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Abstract: PM2.5 is the key reason for the frequent occurrence of smog; therefore, identifying its key
driving factors has far-reaching significance for the prevention and control of air pollution. Based
on long-term remote sensing inversion of PM2.5 data, 21 driving factors in the fields of nature and
humanities were selected, and the random forest model was applied to study the influencing factors
of PM2.5 concentration in the Beijing–Tianjin–Hebei urban agglomeration (BTH) from 2000 to 2016.
The results indicate: (1) The main factors affecting PM2.5 concentration not only include natural
factors such as sunshine hours (SSH), relative humidity (RHU), elevation (ELE), normalized difference
vegetation index (NDVI), wind speed (WIN), average temperature (TEM), daily temperature range
(TEMR), and precipitation (PRE), but also human factors such as urbanization rate (URB), total
investment in fixed assets (INV), and the number of employees in the secondary industry (INDU);
(2) The concentration of PM2.5 changed into an inverted S-shape with the increase in SSH and WIN,
and into an S-shape with the increase in RHU, NDVI, TEM, PRS, URB and INV. As for ELE and
TEMR, it fluctuated and decreased with the increase in ELE, while it increased and then decreased
with the increase in TEMR. However, its change was less pronounced with the increase in PRE and
INDU; (3) The influence of natural factors is higher than that of human factors, but the role of human
factors has been continuously strengthened in recent years. The adjustment and control of PM2.5

pollution sources from the perspective of human factors will become an effective way to reduce PM2.5

concentrations in the BTH.

Keywords: PM2.5; driving factors; random forest; Beijing–Tianjin–Hebei urban agglomeration

1. Introduction

With the rapid advancement of urbanization, air pollution has gradually become an
important bottleneck restricting urban sustainable development and ecological civiliza-
tion construction [1,2]. PM2.5, as the primary pollutant, is the culprit behind the frequent
occurrence of haze events in several Chinese provinces, especially in China’s urban agglom-
erations [3,4], and has become an important indicator to estimate air quality. The increase
in PM2.5 concentration significantly affects atmospheric visibility and human health, es-
pecially increasing the risk of respiratory diseases such as lung cancer and asthma [5–7].
Therefore, the identification of the influencing factors of PM2.5 concentration is of special
significance for air pollution prevention and control, which has attracted the attention of
the government, experts, scholars and all sectors of society.

Scholars have carried out a lot of research on the influencing factors of PM2.5 concen-
tration from natural factors. The results show that PM2.5 is driven by wind speed, wind
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direction, and other meteorological conditions [8,9]. In most seasons, PM2.5 concentration
was negatively correlated with wind speed, but positively correlated with air pressure, air
temperature, and relative humidity [10]. However, the higher the PM2.5 concentration, the
less variability in PM2.5 concentration can be explained by meteorological conditions [11].
Most atmospheric pollutants (SO2, NO2, CO, O3) and respirable particulate matter (PM2.5,
PM10) are not significantly correlated with meteorological factors in winter, and pollution
is dependent on source emissions rather than meteorological constraints [12].

The impact of human activities on PM2.5 concentrations cannot be ignored. Numerous
studies have shown that exhaust soot particles from motor vehicles (mainly diesel soot),
particles from brake and tire wear, and resuspension of particles previously deposited on
roadways are among the most important and major sources of PM2.5 [13,14]. Globally,
traffic accounts for about a quarter of urban outdoor PM2.5, and in South and Southeast
Asia, South America, and Southwest Europe, traffic accounts for 30–37% of PM2.5 concen-
trations [15]. It has also been argued that the potential contribution of vehicle emissions
to haze is exaggerated and that there is no strict causal relationship between vehicle emis-
sions and haze [16]. Population density, industrial structure, industrial soot emissions,
and road density all have a significant positive effect on PM2.5 concentrations, while eco-
nomic growth has a significant negative effect on PM2.5 concentrations, and industrial
soot emissions have a greater effect on PM2.5 concentrations than other variables [17]. As
research progresses, scholars are becoming aware that PM2.5 concentrations are the result
of a combination of natural and socioeconomic factors. It has been shown that high concen-
trations of particulate matter and its chemical components are the result of a combination
of accumulation of primary pollutants and formation of new secondary pollutants under
stagnant meteorological conditions, as well as the contribution of long-distance transport
of pollutants from anthropogenic sources [18].

The research methods include correlation analysis [8], principal component analy-
sis [19], factor decomposition model [20–22], spatial econometric model [23], grey cor-
relation analysis [24], quantile regression model [25], geographic weighted regression
model [26,27], geographic detector [17,28] and chemical mass balance model [29]. However,
to date, multifactorial analysis ask for high quality data, which are, e.g., non-collinear.
Therefore, further studies need to be performed, addressing the development of other
multifactorial analysis toolsets compatible with the existing data quality. In recent years,
intelligent algorithms based on machine learning have begun to emerge with significant
advantages in dealing with massive datasets. Common approaches for air pollutant
prediction and driver analysis using machine learning include the random forest (RF)
method [30,31] based on bagging algorithm, gradient boosting decision tree (GBDT) [32],
eXtreme gradient boosting (XGBoost) [33] and light gradient boosting machine (Light-
GBM) [34] based on the boosting algorithm. Among them, RF has a long history of devel-
opment and has the advantages of high prediction accuracy, low generalization error and
high applicability, which makes it widely used in several disciplines such as biology [35],
medicine [36], demography [37], ecology [38], geography [39]. In view of this, this study
chose the random forest method to comprehensively analyze the impact degree of natural
factors, such as topography and meteorology, and human factors, such as urbanization, on
PM2.5 concentration.

At present, the Beijing–Tianjin–Hebei urban agglomeration (BTH) is the largest urban
agglomeration in northern China, and an important part of the national core economic
zone [40] with typical atmospheric environmental quality characteristics. As early as 1990,
the term “Beijing cough” appeared in newspapers and periodicals to describe the impact
of air pollution in Beijing on human health. In 2013, China suffered the most serious air
pollution since observations have been recorded. The British Financial Times used “air-
pocalypse” to describe the smog weather in Beijing. Reports of foreigners and even Chinese
fleeing Beijing also frequently appeared in domestic and foreign media. Adopting the
Global PM2.5 Grid dataset provided by NASA, which analyzed the PM2.5 concentration
in each city in the BTH, it was found that since the 21st century, PM2.5 concentrations
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in all regions are higher than the WHO concentration limit (annual mean of 10 µg/m3),
illustrating that the PM2.5 pollution abatement is extremely urgent [41]. Taking BTH
as an example, this paper selected the global PM2.5 remote sensing inversion data from
2000 to 2016 using the random forest model to research the influencing factors of PM2.5
concentration in BTH and explore the interannual variation law of influencing factors in
order to provide referential value for the decision making of air pollution management
in BTH. The innovations of this paper are: first, facing the realities of PM2.5 pollution in
BTH, we chose county-scale and longer time series to analyze the integrated influence of
natural and human factors on PM2.5 concentration, which can better explain the influence
mechanism from quantitative perspective. Secondly, we chose the hot topic of cross-science
research and combined the random forest regression model to construct a cross research
framework between human factors, natural factors and machine learning.

The rest of the paper is organized as follows. Section 2 describes the data, model and
indicator system in detail. Section 3 shows the results and analysis. Section 4 discusses the
results. Finally, Section 5 concludes the paper and outlines its implications.

2. Materials and Methods
2.1. Data Source and Preprocessing
2.1.1. PM2.5 Concentration Data

The PM2.5 concentration data are from the global PM2.5 remote sensing inversion data
(sedac.ciesin.columbia.edu (accessed on 4 June 2020)) provided by the Social and Economic
Data and Application Center (SEDAC) of NASA’s Earth Observation System Data and
Information Systems (EOSDIS), whose time span is from 1998 to 2016 with a spatial resolu-
tion of 0.01◦ × 0.01◦. It estimated the ground PM2.5 by combining aerosol optical depth
(AOD) obtained by NASA MODIS, MISR and SeaWIFS instruments with geochemistry
(GEOS-Chem) transmission model, which the authors of [42] further calibrated through
geographically weighted regression method based on PM2.5 monitoring data. The dataset
has good accuracy and has been used in many studies. As some scholars calculated, the
cross validation R2 between the remote sensing inversion value and the station observation
value of the annual average PM2.5 concentration in 313 cities in China in 2015 was 0.72 [28].
Compared with the existing PM2.5 monitoring station data in the study area, the remote
sensing inversion data have a longer time scale and a larger spatial range, which is more
suitable for the analysis of PM2.5 concentration-influencing factors in a larger temporal and
spatial scale.

2.1.2. Natural Geographic Data

The meteorological data come from the National Meteorological Science Data Center
(data.cma.cn (accessed on 5 June 2020)). The dataset covers the daily monitoring data of
air pressure, wind speed, temperature, precipitation, sunshine hours and relative humid-
ity of more than 2400 national meteorological observation stations in China, including
174 monitoring stations in BTH. The time scale of meteorological data selected in this paper
is 2000–2016. DEM data and NDVI data are from the Resource and Environment Science
Data Center of the Chinese Academy of Sciences (www.resdc.cn (accessed on 1 June 2020)),
which are generated via resampling based on SRTM data with a spatial resolution of 1 km.

2.1.3. Socio-Economic Data

The statistical data of the population and economy mainly come from China Statis-
tical Yearbook (www.stats.gov.cn/tjsj/ndsj/ (accessed on 10 June 2020)), Beijing Statisti-
cal Yearbook (tjj.beijing.gov.cn/ (accessed on 10 June 2020)), Tianjin Statistical Yearbook
(stats.tj.gov.cn/tjsj_52032/tjnj/ (accessed on 10 June 2020)), Hebei Statistical Yearbook
(www.hetj.gov.cn/hetj/tjsj/jjnj/ (accessed on 10 June 2020)) and China County Statistical
Yearbook, and the minimum collection unit is county-level administrative regions. Some
missing data are obtained from China Regional Economic Statistical Yearbook, Hebei Rural
Statistical Yearbook, China Urban Statistical Yearbook, New Hebei 60 Years, statistical

sedac.ciesin.columbia.edu
data.cma.cn
www.resdc.cn
www.stats.gov.cn/tjsj/ndsj/
tjj.beijing.gov.cn/
stats.tj.gov.cn/tjsj_52032/tjnj/
www.hetj.gov.cn/hetj/tjsj/jjnj/
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monitoring data of urbanization development in Hebei Province, statistical yearbooks of
Hebei cities, government work reports and statistical bulletins of national economic and
social development. The data of urban built-up area come from the global land cover data
of the European Space Agency (maps.elie.ucl.ac.be/CCI/viewer/ (accessed on 16 June
2020)) with a spatial resolution of 300 m, respectively. The “urban areas” attributed in this
dataset are determined based on two datasets: the Global Human Settlement Layer and the
Global Urban Footprint.

2.1.4. Data Preprocessing

Taking the 2016 county-level administrative divisions as the standard, the municipal
districts of each city were merged to obtain 134 districts, including Beijing municipal district,
Tianjin municipal district, and 11 municipal districts and 121 county-level regions of Hebei
Province. In order to ensure the consistency of the research units, the data of counties
(county-level cities) renamed as districts during the research period are incorporated into
the corresponding municipal districts. The indicators of employees in the secondary
industry in Gaoyi County in 2013 are missing and the data of corresponding years are
excluded in the empirical study. Therefore, a total of 2090 samples from 2000 to 2016
actually participated in the regression. In order to eliminate the heteroscedasticity, the
quantitative indicators are processed using a natural logarithm before regression analysis
and the proportion indicators such as urbanization rate, GDP of secondary industry in
GDP and NDVI are not processed.

Since the data of rural population in Hebei county-level administrative unit only
counted the rural population data of the registered residence scale without the data of
urbanization, we selected the fifth census year (2000) and the 2015 with complete urbaniza-
tion rate data as the base year and used the United Nations method to repair the data of
urbanization rate in 2001–2014 years. Elevation and vegetation data came from national
DEM data and NDVI data, respectively (Figure 1). The missing meteorological daily values
data were processed via the substitution of the values of the next-neighbor station or the
multi-year average values of the current station. Then, the daily values of meteorological
stations were sorted into annual average values, and the annual value data were converted
into grids with a resolution of 1 km using ANUSPLIN 4.3. (Figure 1). ANUSPLIN is
a tool that analyzes and interpolates multivariate data using a smooth spline function.
Essentially, it is a method of using function to approximate the surface, which can carry
out reasonable statistical analysis and data diagnosis on the data, and analyze the spatial
distribution of the data so as to realize the function of spatial interpolation. Considering the
relationship between air temperature, the altitude was used as a covariant to participate in
the interpolation for improving the interpolation accuracy. The interpolation model of each
meteorological element is selected according to the following criteria: 1© Generalized cross
validation (GCV) or generalized maximum likelihood (GML) is the smallest; 2© Signal-to-
noise ratio (SNR) is the smallest; 3© Signal freedom is less than half of the total number of
stations; and 4© There is no * in the judgment of the model’s success rate.

In addition, in order to maintain consistency with the analysis unit of socio-economic
data, the natural element datum is required to summarize the grid values to the county-level
administrative unit using the zoning statistics function of ArcGIS.

2.2. Construction of Indicator System

This paper takes the meteorology, topography and vegetation representing natural
factors, and the four subsystems of urbanization representing human factors [43–45], and
selects the relevant indicators that may have a significant impact on PM2.5 concentration to
analyze the influencing factors of PM2.5 concentration. It takes natural factors and human
factors as the first level of the indicator system and takes the meteorology, topography,
vegetation, population urbanization, economic urbanization, land urbanization and social
urbanization as the second level. Taking into account the actual situation of BTH and

maps.elie.ucl.ac.be/CCI/viewer/
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the availability of data, it selected a total of 21 specific indicators to construct the PM2.5
influencing factor indicator system (Table 1).

Figure 1. Distribution of natural elements in the Beijing–Tianjin–Hebei urban agglomeration (BTH)
(taking 2016 as an example).
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Table 1. PM2.5 impact factor indicator system.

Category Name Symbol Unit Description Data Sources Spatial Information Temporal
Information

Natural factors

Meteorology

Temperature TEM ◦C Annual average
temperature

data.cma.cn (accessed on
5 June 2020)

174 stations in BTH 2010–2016

Temperature
daily range TEMR ◦C Annual average daily

temperature range

Sunshine hours SSH h Annual average
sunshine hours

Precipitation PRE mm Annual precipitation

Relative humidity RHU % Average relative humidity

Wind speed WIN m/s Average wind speed

Pressure PRS hPa Mean air pressure

Terrain Elevation ELE m Mean elevation www.resdc.cn (accessed on
1 June 2020) 1 km 2010–2016

Vegetation NDVI NDVI - Normalized Difference
Vegetation Index

www.resdc.cn (accessed on
1 June 2020) 1 km 2010–2016

Human factors

Population
urbanization

Population POP people Total resident population at
the end of the year www.stats.gov.cn (accessed on

10 June 2020), tjj.beijing.gov.cn
(accessed on 10 June 2020),

stats.tj.gov.cn (accessed on 10
June 2020), www.hetj.gov.cn
(accessed on 10 June 2020)

County scale 2010–2016Population density DEN people/m2 Population density
per unit area

Urbanization rate URB %
Percentage of urban

permanent population to
total permanent population

Economic
urbanization

GDP GDP CNY Gross Domestic Product

www.stats.gov.cn (accessed on
10 June 2020), tjj.beijing.gov.cn

(accessed on 10 June 2020),
stats.tj.gov.cn (accessed on 10
June 2020), www.hetj.gov.cn
(accessed on 10 June 2020)

County scale 2010–2016

Per capita GDP PGDP CNY/person Per capita GDP

Proportion of
secondary industry IND %

The proportion of added
value of secondary industry

in GDP

Gross industrial
output value GIO CNY Gross industrial output

value above designated size

data.cma.cn
www.resdc.cn
www.resdc.cn
www.stats.gov.cn
tjj.beijing.gov.cn
stats.tj.gov.cn
www.hetj.gov.cn
www.stats.gov.cn
tjj.beijing.gov.cn
stats.tj.gov.cn
www.hetj.gov.cn
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Table 1. Cont.

Category Name Symbol Unit Description Data Sources Spatial Information Temporal
Information

Land
urbanization

Urban built-up area BUI km2 Urban area
maps.elie.ucl.ac.be/CCI/

viewer/ (accessed on
16 June 2020)

300 m

2010–2016

Road mileage ROA km All road mileage

www.stats.gov.cn (accessed on
10 June 2020), tjj.beijing.gov.cn

(accessed on 10 June 2020),
stats.tj.gov.cn (accessed on 10
June 2020), www.hetj.gov.cn
(accessed on 10 June 2020)

County scale

Social
urbanization

Employees in the
secondary industry INDU people Number of employees in

the secondary industry
www.stats.gov.cn (accessed on
10 June 2020), tjj.beijing.gov.cn

(accessed on 10 June 2020),
stats.tj.gov.cn (accessed on 10
June 2020), www.hetj.gov.cn
(accessed on 10 June 2020)

County scale 2010–2016Total retail sales of
consumer goods CON CNY Total retail sales of

consumer goods

Total investment in
fixed assets INV CNY Total investment in fixed

assets

maps.elie.ucl.ac.be/CCI/viewer/
maps.elie.ucl.ac.be/CCI/viewer/
www.stats.gov.cn
tjj.beijing.gov.cn
stats.tj.gov.cn
www.hetj.gov.cn
www.stats.gov.cn
tjj.beijing.gov.cn
stats.tj.gov.cn
www.hetj.gov.cn
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2.3. Research Methods

The random forest (RF), first proposed by BREIMAN [46], is a learner consisting of
a large collection of classification and regression trees (CART). Each tree is the basic unit
of the forest, that is, each decision tree is an estimator. In a set of data, it is assumed that
the dependent variable y has n observations and m dependent variables. After it is input
into the random forest regression model, a part of the observed values will be randomly
selected from the n observed values of y using the bootstrap resampling method, and c
variable will be randomly selected from the m dependent variables, which will construct
b training sample sets and the corresponding regression tree through regression analysis.
The random forest model will select the tree with the highest repeatability as the final
regression result. See Equation (1) for the specific calculations.

yi,mean =
1
b

b

∑
j=1

yi,j,mean (1)

In the formula, yi,mean is the predicted value of the i-th sample, b is the number of
decision trees in the random forest and yi,j,mean is the predicted value of the i-th sample in
the j-th tree.

The regression model uses the variable importance (VI) to evaluate the influence of
their variables on dependent variables (Equation (2)). The variable importance score is
measured with the increase in mean squared error (% Inc MSE) and the increase in model
accuracy (Inc Node Purity) after random replacement.

VIji =
1
b

b

∑
j=1

(
EPji − Eji

)
(2)

In the formula, b represents the number of decision trees in the random forest, Eji
represents the out-of-bag (OOB) error of the j-th tree before replacing the variable Xi, and
EPji represents the OOB error of the j-th tree after replacing the variable Xi.

The evaluation and test of the model adopts two parameters: determination coefficient
(R2) and mean squared error (MSE). The formula is as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

MSE =
∑n

i=1(yi − ŷi)
2

n
(4)

In the formula, yi is the actual observation value, ŷi is the model prediction value, yi
is the sample mean value and n is the number of samples. Calculations were performed
using the random forest module in the R program.

3. Results and Analysis
3.1. Influencing Factors of PM2.5 Concentration
3.1.1. Selection of Model Parameters

The two main factors affecting the goodness of fit of the random forest regression
model are the number of variables selected by the node branches of the regression tree and
the number of regression trees in the random forest. Therefore, these two main parameters
were tried to be varied to optimize the model. For the determination of the number of
variables selected by the node branches of the regression tree, the method of increasing
the number of nodes one by one can be used for screening, and the number of variables
with the smallest MSE is taken as the optimal number of variables; finally, the number of
variables in the node branches is determined to be 17 (Table 2). The optimal value of the
number of trees is judged using the relationship schema between the number of regression
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trees and the OOB error rate. Considering the reduction of error and calculation amount,
we set the number of trees to 3000. The mean of squared residuals of the model is 0.0102
and the Var explained is 95.83%. To verify the superiority of the RF model, the linear
regression (LR) model was selected for comparison. The mean of the residuals and the
R-squared of the LR model was 0.021 and 0.915, respectively, which was lower than the
goodness of fit of the RF. This indicates that the RF model based on integrated learning has
better performance in the analysis of the drivers of PM2.5 concentrations.

Table 2. Number of influence factor variables and root mean squared error (MSE).

Number of Variables MSE Number of Variables MSE Number of Variables MSE Number of Variables MSE

1 0.01829 7 0.01124 13 0.01054 19 0.01045
2 0.01411 8 0.01109 14 0.01054 20 0.01041
3 0.01286 9 0.01094 15 0.01055 21 0.01054
4 0.01214 10 0.01078 16 0.01042
5 0.01176 11 0.01067 17 0.01039
6 0.01144 12 0.01057 18 0.01043

3.1.2. Importance Evaluation of Influencing Factors

The results of the variable importance evaluation are shown in Figure 2. The %Inc MSE
results show that meteorology, population, topography, vegetation, and social urbanization
have more significant effects on PM2.5 concentration, specifically indicators such as sunshine
hours, relative humidity, urbanization rate, elevation, NDVI, wind speed, temperature,
precipitation, total investment in fixed assets, temperature daily range and employees in
the secondary industry. The Inc Node Purity results show that topography, meteorology
and population have significant effects on PM2.5 concentrations, specifically on indicators
such as elevation, pressure, temperature and urbanization rate. Given the large influence
of both %Inc MSE and Inc Node Purity on the accuracy of the model, the concatenation of
the two was taken as the final evaluation result. Therefore, the seven meteorological factors
of sunshine hours, relative humidity, wind speed, temperature, precipitation, temperature
daily range and pressure, the topographic factor of elevation, the vegetation factor of NDVI,
the demographic factor of urbanization rate, and the two socio-economic factors of total
investment in fixed assets and employees in the secondary industry are important factors
influencing PM2.5 concentrations. In contrast, demographic and socio-economic factors
such as population density, GDP, proportion of secondary industry, per capita GDP and
population have a relatively small impact on PM2.5 concentrations.
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3.1.3. Marginal Effect Analysis of Influencing Factors

The partial dependence map of the main influencing factors is shown in Figure 3. There
is a negative correlation between the sunshine hours and PM2.5 concentration distribution,
and the impact on PM2.5 concentration decreased sharply when the sunshine hours were
between 6 h and 7 h (Figure 3a); the relative humidity is positively correlated with the
PM2.5 concentration distribution and the impact on PM2.5 concentration increased sharply
when the relative humidity was between 57% and 69% (Figure 3b). With the elevation,
the impact on PM2.5 concentration shows a stepped decrease (Figure 3c). The vegetation
indicator showed a positive correlation with the impact on PM2.5 concentration and the
impact on PM2.5 concentration remained stable (Figure 3d) when the vegetation indicator
reached above 0.8; wind speed was negatively correlated with PM2.5 concentration and
the impact on PM2.5 concentration decreased sharply (Figure 3e) when the average annual
wind speed was between 1.8 and 2.5. Average temperature and PM2.5 concentration
are positively correlated; however, when the temperature reached more than 12 ◦C, the
impact degree on PM2.5 concentration was stable (Figure 3f). The temperature daily
range shows an inverted U-shaped relationship with PM2.5 concentration. When the
temperature daily range is lower than 10 ◦C, the impact degree on PM2.5 concentration
increases according to the increase in the temperature daily range; when the temperature
daily range is greater than 10 ◦C, the impact degree on PM2.5 concentration gradually
decreases as the temperature daily range increases (Figure 3g). The impact of precipitation
on PM2.5 concentration fluctuated. When the precipitation reached more than 660 mm in
that year, its impact degree on PM2.5 concentration gradually decreased (Figure 3h). Air
pressure and PM2.5 concentration distribution are positively correlated and the impact
degree on PM2.5 concentration increases with the increase in air pressure (Figure 3i).
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The distribution of PM2.5 concentration is positively correlated with the urbanization
rate. When the urbanization rate reaches more than 25%, the impact on PM2.5 concentra-
tion reaches the maximum and remains essentially unchanged (Figure 3j). Similarly, the
distribution of PM2.5 concentration is positively correlated with the total investment in
fixed assets. When the total investment in fixed assets is greater than CNY 8 billion, the
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impact on PM2.5 concentration reaches the maximum and remains unchanged (Figure 3k).
The effect of the number of secondary industry employees on the influence degree of PM2.5
concentration is relatively small and the partial dependence value fluctuates and decreases
between 3.926 and 3.936 (Figure 3l).

3.2. Interannual Variation Law of Influencing Factors

In order to research the annual change in the influencing factors of PM2.5 concentration,
this paper analyzes the influence degree of the abovementioned influencing factors in
different years and the results are shown in Figure A1. The performance evaluation results
of the regression model in each year are shown in Table 3. In the annual research, the
importance of natural factors in each year is generally higher than that of human factors.
This may mean that natural factors are the main factors affecting PM2.5 concentration in
the short term. Among all the human factors studied in this paper, only the factor of
population density has the highest importance on PM2.5 concentration, which has remained
within the top ten for a long time, and the degree of importance is increasing, having
remained within the top five since 2011. This indicates that population density is the
socio-economic factor with the highest impact on PM2.5 in the short term. During the
study period, both GDP per capita and urban built-up area reached the top ten levels of
importance in more than 30% of the time. Taking %Inc MSE as the evaluation standard,
the top five influencing factors in 2000 were air pressure, temperature, elevation, wind
speed and precipitation; the top five factors in 2016 were elevation, pressure, precipitation,
temperature and population density. These indicate that the influences of human factors
on PM2.5 concentration are strengthened.

Table 3. Performance evaluation of random forest regression models from 2000 to 2016.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008

Mean of squared residuals 0.0124 0.0139 0.0127 0.0068 0.0072 0.0078 0.0071 0.0050 0.0062
% Var explained 96.61 93.74 95.15 96.18 96.93 96.45 96.99 97.71 97.01

Year 2009 2010 2011 2012 2013 2014 2015 2016

Mean of squared residuals 0.0051 0.0045 0.0058 0.0053 0.0049 0.0097 0.0051 0.0061
% Var explained 97.41 97.79 96.88 97.27 97.64 95.59 97.33 97.40

3.3. Geographical Variation Patterns of Influencing Factors

In order to further clarify the geographical divergence patterns of the drivers of PM2.5
concentrations, this study analyzed the ranking of the %Inc MSE and Inc Node Purity of
the influencing factors for 13 cities in the BTH, and drew heatmaps (Figure 4). In terms
of the %Inc MSE values for each factor, the 13 cities are divided into three groups by
geographical location (Figure 4a). The southeastern group includes Langfang, Handan,
Xingtai, Cangzhou and Hengshui, for a total of five cities. The PM2.5 concentrations in
these cities are mainly influenced by meteorology, topography, population and society, and
the influence of natural factors is higher than that of human factors. The central group
includes three cities, namely Beijing, Tianjin and Qinhuangdao. In these cities, human
factors, including population, economy, land and society, have a greater influence on PM2.5
concentrations, while only one of the natural factors is more important, namely wind speed.
This may be related to the high level of socio-economic development in these cities. The
northwest group includes five cities, Zhangjiakou, Tangshan, Chengde, Shijiazhuang and
Baoding. The driving factors in these cities are mainly meteorology, vegetation, population
and economy, with meteorological factors having a slightly higher degree of influence than
human factors. The ranking of the IncNodePurity values is essentially consistent with the
%Inc MSE results (Figure 4b), with the only difference being that the southeastern group is
reduced to three cities, Tangshan, Langfang and Cangzhou, while Handan and Xingtai are
merged into the northwestern group. It is noteworthy that the central group remains in the
same pattern and that the human factor continues to be overwhelmingly dominant.



Atmosphere 2023, 14, 381 12 of 17

Atmosphere 2023, 14, x FOR PEER REVIEW 11 of 18 
 

 

Table 3. Performance evaluation of random forest regression models from 2000 to 2016. 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 
Mean of squared 

residuals 0.0124 0.0139 0.0127 0.0068 0.0072 0.0078 0.0071 0.0050 0.0062 

% Var explained 96.61 93.74 95.15 96.18 96.93 96.45 96.99 97.71 97.01 
Year 2009 2010 2011 2012 2013 2014 2015 2016  

Mean of squared 
residuals 0.0051 0.0045 0.0058 0.0053 0.0049 0.0097 0.0051 0.0061  

% Var explained 97.41 97.79 96.88 97.27 97.64 95.59 97.33 97.40  

3.3. Geographical Variation Patterns of Influencing Factors 
In order to further clarify the geographical divergence patterns of the drivers of PM2.5 

concentrations, this study analyzed the ranking of the %Inc MSE and Inc Node Purity of 
the influencing factors for 13 cities in the BTH, and drew heatmaps (Figure 4). In terms of 
the %Inc MSE values for each factor, the 13 cities are divided into three groups by geo-
graphical location (Figure 4a). The southeastern group includes Langfang, Handan, Xing-
tai, Cangzhou and Hengshui, for a total of five cities. The PM2.5 concentrations in these 
cities are mainly influenced by meteorology, topography, population and society, and the 
influence of natural factors is higher than that of human factors. The central group in-
cludes three cities, namely Beijing, Tianjin and Qinhuangdao. In these cities, human fac-
tors, including population, economy, land and society, have a greater influence on PM2.5 
concentrations, while only one of the natural factors is more important, namely wind 
speed. This may be related to the high level of socio-economic development in these cities. 
The northwest group includes five cities, Zhangjiakou, Tangshan, Chengde, Shijiazhuang 
and Baoding. The driving factors in these cities are mainly meteorology, vegetation, pop-
ulation and economy, with meteorological factors having a slightly higher degree of in-
fluence than human factors. The ranking of the IncNodePurity values is essentially con-
sistent with the %Inc MSE results (Figure 4b), with the only difference being that the 
southeastern group is reduced to three cities, Tangshan, Langfang and Cangzhou, while 
Handan and Xingtai are merged into the northwestern group. It is noteworthy that the 
central group remains in the same pattern and that the human factor continues to be over-
whelmingly dominant. 

  
(a) (b) 

Figure 4. Heatmaps of factors affecting PM2.5 concentrations in the BTH. (a) Ranking of %Inc MSE; 
(b) Ranking of Inc Node Purity. Each variable name is the same as in Table 1. 

4. Discussion 
Air pollution has seriously affected human health and the sustainable development 

of social economy. PM2.5 is the primary pollutant in air pollution. In order to achieve the 
goal of reducing PM2.5 concentration, the primary task is to clarify the key influencing 

Figure 4. Heatmaps of factors affecting PM2.5 concentrations in the BTH. (a) Ranking of %Inc MSE;
(b) Ranking of Inc Node Purity. Each variable name is the same as in Table 1.

4. Discussion

Air pollution has seriously affected human health and the sustainable development of
social economy. PM2.5 is the primary pollutant in air pollution. In order to achieve the goal
of reducing PM2.5 concentration, the primary task is to clarify the key influencing factors of
PM2.5 concentration, and take corresponding measures to control these influencing factors,
which can achieve the goal of reducing PM2.5 concentration.

Natural factors are the external factors affecting PM2.5 concentration (Figure 5). The
results show that among the natural factors, sunshine hours, relative humidity, elevation,
vegetation, wind speed, temperature and precipitation have the most significant impact on
PM2.5 concentration in BTH. Moreover, the influence of these factors is higher than that
of most human factors and plays an important role in the change in PM2.5 concentration.
Similarly, Yang et al. [28] also concluded that the influence of natural factors is stronger than
that of human factors in the comprehensive influencing factor analysis of PM2.5. However,
Sun and Zhong [47] used principal component analysis to study 10 big cities in Beijing,
Tianjin, Hebei, Yangtze River Delta, Pearl River Delta and other regions, and found that
the sum of the two human factors of industrial activities and urban life contributed more
than 70% to PM2.5 concentration, which are higher than the influence of three natural
weather factors of temperature, humidity and precipitation on PM2.5 concentration. The
main reason for this discrepancy may be that the entire area of the BTH also contains some
counties with an average level of socio-economic development, and that natural factors
such as elevation and wind speed, which have a large impact, have been added to this
study. Adverse meteorological conditions will lead to the weakening of air convection
and affect the diffusion of air pollutants, resulting in the increase in PM2.5 concentration.
The fluctuation of terrain will block the transmission of pollutants between regions, thus
affecting the local PM2.5 concentration. The close relationship between air pollution and
vegetation has also been confirmed [48] in many studies. The effect of vegetation on the
tissue absorption of particulate matter and the construction of a suitable environment for
particulate matter deposition is obvious [49].

Human factors are the internal factors affecting PM2.5 concentration (Figure 5). Among
the socio-economic factors selected in this paper, the urbanization rate, the total investment
in fixed assets and the number of secondary industry employees have a significant impact
on the PM2.5 concentration in Beijing, Tianjin and Hebei from 2000 to 2016, which means
that human production and lifestyle are important factors affecting the PM2.5 concentration
in BTH. However, from the analysis of influencing factors of PM2.5 concentration in a
single year, it is found that population density is the most important socio-economic
factor affecting PM2.5 concentration for many years and population agglomeration has a
significant impact on local PM2.5 concentration.
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Different from the results of the multi-year comprehensive analysis, population density,
GDP per capita and urban built-up area have a more significant impact on PM2.5 in the
single year study. The finding that the urbanization rate has no significant impact on PM2.5
is consistent with the previous research results of some single years [50]. This shows that
the urbanization rate may not be the main indicator to predict PM2.5 concentration in the
short term and its impact on PM2.5 concentration may have a time lag effect. In addition, the
importance ranking of the influencing factor of urbanization rate has increased significantly
after 2012 (Figure 6) from the annual change trend of the importance ranking of the impact
degree of urbanization rate. In other words, the impact of urbanization rate on PM2.5
has been strengthened in recent years. Statistics show that the urbanization rate of BTH
increased from 58.93% to 63.88% with an average annual increase of 1.24 percentage points
from 2012 to 2016. Compared with 2000–2012, the urbanization rate during this period
was higher, but the growth rate was lower (0.42 percentage points lower). This shows that
when analyzing the influencing factors of PM2.5 under the development background of
relatively high urbanization rate, it is more necessary to consider the urbanization rate,
which represents the level of population urbanization.
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In the indicator system of influencing factors constructed in this paper, the influence
of natural factors such as terrain, vegetation and climate on PM2.5 concentration can be
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proved, which is helpful to analyze the influence mechanism of these natural factors on
PM2.5 concentration, such as low wind speed and high altitude affecting the diffusion
of pollutants. However, due to the limitation of data, the analysis in this paper could
only conclude that among the urbanization factors, human production, living activities,
and land-use patterns affect PM2.5 concentration, which makes it difficult to determine
the source of pollutants that lead to the increase in PM2.5 concentration. In other words,
which of the factors, including domestic heating and cooking, car exhaust emissions and
industrial exhaust emissions, has a greater impact on PM2.5 pollution is difficult to analyze
in this paper, and this direction needs further research in the future.

5. Conclusions

On the basis of the macro background of urbanization with Chinese characteristics
and facing the practical problems of serious PM2.5 pollution in BTH, this paper attempts to
construct the comprehensive influencing factor analysis indicator system of PM2.5 in BTH
from the natural factors of meteorology, terrain, vegetation, etc., and human factors of pop-
ulation urbanization, land urbanization, economic urbanization, and social urbanization,
among others. Then, it uses the random forest model to analyze the influencing factors
of PM2.5 in BTH from 2000 to 2016, as well as some discussions about the interannual
variation law of the main influencing factors. The main conclusions are as follows:

(1) PM2.5 pollution is a comprehensive problem involving the intersection of nature and
society. Among them, natural factors such as sunshine hours, relative humidity, eleva-
tion, vegetation, wind speed, average temperature, precipitation, temperature daily
range and air pressure, as well as socio-economic factors such as urbanization rate,
total investment in fixed assets and the number of secondary industry employees, are
the main factors affecting PM2.5 concentration. In contrast, factors such as population
density, GDP, the proportion of added value of secondary industry in GDP, per capita
GDP and total population have relatively little impact on PM2.5 concentration.

(2) There is a nonlinear relationship between PM2.5 concentration and influencing factors.
With the increase in sunshine hours and wind speed, PM2.5 concentration remains
stable at first, then decreases sharply and returns to stability; with the increase in rela-
tive humidity, vegetation index, average temperature, air pressure, urbanization rate
and total investment in fixed assets, PM2.5 concentration stabilizes at first, then rises
sharply and returns to stability; with the increase in elevation, it shows a fluctuating
downward trend; with the increase in temperature daily range, it shows a trend of
rising up first and then decreasing; in addition, its change is less obvious with the
increase in precipitation and the number of secondary industry employees.

(3) Compared with urbanization factors, the terrain, climate, vegetation and other natural
factors account for a higher proportion of the main influencing factors of PM2.5
concentration. They are the main factors affecting PM2.5 concentration in BTH and
affect the generation, diffusion and settlement of PM2.5. However, the influence
of some urbanization factors has been strengthened in recent years. Urbanization,
reflecting human production and living activities, is the cause of PM2.5 carrying
harmful substances and is also the key factor affecting human health. Moreover, the
natural background elements are difficult to be changed through human intervention
in the short term. Starting with human factors, the adjustment and control of PM2.5
pollution sources will become a powerful way to improve the current situation of
PM2.5 pollution.
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