Exploring Natural and Anthropogenic Drivers of PM2.5 Concentrations Based on Random Forest Model: Beijing–Tianjin–Hebei Urban Agglomeration, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Preprocessing
2.1.1. PM2.5 Concentration Data
2.1.2. Natural Geographic Data
2.1.3. Socio-Economic Data
2.1.4. Data Preprocessing
2.2. Construction of Indicator System
2.3. Research Methods
3. Results and Analysis
3.1. Influencing Factors of PM2.5 Concentration
3.1.1. Selection of Model Parameters
3.1.2. Importance Evaluation of Influencing Factors
3.1.3. Marginal Effect Analysis of Influencing Factors
3.2. Interannual Variation Law of Influencing Factors
3.3. Geographical Variation Patterns of Influencing Factors
4. Discussion
5. Conclusions
- (1)
- PM2.5 pollution is a comprehensive problem involving the intersection of nature and society. Among them, natural factors such as sunshine hours, relative humidity, elevation, vegetation, wind speed, average temperature, precipitation, temperature daily range and air pressure, as well as socio-economic factors such as urbanization rate, total investment in fixed assets and the number of secondary industry employees, are the main factors affecting PM2.5 concentration. In contrast, factors such as population density, GDP, the proportion of added value of secondary industry in GDP, per capita GDP and total population have relatively little impact on PM2.5 concentration.
- (2)
- There is a nonlinear relationship between PM2.5 concentration and influencing factors. With the increase in sunshine hours and wind speed, PM2.5 concentration remains stable at first, then decreases sharply and returns to stability; with the increase in relative humidity, vegetation index, average temperature, air pressure, urbanization rate and total investment in fixed assets, PM2.5 concentration stabilizes at first, then rises sharply and returns to stability; with the increase in elevation, it shows a fluctuating downward trend; with the increase in temperature daily range, it shows a trend of rising up first and then decreasing; in addition, its change is less obvious with the increase in precipitation and the number of secondary industry employees.
- (3)
- Compared with urbanization factors, the terrain, climate, vegetation and other natural factors account for a higher proportion of the main influencing factors of PM2.5 concentration. They are the main factors affecting PM2.5 concentration in BTH and affect the generation, diffusion and settlement of PM2.5. However, the influence of some urbanization factors has been strengthened in recent years. Urbanization, reflecting human production and living activities, is the cause of PM2.5 carrying harmful substances and is also the key factor affecting human health. Moreover, the natural background elements are difficult to be changed through human intervention in the short term. Starting with human factors, the adjustment and control of PM2.5 pollution sources will become a powerful way to improve the current situation of PM2.5 pollution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chen, M.; Gong, Y.; Lu, D.; Ye, C. Build a people-oriented urbanization: China’s new-type urbanization dream and Anhui model. Land Use Policy 2019, 80, 1–9. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, L.; Wang, X. Spatiotemporal evolution of PM2.5 concentrations in urban agglomerations of China. J. Geogr. Sci. 2021, 31, 878–898. [Google Scholar] [CrossRef]
- Wang, Z.-B.; Fang, C.-L. Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere 2016, 148, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, T.; Li, Z.; Fang, C. Study on the Spatial and Temporal Distribution Characteristics and Influencing Factors of Particulate Matter Pollution in Coal Production Cities in China. Int. J. Environ. Res. Public Health 2022, 19, 3228. [Google Scholar] [CrossRef]
- Gryech, I.; Ghogho, M.; Mahraoui, C.; Kobbane, A. An Exploration of Features Impacting Respiratory Diseases in Urban Areas. Int. J. Environ. Res. Public Health 2022, 19, 3095. [Google Scholar] [CrossRef]
- Li, L.; Lei, Y.; Wu, S.; Chen, J.; Yan, D. The health economic loss of fine particulate matter (PM2.5) in Beijing. J. Clean. Prod. 2017, 161, 1153–1161. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Ying, Q.; Zhang, H. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [Google Scholar] [CrossRef]
- Yang, S.; Ma, Y.L.; Duan, F.K.; He, K.B.; Wang, L.T.; Wei, Z.; Zhu, L.D.; Ma, T.; Li, H.; Ye, S.Q. Characteristics and formation of typical winter haze in Handan, one of the most polluted cities in China. Sci. Total Environ. 2018, 613–614, 1367–1375. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Wang, Y.; Liu, N.; Hong, Y. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China. Atmos. Res. 2017, 198, 185–193. [Google Scholar] [CrossRef]
- Zhang, S.; Han, L.; Zhou, W.; Li, W. Impact of urban population on concentrations of nitrogen dioxide (NO2) and fine particles (PM2.5) in China. Acta Ecol. Sin. 2016, 36, 5049–5057. [Google Scholar]
- Duo, B.; Cui, L.; Wang, Z.; Li, R.; Zhang, L.; Fu, H.; Chen, J.; Zhang, H.; Qiong, A. Observations of atmospheric pollutants at Lhasa during 2014–2015: Pollution status and the influence of meteorological factors. J. Environ. Sci. 2018, 63, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Hasheminassab, S.; Daher, N.; Ostro, B.D.; Sioutas, C. Long-term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles Basin: A focus on emissions reduction from vehicular sources. Environ. Pollut. 2014, 193, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Tunno, B.J.; Dalton, R.; Michanowicz, D.R.; Shmool, J.L.C.; Kinnee, E.; Tripathy, S.; Cambal, L.; Clougherty, J.E. Spatial patterning in PM2.5 constituents under an inversion-focused sampling design across an urban area of complex terrain. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 385–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Zhao, Y.-B.; Gao, P.-P.; Yang, W.-D.; Ni, H.-G. Vehicle exhaust: An overstated cause of haze in China. Sci. Total Environ. 2018, 612, 490–491. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, J.; Wang, S. Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China’s cities using spatial regression and the geographical detector technique. Sci. Total Environ. 2018, 619–620, 436–445. [Google Scholar] [CrossRef]
- Gao, J.; Tian, H.; Cheng, K.; Lu, L.; Zheng, M.; Wang, S.; Hao, J.; Wang, K.; Hua, S.; Zhu, C.; et al. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China. Atmos. Environ. 2015, 107, 1–8. [Google Scholar] [CrossRef]
- Lanzaco, B.L.; Olcese, L.E.; Querol, X.; Toselli, B.M. Analysis of PM2.5 in Córdoba, Argentina under the effects of the El Niño Southern Oscillation. Atmos. Environ. 2017, 171, 49–58. [Google Scholar] [CrossRef]
- Cesari, D.; Donateo, A.; Conte, M.; Merico, E.; Giangreco, A.; Giangreco, F.; Contini, D. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment. Atmos. Res. 2016, 174–175, 106–119. [Google Scholar] [CrossRef]
- Masiol, M.; Hopke, P.K.; Felton, H.D.; Frank, B.P.; Rattigan, O.V.; Wurth, M.J.; LaDuke, G.H. Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City. Atmos. Environ. 2017, 148, 215–229. [Google Scholar] [CrossRef]
- Saraga, D.E.; Tolis, E.I.; Maggos, T.; Vasilakos, C.; Bartzis, J.G. PM2.5 source apportionment for the port city of Thessaloniki, Greece. Sci. Total Environ. 2019, 650, 2337–2354. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.; Wang, S.; Li, S. Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally. Appl. Energy 2018, 230, 94–105. [Google Scholar] [CrossRef]
- Lu, D.; Xu, J.; Yang, D.; Zhao, J. Spatio-temporal variation and influence factors of PM2.5 concentrations in China from 1998 to 2014. Atmos. Pollut. Res. 2017, 8, 1151–1159. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, H.; Guo, Y.; Peng, C. The heterogeneous effect of democracy, political globalization, and urbanization on PM2.5 concentrations in G20 countries: Evidence from panel quantile regression. J. Clean. Prod. 2018, 194, 54–68. [Google Scholar] [CrossRef]
- Lin, G.; Fu, J.; Jiang, D.; Hu, W.; Dong, D.; Huang, Y.; Zhao, M. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China. Int. J. Environ. Res. Public Health 2013, 11, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Du, P.; Samat, A.; Xia, J.; Che, M.; Xue, Z. Spatiotemporal Pattern of PM2.5 Concentrations in Mainland China and Analysis of Its Influencing Factors using Geographically Weighted Regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Wang, X.; Xu, J.; Xu, C.; Lu, D.; Ye, C.; Wang, Z.; Bai, L. Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China. Environ. Pollut. 2018, 241, 475–483. [Google Scholar] [CrossRef]
- Hua, Y.; Cheng, Z.; Wang, S.; Jiang, J.; Chen, D.; Cai, S.; Fu, X.; Fu, Q.; Chen, C.; Xu, B.; et al. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China. Atmos. Environ. 2015, 123, 380–391. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, B.; Nie, Z.; Ren, Z.; Tang, S. Estimation of hourly full-coverage PM2.5 concentrations at 1-km resolution in China using a two-stage random forest model. Atmos. Res. 2020, 248, 105146. [Google Scholar] [CrossRef]
- Zamani, M. PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef]
- Tza, B.; Wh, A.; Hui, Z.; Yc, A.; Hsa, B.; Sfa, B. Satellite-based ground PM 2.5 estimation using a gradient boosting decision tree. Chemosphere 2021, 268, 128801. [Google Scholar]
- Dai, H.; Huang, G.; Zeng, H.; Zhou, F. PM2.5 volatility prediction by XGBoost-MLP based on GARCH models. J. Clean. Prod. 2022, 356, 131898. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Zeng, H.; Yu, R. Haze Risk Assessment Based on Improved PCA-MEE and ISPO-LightGBM Model. Systems 2022, 10, 263. [Google Scholar] [CrossRef]
- Parkhurst, D.F.; Brenner, K.P.; Dufour, A.P.; Wymer, L.J. Indicator bacteria at five swimming beaches-analysis using random forests. Water Res. 2005, 39, 1354–1360. [Google Scholar] [CrossRef]
- Grekousis, G.; Feng, Z.; Marakakis, I.; Lu, Y.; Wang, R. Ranking the importance of demographic, socioeconomic, and underlying health factors on US COVID-19 deaths: A geographical random forest approach. Health Place 2022, 74, 102744. [Google Scholar] [CrossRef]
- Xue, F.; Yao, E. Adopting a random forest approach to model household residential relocation behavior. Cities 2022, 125, 103625. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Xie, L.; Li, H.; Huang, L.; Zhao, Y.; Yue, T. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. Catena 2021, 202, 105222. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Lu, D. Function orientation and coordinating development of subregions within the Jing-Jin-Ji Urban Agglomeration. Prog. Geogr. 2015, 34, 265–270. [Google Scholar] [CrossRef]
- Chen, M.; Guo, S.; Hu, M.; Zhang, X. The spatiotemporal evolution of population exposure to PM2.5 within the Beijing-Tianjin-Hebei urban agglomeration, China. J. Clean. Prod. 2020, 265, 121708. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D.; Chen, H.; Ye, C. Progress of China’s new-type urbanization construction since 2014: A preliminary assessment. Cities 2018, 78, 180–193. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Chen, M.; Sui, Y.; Liu, W.; Liu, H.; Huang, Y. Urbanization patterns and poverty reduction: A new perspective to explore the countries along the Belt and Road. Habitat Int. 2019, 84, 1–14. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhong, Y. Economic Analysis on the Factors Influencing PM2.5 in China’s Metropolises: An Empirical Study Based on City-Level Panel Data. Ecol. Econ. 2015, 31, 5. [Google Scholar]
- Somvanshi, S.S.; Kumari, M. Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data. Appl. Comput. Geosci. 2020, 7, 100032. [Google Scholar] [CrossRef]
- Diener, A.; Mudu, P. How can vegetation protect us from air pollution? A critical review on green spaces’ mitigation abilities for air-borne particles from a public health perspective-with implications for urban planning. Sci. Total Environ. 2021, 796, 148605. [Google Scholar] [CrossRef]
- Zhan, D.; Kwan, M.-P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
Category | Name | Symbol | Unit | Description | Data Sources | Spatial Information | Temporal Information | |
---|---|---|---|---|---|---|---|---|
Natural factors | Meteorology | Temperature | TEM | °C | Annual average temperature | data.cma.cn (accessed on 5 June 2020) | 174 stations in BTH | 2010–2016 |
Temperature daily range | TEMR | °C | Annual average daily temperature range | |||||
Sunshine hours | SSH | h | Annual average sunshine hours | |||||
Precipitation | PRE | mm | Annual precipitation | |||||
Relative humidity | RHU | % | Average relative humidity | |||||
Wind speed | WIN | m/s | Average wind speed | |||||
Pressure | PRS | hPa | Mean air pressure | |||||
Terrain | Elevation | ELE | m | Mean elevation | www.resdc.cn (accessed on 1 June 2020) | 1 km | 2010–2016 | |
Vegetation | NDVI | NDVI | - | Normalized Difference Vegetation Index | www.resdc.cn (accessed on 1 June 2020) | 1 km | 2010–2016 | |
Human factors | Population urbanization | Population | POP | people | Total resident population at the end of the year | www.stats.gov.cn (accessed on 10 June 2020), tjj.beijing.gov.cn (accessed on 10 June 2020), stats.tj.gov.cn (accessed on 10 June 2020), www.hetj.gov.cn (accessed on 10 June 2020) | County scale | 2010–2016 |
Population density | DEN | people/m2 | Population density per unit area | |||||
Urbanization rate | URB | % | Percentage of urban permanent population to total permanent population | |||||
Economic urbanization | GDP | GDP | CNY | Gross Domestic Product | www.stats.gov.cn (accessed on 10 June 2020), tjj.beijing.gov.cn (accessed on 10 June 2020), stats.tj.gov.cn (accessed on 10 June 2020), www.hetj.gov.cn (accessed on 10 June 2020) | County scale | 2010–2016 | |
Per capita GDP | PGDP | CNY/person | Per capita GDP | |||||
Proportion of secondary industry | IND | % | The proportion of added value of secondary industry in GDP | |||||
Gross industrial output value | GIO | CNY | Gross industrial output value above designated size | |||||
Land urbanization | Urban built-up area | BUI | km2 | Urban area | maps.elie.ucl.ac.be/CCI/viewer/ (accessed on 16 June 2020) | 300 m | 2010–2016 | |
Road mileage | ROA | km | All road mileage | www.stats.gov.cn (accessed on 10 June 2020), tjj.beijing.gov.cn (accessed on 10 June 2020), stats.tj.gov.cn (accessed on 10 June 2020), www.hetj.gov.cn (accessed on 10 June 2020) | County scale | |||
Social urbanization | Employees in the secondary industry | INDU | people | Number of employees in the secondary industry | www.stats.gov.cn (accessed on 10 June 2020), tjj.beijing.gov.cn (accessed on 10 June 2020), stats.tj.gov.cn (accessed on 10 June 2020), www.hetj.gov.cn (accessed on 10 June 2020) | County scale | 2010–2016 | |
Total retail sales of consumer goods | CON | CNY | Total retail sales of consumer goods | |||||
Total investment in fixed assets | INV | CNY | Total investment in fixed assets |
Number of Variables | MSE | Number of Variables | MSE | Number of Variables | MSE | Number of Variables | MSE |
---|---|---|---|---|---|---|---|
1 | 0.01829 | 7 | 0.01124 | 13 | 0.01054 | 19 | 0.01045 |
2 | 0.01411 | 8 | 0.01109 | 14 | 0.01054 | 20 | 0.01041 |
3 | 0.01286 | 9 | 0.01094 | 15 | 0.01055 | 21 | 0.01054 |
4 | 0.01214 | 10 | 0.01078 | 16 | 0.01042 | ||
5 | 0.01176 | 11 | 0.01067 | 17 | 0.01039 | ||
6 | 0.01144 | 12 | 0.01057 | 18 | 0.01043 |
Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
---|---|---|---|---|---|---|---|---|---|
Mean of squared residuals | 0.0124 | 0.0139 | 0.0127 | 0.0068 | 0.0072 | 0.0078 | 0.0071 | 0.0050 | 0.0062 |
% Var explained | 96.61 | 93.74 | 95.15 | 96.18 | 96.93 | 96.45 | 96.99 | 97.71 | 97.01 |
Year | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | |
Mean of squared residuals | 0.0051 | 0.0045 | 0.0058 | 0.0053 | 0.0049 | 0.0097 | 0.0051 | 0.0061 | |
% Var explained | 97.41 | 97.79 | 96.88 | 97.27 | 97.64 | 95.59 | 97.33 | 97.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Tao, X.; Liang, L. Exploring Natural and Anthropogenic Drivers of PM2.5 Concentrations Based on Random Forest Model: Beijing–Tianjin–Hebei Urban Agglomeration, China. Atmosphere 2023, 14, 381. https://doi.org/10.3390/atmos14020381
Guo S, Tao X, Liang L. Exploring Natural and Anthropogenic Drivers of PM2.5 Concentrations Based on Random Forest Model: Beijing–Tianjin–Hebei Urban Agglomeration, China. Atmosphere. 2023; 14(2):381. https://doi.org/10.3390/atmos14020381
Chicago/Turabian StyleGuo, Shasha, Xiaoli Tao, and Longwu Liang. 2023. "Exploring Natural and Anthropogenic Drivers of PM2.5 Concentrations Based on Random Forest Model: Beijing–Tianjin–Hebei Urban Agglomeration, China" Atmosphere 14, no. 2: 381. https://doi.org/10.3390/atmos14020381
APA StyleGuo, S., Tao, X., & Liang, L. (2023). Exploring Natural and Anthropogenic Drivers of PM2.5 Concentrations Based on Random Forest Model: Beijing–Tianjin–Hebei Urban Agglomeration, China. Atmosphere, 14(2), 381. https://doi.org/10.3390/atmos14020381