained from the two formulations are shown in Figure 4 and the results
pertinent to the horizontal electric field are shown in Figure 5 (the used expressions are (31)
and (32)). According to these results, the error in the vertical electric field when using the
Rusck model is less than about 10% and the error in the horizontal electric field is about
15%, indicating that the Rusck formulation can provide acceptable accuracy in calculating
the peak voltages induced in power lines by lightning flashes. On the other hand, note
that the error in the electric field time derivative calculated using the Rusck formulation is
about 50%. These error levels in the field derivatives are reflected in the derivatives of the
correcponding induced voltages calculated using the Rusck model. A higher accuracy can
be achieved using the electromagnetic field equations presented in this paper.

In some studies, the electric fields corresponding to more realistic return stroke current
waveforms are obtained by using the Duhammel’s theorem. Analytical representations for
typical first return and subsequent return stroke currents can be found in [37]. Using these
current waveforms together with the Duhammel’s integral, we obtained the electric field at
different distances corresponding to first and subsequent return strokes. Two examples of
the results obtained are shown in Figure 5. Again, observe that the errors resulting in the
peak value of the electric field when using the Rusck formulation are less than about 10%.

One advantage of the Rusck’s electric field expression is that it is anlytical and it does
not involve the numerical solution of integrals similar to those in Equations (18) and (20).
Fortunately, the integrals in these equations can be solved analytically for the case of a step
current and this makes it possible to create an exact analytical expression for the electric
field of that current waveform. This is done in the next section.
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Figure 2. Vertical electric field at the point of observation when the return stroke current is a step
function. (i) d = 30 m, ζ = 20 m; (ii) d = 50 m, ζ = 10 m; (iii) d = 50 m, ζ = 20 m; (iv) d = 100 m,
ζ = 10 m. The speed of propagation of the pulse is 1.5 × 108 m/s. Curve marked (a) in red represents
the exact and (b) in black represents the Rusck approximation.

Figure 3. (i) The vertical electric field generated by a first return stroke at the point d = 30 m, ζ = 10 m.
The speed of propagation of the return stroke is 1.0× 108 m/s. (ii) The vertical electric field generated
by a subsequent return stroke at the point d = 30 m, ζ = 20 m. The speed of propagation of the return
stroke is 1.5 × 108 m/s. The curve marked (a) in red represents the exact and (b) in black represents
the Rusck approximation.
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Figure 4. The derivative of the vertical electric field at the point of observation for a subsequent
return stroke. (i) d = 50 m, ζ = 20 m; (ii) d = 100 m, ζ = 10 m. The speed of propagation of the pulse is
1.5 × 108 m/s. The curve marked (a) in red represents the exact and (b) in black represents the Rusck
approximation.

Figure 5. The horizontal electric field at the point of observation for a subsequent return stroke.
(i) d = 50 m, ζ = 10 m; (ii) d = 100 m, ζ = 10 m. The speed of propagation of the pulse is 1.5 × 108 m/s.
The curve marked (a) in red represents the exact and (b) in black represents the Rusck approximation.

5. Exact Analytical Expression for the Electric Field of a Step Current Pulse at any
Point in Space

First, observe that it is only the velocity field which is given as an integral whereas the
radiation field can easily be obtained from the analytical expresion given by Equations (24)
and (31). In order to solve the integrals in the velocity field, let us rewrite them with
angles θs and θi as variables of integration. This can be done easily using the relationships
tan θs = d/(ζ − z) and tan θi = −d/(ζ + z). The resulting integrals are

Ev,z = −
i0λH(t−r/c)

4πεo

θsu(t)∫
θsl

dθs
d[1−vr cos θs ]

2

[
1
c −

cos θs
v

]
− i0λH(t−r/c)

4πεo

θiu(t)∫
θil

dθi
d[1−vr cos θi ]

2

[
1
c −

cos θi
v

] (33)
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In the above equation, H(t) represents the unit step function. Its properties are:
H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0. Note that the angles θsu(t) and θiu(t) are
time-dependent variables because their values change as the return stroke channel grows
upwards (i.e., as zsu(t) and ziu(t) increase). These integrals can be evaluated analytically
and the total velocity electric field at times t ≥ r/c can be written as (with k = i0H(t−
r/c)/4πε0d)

Ev,z(t, ζ) =

k
[

1
c

2√
λ

tan−1
{

tan
(

θsu(t)
2

)√
1+vr
1−vr

}
+ 1

v
λ sin θsu(t)

1−vr cos θsu(t)

]
−k
[

1
c

2√
λ

tan−1
{

tan
(

θsl
2

)√
1+vr
1−vr

}
+ 1

v
λ sin θsl

1−vr cos θsl

]
k
[

1
c

2√
λ

tan−1
{

tan
(

θiu(t)
2

)√
1+vr
1−vr

}
+ 1

v
λ sin θiu(t)

1−vr cos θiu(t)

]
−k
[

1
c

2√
λ

tan−1
{

tan
(

θil
2

)√
1+vr
1−vr

}
+ 1

v
λ sin θil

1−vr cos θil

]
(34)

Observe that in the above equations, θsl=θ (the subscript l stands for the lower limit)
and θil = (π − θ). The angles θsu(t) and θiu(t) are given by

θsu(t) = cos−1({ζ − Zsu(t)}/rsu(t)) (35)

θiu(t) = cos−1(−{ζ + Ziu(t)}/riu(t)) (36)

The lengths zsu(t) and ziu(t) are given by

zsu(t) =
−Bs ±

√
B2

s − 4A0C0

2A0
(37)

ziu(t) =
−Bi ±

√
B2

i − 4A0C0

2A0
(38)

where
A0 = (1/v2 − 1/c2) (39)

Bs = 2ζ/c2 − 2(t + r/c)/v (40)

Bi = −2ζ/c2 − 2(t + r/c)/v (41)

C0 = (t + R/c)2 − ζ2/c2 − d2/c2 (42)

With these parameters (rsu(t) and riu(t) are defined in Equations (14) and (21)), the
total vertical electric field at any point in space can be obtained by adding the contribution
of the radiation field to the expression given by Equation (34). With this, the total vertical
electric field is given by

Ez(t, ζ) = Ev,z(t, ζ)− i0H(t− r/c)v sin2 θ

2πε0c2r(1− v2
r cos2 θ)

(43)

Equation (43) expresses the vertical electric field at any point in space. It is important
to point out that the above analytical expression is valid for any point in space for v < c.

In a similar manner, we can derive an analytical expression for the horizontal electric
field. Again, note that it is only the velocity field which is given as an integral whereas the
radiation field can easily be obtained from the analytical expresion given by Equation (10).
In order to solve the integrals in the horizontal velcocity field, let us again rewite them with
angles θs and θi as variables of integration. This can be done easily using the relationships
tan θs = d/(ζ − z) and tan θi = −d/(ζ + z). The resulting integrals are

Ev,h =
i0λH(t− r/c)

4πεov

θsu(t)∫
θsl

dθs sin θs

d[1− vr cos θs]
2 −

i0λH(t− r/c)
4πεov

θiu(t)∫
θil

sin θidθi

d[1− vr cos θi]
2 (44)
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These integrals can be solved analytically and the resulting expression for the velocity
horizontal electric field is

Ev,h(t, ζ) = k
vvr

[
1

1−vr cos θsl
− 1

1−vr cos θsu

]
− k

vvr

[
1

1−vr cos θil
− 1

1−vr cos θiu

] (45)

The total horizontal electric field at any point in space can be calculated by adding the
contribution of the radiation field to the above equation. That is

Eh(t, ζ) = Ev,h(t, ζ) +
i0H(t− r/c)v sin θ cos θ

2πε0c2r(1− v2
r cos2 θ)

(46)

Equation (46) provides an exact analytical exporession for the horizontal electric field
at any point in space.

Electric Field at Ground Level

When the point of observation is at ground level (i.e., r = d), θ = π/2 and θsl = θil =
π/2. Moreover, zsu(t) = ziu(t) and θsu(t) = θiu(t). Denoting the latter two distances and
angles by zu(t) and θu(t), the velocity electric field at ground level can be expressed as

Ev,z(t, 0) = 2k
[

1
v

λ sin θu(t)
1−vr cos θu(t)

+ 1
c

2√
λ

tan−1
{

tan
(

θu(t)
2

)√
1+vr
1−vr

}]
−2k

[
λ
v + 1

c
2√
λ

tan−1
{√

1+vr
1−vr

}] (47)

In the above equation, the cosine of the angle θu(t) is given by

θu(t) = cos−1(−zu(t)/
√

z2
u(t) + d2) (48)

with

zu(t) =
−B0 ±

√
B2

0 − 4A0C0

2A0
(49)

where
A0 = (1/v2 − 1/c2) (50)

B0 = −2(t + r/c)/v (51)

C0 = (t + R/c)2 − d2/c2 (52)

With these parameters, Equation (45) gives the exact expression of the vertical velocity
electric field at a distance d at ground level. The total vertical electric field is given by

Ez(t, 0) = Ev,z(t, 0)− i0H(t− r/c)v
2πε0c2d

(53)

Obviously, the horizontal electric field goes to zero when the point of observation is at
ground level.

6. Exact Analytical Expression for the Electric Field of an Impulse Current Pulse at any
Point in Space

In the analysis of induced voltages by lightning using the Rusck’s coupling equations,
the electric field of the step current is converted to the electric field pertinent to a typical
return stroke current by using Duhammel’s theorem. In such analysis, it is convenient
to have the electric field response for a delta impulse current instead of a step current.
Knowing the impulse current response, the field due to any other current can be obtained
using the convolution integral.
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Now, the expressions given by Equations (11) and (13) describe the vertical electric
field at any point in space generated by the source current. When the current in the return
stroke channel is an impulse, the electric field generated by the source current can be
written as

Es,r,z(t, ζ) = − δ(t− r/c)v sin2 θ

4πε0c2r(1− vr cos θ)
(54)

Es,v,z(t, ζ) = −
zsu(t)∫
0

dz δ(t− z/v− rs/c)λ

4πεor2
s [1− vr cos θs]

2

[
1
c
− cos θs

v

]
(55)

In the above equations, δ(t) represents the Dirac impulse function. Observing that
zsu(t) is the solution of the equation t− z/v− rs/c = 0, the integral in the above equation
can be solved directly and the result is

Es,v,z(t, ζ) = − λH(t− r/c)

4πεor2
su(t)[1− vr cos θsu(t)]

2

[
1
c
− cos θsu(t)

v

]
(56)

Similarly, the velocity field produced by the image channel is given by

Ei,v,z(t, ζ) = − λH(t− r/c)

4πεor2
iu(t)[1− vr cos θiu(t)]

2

[
1
c
− cos θiu(t)

v

]
(57)

Thus, the total electric field at the point of observation at times t ≥ r/c is given by

Ez(t, ζ) = − δ(t−r/v)v sin2 θ

2πε0c2r(1−v2
r cos2 θ)

− λH(t−r/c)
4πεor2

su(t)[1−vr cos θsu(t)]
2

[
1
c −

cos θsu(t)
v

]
− λH(t−r/c)

4πεor2
iu(t)[1−vr cos θiu(t)]

2

[
1
c −

cos θiu(t)
v

] (58)

All the variable parameters in this equation were defined in the previous section.
Equation (58) gives the vertical electric field at any point in space when the return stroke
current is a delta impulse. The electric field corresponding to any other current waveform
can be obtained from this using the convolution integral. In a similar manner, one can
obtain the horizontal electric field at any given point in space and the resulting expresssion
is given by

Eh(t, ζ) = δ(t−r/v)v sin θ cos θ

2πε0c2r(1−v2
r cos2 θ)

+ λH(t−r/c) sin θsu(t)
4πεor2

su(t)v[1−vr cos θsu(t)]
2

− λH(t−r/c) sin θiu(t)
4πεor2

iu(t)v[1−vr cos θiu(t)]
2

(59)

If the point of observation is at ground level, the horizontal electric field goes to zero
and the vertical electric field reduces to (with the notation θsu(t) = θiu(t) = θu(t) and
rsu(t) = riu(t) = ru(t))

Ez(t, 0) = − δ(t−d/c)v
2πε0c2d

− λH(t−d/c)
2πεor2

u(t)[1−vr cos θu(t)]
2

[
1
c −

cos θu(t)
v

] (60)

All the parameters in Equation (60) were defined in the previous section.

7. Discussion

The analytical expressions given in the previous sections are exact and valid for any
point in space except along the vertical axis where the lightning channel is located (i.e.,
θ = 0). Moreover, it is important to point out that when the speed of propagation of the
pulse is equal to the speed of light, the total electric field reduces to the radiation field.
However, one cannot make v = c in Equation (34) because the analytical expression for the
integral is obtained for the case where v 6= c. Of course, this will not reduce the generality
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of the expression because the field expression for the velocity fields goes to zero when v = c
and there is no need to perform the integration in the first place. Observe also that the use
of the charge acceleration and moving technique in this paper simplified the analysis to
a great extent because, had we used the dipole equations, it would have been necessary
to perform integration with field terms also varying as the current derivative and current
integral terms.

It is important to point out that in the analysis we have used the electromagnetic
field formulation based on accelerating charges instead of the more convensional dipole
approximation. This choice made it possible to derive the final field expressions in a
closed and compact form. However, both the charge acceleration equations and the dipole
approximations give rise to identical results for the total electromagnetic fields at any given
point in space. This was demonstrated analytically in reference [38].

8. Conclusions

In the Rusck’s field-to-transmission line coupling model, the electric field used in the
coupling equations is obtained from an expression derived by Rusck [5] for the electric
field of a step current propagating up along a vertical channel with constant velocity. Our
results indicate that Rusck’s field equation is not exact. As a consequence, the induced over-
voltages suffer from inaccuracies which are of the order of 10% for the peak over-voltages
and as high as 50% for voltage derivatives.

Based on the results obtained in this paper, one can conclude that the Rusck formu-
lation is a suitable approximation if the interest is to evaluate the peak values of induced
over-voltages in power lines. However, if the interest is to study the rate of change of the
over-voltages, the exact formulation presented here is recommended.
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