Health Risks Forecast of Regional Air Pollution on Allergic Rhinitis: High-Resolution City-Scale Simulations in Changchun, China
Abstract
:1. Introduction
2. Methodology
2.1. Domain Setting
2.2. Data Sources
2.3. Model Configurations and Optimizations
2.4. Selection of Health Effect Estimates for Allergic Rhinitis
Case Studies | Meta-Analysis Studies | ||||||||
---|---|---|---|---|---|---|---|---|---|
Reference | Study Areas | Study Design | Indices | Methods * | Zou et al., 2018 [54] | Lin et al., 2021 [83] | Zhang et al., 2022 [84] | Li et al., 2022 [45] | Jia et al., 2022 [56] |
Hwang et al., 2006 [85] | Taiwan | Cross-sectional | ORs | LRM | √ | √ | |||
Dong et al., 2011 [86] | 7 cities of Northeast China | Cross-sectional | ORs | LRM | √ | √ | |||
Lu et al., 2013 [87] | Changsha | Cross-sectional | ORs | LRM | √ | √ | √ | √ | |
Liu et al., 2013 [88] | 7 cities of Northeast China | Cross-sectional | ORs | LRM | √ | √ | √ | √ | |
Deng et al., 2016 [49] | Changsha | Cohort | ORs | LRM | √ | √ | √ | √ | |
Liu et al., 2016 [89] | Shanghai | Cohort | ORs | LRM | √ | √ | √ | √ | |
Wang I. et al., 2016 [90] | Taipei | Cohort | ORs | LRM | √ | √ | √ | √ | |
Chung et al., 2016 [91] | Taiwan | Cohort | ORs | LRM | √ | √ | √ | √ | |
Li et al., 2019 [92] | Taiwan | Cohort | HRs | LRM | √ | ||||
Chen et al., 2016 [93] | Taiwan | Case-crossover | ORs | LRM | |||||
Chen et al., 2018 [94] | 6 cities of China | Cross-sectional | ORs | LRM | √ | √ | √ | √ | √ |
Norbäck et al., 2018 [95] | 6 cities of China | Cross-sectional | ORs | LRM | √ | √ | √ | ||
Huang et al., 2019 [96] | Wuhan &Ezhou | Cross-sectional | ORs | LRM | √ | √ | √ | ||
Liu et al., 2020 [97] | Shanghai | Cross-sectional | ORs | LRM | √ | √ | |||
Hao et al., 2021 [53] | Shenyang | Case-control | ORs | LRM | √ | ||||
Hsieh et al., 2020 [74] | Taiwan | Cross-sectional | ORs | LRM | √ | ||||
Wang et al., 2021 [98] | China | Cross-sectional | ORs | LRM | √ | ||||
Chen et al., 2019 [99] | Jinan | Time-series | ORs | LRM | √ | ||||
Zhang et al., 2011 [100] | Beijing | Time-series | RRs | GAM | |||||
Zhang et al., 2016 [101] | Beijing | Time-series | RRs | GAM | √ | ||||
Teng et al., 2017 [43] | Changchun | Time-series | RRs | GAM | √ | ||||
Chu et al., 2019 [102] | Nanjing | Time-series | RRs | GAM | √ | ||||
Wang et al., 2019 [103] | Beijing | Time-series | RRs | GAM | √ | ||||
Wang et al., 2019 [71] | Xinjiang | Time-series | RRs | GAM | √ | ||||
Wu et al., 2022 [72] | Beijing | Time-series | RRs | GAM | |||||
Guo et al., 2022 [104] | Wuhan | Time-series | RRs | GAM | |||||
Luo et al., 2022 [105] | Guangzhou-Shenzhen-Zhuhai | Time-series | RRs | GAM |
2.5. Definition of Potential Morbidity Risk Index
2.6. Statistical Metrics of Model Evaluation
3. Results
3.1. Accuracy Evaluation of City-Scale Simulations
3.1.1. Meteorological Variables
3.1.2. Air Quality Variables
3.2. Spatiotemporal Distribution of Potential Morbidity Risk Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samet, J.; Krewski, D. Health effects associated with exposure to ambient air pollution. J. Toxicol. Environ. Health A 2007, 70, 227–242. [Google Scholar] [CrossRef]
- Mannucci, P.M.; Franchini, M. Health Effects of Ambient Air Pollution in Developing Countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- Curtis, L.; Rea, W.; Smith-Willis, P.; Fenyves, E.; Pan, Y. Adverse health effects of outdoor air pollutants. Environ. Int. 2006, 32, 815–830. [Google Scholar] [CrossRef]
- Brauer, M.; Freedman, G.; Frostad, J.; van Donkelaar, A.; Martin, R.V.; Dentener, F.; van Dingenen, R.; Estep, K.; Amini, H.; Apte, J.S.; et al. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environ. Sci. Technol. 2016, 50, 79–88. [Google Scholar] [CrossRef]
- Querol, X.; Tobias, A.; Perez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; Perez Garcia-Pando, C.; Ginoux, P.; Forastiere, F.; Gumy, S.; et al. Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Int. 2019, 130, 104867. [Google Scholar] [CrossRef]
- Jansen, K.L.; Larson, T.V.; Koenig, J.Q.; Mar, T.F.; Fields, C.; Stewart, J.; Lippmann, M. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease. Environ. Health Perspect. 2005, 113, 1741–1746. [Google Scholar] [CrossRef]
- Magalhaes, S.; Baumgartner, J.; Weichenthal, S. Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: A review of epidemiological evidence. Environ. Res. 2018, 161, 345–353. [Google Scholar] [CrossRef]
- World Health Organization. Health Effects of Black Carbon; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Keuken, M.P.; Jonkers, S.; Zandveld, P.; Voogt, M.; Elshout van den, S. Elemental carbon as an indicator for evaluating the impact of traffic measures on air quality and health. Atmos. Environ. 2012, 61, 1–8. [Google Scholar] [CrossRef]
- Han, X.; Naeher, L.P. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef]
- Laumbach, R.J.; Kipen, H.M. Respiratory health effects of air pollution: Update on biomass smoke and traffic pollution. J. Allergy Clin. Immunol. 2012, 129, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Stenson, C.; Wheeler, A.J.; Carver, A.; Donaire-Gonzalez, D.; Alvarado-Molina, M.; Nieuwenhuijsen, M.; Tham, R. The impact of Traffic-Related air pollution on child and adolescent academic Performance: A systematic review. Environ. Int. 2021, 155, 106696. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.J.; Shiu, H.Y.; Chang, J.H.H.; Ooi, M.C.G.; Li, H.H.; Homma, R.; Shimizu, Y.; Pei-Te, C.; Maneechot, L.; Sulaiman, N.M.N. Spatiotemporal impact of COVID-19 on Taiwan air quality in the absence of a lockdown: Influence of urban public transportation use and meteorological conditions. J. Clean. Prod. 2022, 365, 132893. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jiang, X.J.; Tong, D.; Davis, S.J.; Zhao, H.Y.; Geng, G.N.; Feng, T.; Zheng, B.; Lu, Z.F.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [Green Version]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Selin, N.E.; Wu, S.; Nam, K.M.; Reilly, J.M.; Paltsev, S.; Prinn, R.G.; Webster, M.D. Global health and economic impacts of future ozone pollution. Environ. Res. Lett. 2009, 4, 044014. [Google Scholar] [CrossRef]
- Likhvar, V.N.; Pascal, M.; Markakis, K.; Colette, A.; Hauglustaine, D.; Valari, M.; Klimont, Z.; Medina, S.; Kinney, P. A multi-scale health impact assessment of air pollution over the 21st century. Sci. Total Environ. 2015, 514, 439–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fann, N.; Fulcher, C.M.; Hubbell, B.J. The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution. Air Qual. Atmos. Health 2009, 2, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, X.; Huang, L.; Ying, Q.; Zhang, Q.; Zhao, B.; Wang, S.; Zhang, H. Ensemble prediction of air quality using the WRF/CMAQ model system for health effect studies in China. Atmos. Chem. Phys. 2017, 17, 13103–13118. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, J.; Mu, X.; Zhao, L.; Gu, C.; Gao, H.; Ma, J.; Mao, X.; Huang, T. A WRF-CMAQ modeling of atmospheric PAH cycling and health risks in the heavy petrochemical industrialized Lanzhou valley, Northwest China. J. Clean. Prod. 2021, 291, 125989. [Google Scholar] [CrossRef]
- Hao, H.; Chang, H.H.; Holmes, H.A.; Mulholland, J.A.; Klein, M.; Darrow, L.A.; Strickland, M.J. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002–2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements. Environ. Health Perspect. 2016, 124, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Guttikunda, S.K.; Carmichael, G.R.; Wang, Y.; Liu, Z.; Stanier, C.O.; Saide, P.E.; Yu, M. Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Sci. Total Environ. 2015, 511, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Gonzalez, K.; Sullivan, A.P.; Morales-Betancourt, R. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Sci. Total Environ. 2020, 739, 139755. [Google Scholar] [CrossRef] [PubMed]
- Kryza, M.; Werner, M.; Dudek, J.; Dore, A.J. The Effect of Emission Inventory on Modelling of Seasonal Exposure Metrics of Particulate Matter and Ozone with the WRF-Chem Model for Poland. Sustainability 2020, 12, 5414. [Google Scholar] [CrossRef]
- Thompson, T.M.; Saari, R.K.; Selin, N.E. Air quality resolution for health impact assessment: Influence of regional characteristics. Atmos. Chem. Phys. 2014, 14, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Parvez, F.; Wagstrom, K. Impact of regional versus local resolution air quality modeling on particulate matter exposure health impact assessment. Air Qual. Atmos. Health 2020, 13, 271–279. [Google Scholar] [CrossRef]
- Mauzerall, D.L.; Sultan, B.; Kim, N.; Bradford, D.F. Nox emissions from large point sources: Variability in ozone production, resulting health damages and economic costs. Atmos. Environ. 2005, 39, 2851–2866. [Google Scholar] [CrossRef]
- Fann, N.; Baker, K.R.; Fulcher, C.M. Characterizing the PM2.5-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the U.S. Environ. Int. 2012, 49, 141–151. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Jawahar, P. Evaluation of Particulate Pollution and Health Impacts from Planned Expansion of Coal-Fired Thermal Power Plants in India Using WRF-CAMx Modeling System. Aerosol Air Qual. Res. 2018, 18, 3187–3201. [Google Scholar] [CrossRef]
- Bouscasse, H.; Gabet, S.; Kerneis, G.; Provent, A.; Rieux, C.; Ben Salem, N.; Dupont, H.; Troude, F.; Mathy, S.; Slama, R. Designing local air pollution policies focusing on mobility and heating to avoid a targeted number of pollution-related deaths: Forward and backward approaches combining air pollution modeling, health impact assessment and cost-benefit analysis. Environ. Int. 2022, 159, 107030. [Google Scholar] [CrossRef]
- Valari, M.; Menut, L.; Chatignoux, E. Using a chemistry transport model to account for the spatial variability of exposure concentrations in epidemiologic air pollution studies. J. Air Waste Manag. Assoc. 2011, 61, 164–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiesewetter, G.; Schoepp, W.; Heyes, C.; Amann, M. Modelling PM2.5 impact indicators in Europe: Health effects and legal compliance. Environ. Model. Softw. 2015, 74, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, S.; Rochereau, T.; Maesano, C.N.; Com-Ruelle, L.; Annesi-Maesano, I. Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France. Int. J. Environ. Res. Public Health 2018, 15, 2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, E.; Santiago, J.L.; Lechon, Y.; Martin, F.; Arino, A.; Pons, J.J.; Santamaria, J.M. CFD modelling of air quality in Pamplona City (Spain): Assessment, stations spatial representativeness and health impacts valuation. Sci. Total Environ. 2019, 649, 1362–1380. [Google Scholar] [CrossRef]
- Buonocore, J.J.; Dong, X.; Spengler, J.D.; Fu, J.S.; Levy, J.I. Using the Community Multiscale Air Quality (CMAQ) model to estimate public health impacts of PM2.5 from individual power plants. Environ. Int. 2014, 68, 200–208. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Jawahar, P. Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos. Environ. 2014, 92, 449–460. [Google Scholar] [CrossRef]
- Strasert, B.; Teh, S.C.; Cohan, D.S. Air quality and health benefits from potential coal power plant closures in Texas. J. Air Waste Manag. Assoc. 2019, 69, 333–350. [Google Scholar] [CrossRef]
- Fann, N.; Baker, K.R.; Chan, E.A.W.; Eyth, A.; Macpherson, A.; Miller, E.; Snyder, J. Assessing Human Health PM2.5 and Ozone Impacts from U.S. Oil and Natural Gas Sector Emissions in 2025. Environ. Sci. Technol. 2018, 52, 8095–8103. [Google Scholar] [CrossRef]
- Arunachalam, S.; Wang, B.; Davis, N.; Baek, B.H.; Levy, J.I. Effect of chemistry-transport model scale and resolution on population exposure to PM2.5 from aircraft emissions during landing and takeoff. Atmos. Environ. 2011, 45, 3294–3300. [Google Scholar] [CrossRef]
- Li, Y.; Henze, D.K.; Jack, D.; Kinney, P.L. The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. Air Qual. Atmos. Health 2016, 9, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Yoo, E.H. The importance of spatial resolutions of Community Multiscale Air Quality (CMAQ) models on health impact assessment. Sci. Total Environ. 2018, 627, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Kirwa, K.; Szpiro, A.A.; Sheppard, L.; Sampson, P.D.; Wang, M.; Keller, J.P.; Young, M.T.; Kim, S.Y.; Larson, T.V.; Kaufman, J.D. Fine-Scale Air Pollution Models for Epidemiologic Research: Insights from Approaches Developed in the Multi-ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Curr. Environ. Health Rep. 2021, 8, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Teng, B.; Zhang, X.; Yi, C.; Zhang, Y.; Ye, S.; Wang, Y.; Tong, D.Q.; Lu, B. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China. Int. J. Environ. Res. Public Health 2017, 14, 226. [Google Scholar] [CrossRef] [Green Version]
- Eguiluz-Gracia, I.; Mathioudakis, A.G.; Bartel, S.; Vijverberg, S.J.H.; Fuertes, E.; Comberiati, P.; Cai, Y.S.; Tomazic, P.V.; Diamant, Z.; Vestbo, J.; et al. The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma. Allergy 2020, 75, 2170–2184. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, W.; Wang, G.; Zhang, X.; Guo, Q.; Wang, B.; Cao, S.; Yan, M.; Pan, X.; Xue, T.; et al. Association between exposure to air pollution and risk of allergic rhinitis: A systematic review and meta-analysis. Environ. Res. 2022, 205, 112472. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Mohegh, A.; Goldberg, D.L.; Kerr, G.H.; Brauer, M.; Burkart, K.; Hystad, P.; Larkin, A.; Wozniak, S.; Lamsal, L. Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: Estimates from global datasets. Lancet Planet. Health 2022, 6, e49–e58. [Google Scholar] [CrossRef]
- Pekkanen, J.; Pearce, N. Defining asthma in epidemiological studies. Eur. Respir. J. 1999, 14, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Jung, D.Y.; Leem, J.H.; Kim, H.C.; Kim, J.H.; Hwang, S.S.; Lee, J.Y.; Kim, B.J.; Hong, Y.C.; Hong, S.J.; Kwon, H.J. Effect of Traffic-Related Air Pollution on Allergic Disease: Results of the Children’s Health and Environmental Research. Allergy Asthma Immunol. Res. 2015, 7, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Lu, C.; Yu, Y.; Li, Y.; Sundell, J.; Norback, D. Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir. Med. 2016, 121, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khreis, H.; Kelly, C.; Tate, J.; Parslow, R.; Lucas, K.; Nieuwenhuijsen, M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ. Int. 2017, 100, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, J.; Wichmann, H.E. Traffic related pollutants in Europe and their effect on allergic disease. Curr. Opin. Allergy Clin. Immunol. 2004, 4, 341–348. [Google Scholar] [CrossRef]
- Bowatte, G.; Lodge, C.; Lowe, A.J.; Erbas, B.; Perret, J.; Abramson, M.J.; Matheson, M.; Dharmage, S.C. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: A systematic review and a meta-analysis of birth cohort studies. Allergy 2015, 70, 245–256. [Google Scholar] [PubMed]
- Hao, S.; Yuan, F.; Pang, P.; Yang, B.; Jiang, X.; Yan, A.J.E.H.; Medicine, P. Early childhood traffic-related air pollution and risk of allergic rhinitis at 2–4 years of age modification by family stress and male gender: A case-control study in Shenyang, China. Environ. Health Prev. Med. 2021, 26, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.Y.; Shen, Y.; Ke, X.; Hong, S.L.; Kang, H.Y. Exposure to air pollution and risk of prevalence of childhood allergic rhinitis: A meta-analysis. Int. J. Pediatr. Otorhinolaryngol. 2018, 112, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, Z.; Jiang, F.; Li, S.; Liu, S.; Wu, M.; Yan, C.; Tan, J.; Yu, G.; Hu, Y.; et al. Relative impact of meteorological factors and air pollutants on childhood allergic diseases in Shanghai, China. Sci. Total Environ. 2020, 706, 135975. [Google Scholar] [CrossRef]
- Jia, X.; Shen, Z.; Liu, R.; Han, Y.; Yang, Y.; Chen, Q.; Duan, N. Association of fine particulate matter to allergic rhinitis: A systematic review and meta-analysis. Eur. J. Inflamm. 2022, 20, 1721727X221089839. [Google Scholar] [CrossRef]
- Gasana, J.; Dillikar, D.; Mendy, A.; Forno, E.; Ramos Vieira, E. Motor vehicle air pollution and asthma in children: A meta-analysis. Environ. Res. 2012, 117, 36–45. [Google Scholar] [CrossRef]
- Anderson, H.R.; Favarato, G.; Atkinson, R.W. Long-term exposure to air pollution and the incidence of asthma: Meta-analysis of cohort studies. Air Qual. Atmos. Health 2011, 6, 47–56. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Ding, H.; Jiang, L.N.; Chen, S.W.; Zheng, J.P.; Qiu, M.; Zhou, Y.X.; Chen, Q.; Guan, W.J. Association between Air Pollutants and Asthma Emergency Room Visits and Hospital Admissions in Time Series Studies: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0138146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, G.; Tian, L.; Guo, Q.; Pan, X. Short-term exposure to air pollution and morbidity of COPD and asthma in East Asian area: A systematic review and meta-analysis. Environ. Res. 2016, 148, 15–23. [Google Scholar]
- Han, K.; Ran, Z.; Wang, X.; Wu, Q.; Zhan, N.; Yi, Z.; Jin, T. Traffic-related organic and inorganic air pollution and risk of development of childhood asthma: A meta-analysis. Environ. Res. 2021, 194, 110493. [Google Scholar] [CrossRef]
- Orellano, P.; Quaranta, N.; Reynoso, J.; Balbi, B.; Vasquez, J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLoS ONE 2017, 12, e0174050. [Google Scholar] [CrossRef]
- Lai, H.K.; Tsang, H.; Wong, C.M. Meta-analysis of adverse health effects due to air pollution in Chinese populations. BMC Public Health 2013, 13, 360. [Google Scholar] [CrossRef] [Green Version]
- Kindzierski, W.; Young, S.; Meyer, T.; Dunn, J. Evaluation of a meta-analysis of ambient air quality as a risk factor for asthma exacerbation. J. Respir. 2021, 1, 173–196. [Google Scholar] [CrossRef]
- Graudenz, G.S.; Landgraf, R.G.; Jancar, S.; Tribess, A.; Fonseca, S.G.; Fae, K.C.; Kalil, J. The role of allergic rhinitis in nasal responses to sudden temperature changes. J. Allergy Clin. Immunol. 2006, 118, 1126–1132. [Google Scholar] [CrossRef]
- Xu, M.; Ke, P.; Chen, R.; Hu, P.; Liu, B.; Hou, J.; Ke, L. Association of temperature variability with the risk of initial outpatient visits for allergic rhinitis: A time-series study in Changchun. Environ. Sci. Pollut. Res. Int. 2022, 29, 27222–27231. [Google Scholar] [CrossRef]
- Jo, E.J.; Lee, W.S.; Jo, H.Y.; Kim, C.H.; Eom, J.S.; Mok, J.H.; Kim, M.H.; Lee, K.; Kim, K.U.; Lee, M. Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Respir. Med. 2017, 124, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Wang, X.; Zhao, D.; Wang, S.; Bai, L.; Cheng, Q.; Gao, J.; Xu, Z.; Zhang, Y.; Zhang, H.; et al. Risk effects of high and low relative humidity on allergic rhinitis: Time series study. Environ. Res. 2019, 173, 373–378. [Google Scholar] [CrossRef]
- Lin, G.C.; Zacharek, M.A. Climate change and its impact on allergic rhinitis and other allergic respiratory diseases. Curr. Opin. Otolaryngol. Head Neck Surg. 2012, 20, 188–193. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, J.; Ling, L.; Su, H.; Zhao, D.; Ni, H. Impact of temperature variability on childhood allergic rhinitis in a subtropical city of China. BMC Public Health 2020, 20, 1418. [Google Scholar] [CrossRef]
- Wang, J.; Lu, M.; An, Z.; Jiang, J.; Li, J.; Wang, Y.; Du, S.; Zhang, X.; Zhou, H.; Cui, J.; et al. Associations between air pollution and outpatient visits for allergic rhinitis in Xinxiang, China. Environ. Sci. Pollut. Res. Int. 2020, 27, 23565–23574. [Google Scholar] [CrossRef]
- Wu, R.; Guo, Q.; Fan, J.; Guo, C.; Wang, G.; Wu, W.; Xu, J. Association between air pollution and outpatient visits for allergic rhinitis: Effect modification by ambient temperature and relative humidity. Sci. Total Environ. 2022, 821, 152960. [Google Scholar] [CrossRef]
- Gao, J.; Lu, M.; Sun, Y.; Wang, J.; An, Z.; Liu, Y.; Li, J.; Jia, Z.; Wu, W.; Song, J. Changes in ambient temperature increase hospital outpatient visits for allergic rhinitis in Xinxiang, China. BMC Public Health 2021, 21, 600. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, S.P.; Hsieh, C.J.; Tseng, C.C.; Yiin, L.M. Allergic Rhinitis: Association with Air Pollution and Weather Changes, and Comparison with That of Allergic Conjunctivitis in Taiwan. Atmosphere 2020, 11, 1152. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Lee, J.T. Assessing the cold temperature effect on hospital visit by allergic rhinitis in Seoul, Korea. Sci. Total Environ. 2018, 633, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Espinosa, S.; Ynoue, R.; O’Sullivan, S.; Pebesma, E.; Andrade, M.d.F.; Osses, M. VEIN v0. 2.2: An R package for bottom-up vehicular emissions inventories. Geosci. Model Dev. 2018, 11, 2209–2229. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Espinosa, S.; Zhang, X.; Xiu, A.; Gao, C.; Wang, S.; Ba, Q.; Gao, C.; Chen, W. A comprehensive spatial and temporal vehicular emissions for northeast China. Atmos. Environ. 2021, 244, 117952. [Google Scholar] [CrossRef]
- Lipfert, F. An Assessment of air pollution exposure information for health studies. Atmosphere 2015, 6, 1736–1752. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Stead, T.S.; Ganti, L. What’s the risk: Differentiating risk ratios, odds ratios, and hazard ratios? Cureus 2020, 12, e10047. [Google Scholar] [CrossRef]
- Brook, R.D.; Jerreft, M.; Brook, J.R.; Bard, R.L.; Finkelstein, M.M. The relationship between diabetes mellitus and traffic-related air pollution. J. Occup. Environ. Med. 2008, 50, 32–38. [Google Scholar] [CrossRef]
- Lee, J. Odds ratio or relative risk for cross-sectional data? Int. J. Epidemiol. 1994, 23, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, T.; Sun, M.; Liang, Q.; Ma, Y.; Wang, F.; Duan, J.; Sun, Z. Effect of particulate matter exposure on the prevalence of allergic rhinitis in children: A systematic review and meta-analysis. Chemosphere 2021, 268, 128841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fu, Q.; Wang, S.; Jin, X.; Tan, J.; Ding, K.; Zhang, Q.; Li, X. Association between air pollution and the prevalence of allergic rhinitis in Chinese children: A systematic review and meta-analysis. Allergy Asthma Proc. 2022, 43, e47–e57. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.F.; Jaakkola, J.J.; Lee, Y.L.; Lin, Y.C.; Leon Guo, Y.L. Relation between air pollution and allergic rhinitis in Taiwanese schoolchildren. Respir. Res. 2006, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, G.H.; Chen, T.; Liu, M.M.; Wang, D.; Ma, Y.N.; Ren, W.H.; Lee, Y.L.; Zhao, Y.D.; He, Q.C. Gender differences and effect of air pollution on asthma in children with and without allergic predisposition: Northeast Chinese children health study. PLoS ONE 2011, 6, e22470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Deng, Q.; Ou, C.; Liu, W.; Sundell, J. Effects of ambient air pollution on allergic rhinitis among preschool children in Changsha, China. Chin. Sci. Bull. 2013, 58, 4252–4258. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.M.; Wang, D.; Zhao, Y.; Liu, Y.Q.; Huang, M.M.; Liu, Y.; Sun, J.; Ren, W.H.; Zhao, Y.D.; He, Q.C. Effects of outdoor and indoor air pollution on respiratory health of Chinese children from 50 kindergartens. J. Epidemiol. 2013, 23, 280–287. [Google Scholar] [CrossRef]
- Liu, W.; Huang, C.; Hu, Y.; Fu, Q.Y.; Zou, Z.J.; Sun, C.J.; Shen, L.; Wang, X.Y.; Cai, J.; Pan, J. Associations of gestational and early life exposures to ambient air pollution with childhood respiratory diseases in Shanghai, China: A retrospective cohort study. Environ. Int. 2016, 92–93, 284–293. [Google Scholar] [CrossRef]
- Wang, I.J.; Tung, T.H.; Tang, C.S.; Zhao, Z.H. Allergens, air pollutants, and childhood allergic diseases. Int. J. Hyg. Environ. Health 2016, 219, 66–71. [Google Scholar] [CrossRef]
- Chung, H.Y.; Hsieh, C.J.; Tseng, C.C.; Yiin, L.M. Association between the first occurrence of allergic rhinitis in preschool children and air pollution in Taiwan. Int. J. Environ. Res. Public Health 2016, 13, 268. [Google Scholar] [CrossRef] [Green Version]
- Li, R.L.; Ho, Y.C.; Luo, C.W.; Lee, S.S.; Kuan, Y.H. Influence of PM2.5 exposure level on the association between Alzheimer’s Disease and allergic rhinitis: A National Population-Based Cohort Study. Int. J. Environ. Res. Public Health 2019, 16, 3357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.C.; Chiu, H.F.; Yang, C.Y. Air pollution exposure and daily clinical visits for allergic rhinitis in a subtropical city: Taipei, Taiwan. J. Toxicol. Environ. Health Part A 2016, 79, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Chen, R.; Norback, D.; Liu, C.; Kan, H.; Deng, Q.; Huang, C.; Hu, Y.; Zou, Z.; Liu, W. The effects of PM2.5 on asthmatic and allergic diseases or symptoms in preschool children of six Chinese cities, based on China, Children, Homes and Health (CCHH) project. Environ. Pollut. 2018, 232, 329–337. [Google Scholar]
- Norbäck, D.; Lu, C.; Wang, J.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Qian, H.; Sun, Y. Asthma and rhinitis among Chinese children–indoor and outdoor air pollution and indicators of socioeconomic status (SES). Environ. Int. 2018, 115, 1–8. [Google Scholar] [CrossRef]
- Huang, Q.; Ren, Y.; Liu, Y.; Liu, S.; Liu, F.; Li, X.; Li, B.; Hou, Y.; Lu, Y.; Li, S. Associations of gestational and early life exposure to air pollution with childhood allergic rhinitis. Atmos. Environ. 2019, 200, 190–196. [Google Scholar] [CrossRef]
- Liu, W.; Cai, J.; Fu, Q.; Zou, Z.; Sun, C.; Zhang, J.; Huang, C. Associations of ambient air pollutants with airway and allergic symptoms in 13,335 preschoolers in Shanghai, China. Chemosphere 2020, 252, 126600. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Deng, Q.; Lu, C.; Qian, H.; Yang, X. Asthma and allergic rhinitis among young parents in China in relation to outdoor air pollution, climate and home environment. Sci. Total Environ. 2021, 751, 141734. [Google Scholar] [CrossRef]
- Chen, Z.; Cui, L.; Cui, X.; Li, X.; Yu, K.; Yue, K.; Dai, Z.; Zhou, J.; Jia, G.; Zhang, J. The association between high ambient air pollution exposure and respiratory health of young children: A cross sectional study in Jinan, China. Sci. Total Environ. 2019, 656, 740–749. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, W.; Lv, J.; Krafft, T.; Xu, J. Time-series studies on air pollution and daily outpatient visits for allergic rhinitis in Beijing, China. Sci. Total Environ. 2011, 409, 2486–2492. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, J.; Wang, L.; Lu, J.; Li, Y.; Ni, Y.; Wang, W.; Krafft, T. Air quality, patterns and otolaryngology health effects of air pollutants in Beijing in 2013. Aerosol Air Qual. Res. 2016, 16, 1464–1472. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Xin, J.; Yuan, Q.; Wang, M.; Cheng, L.; Zhang, Z.; Lu, M. The effects of particulate matters on allergic rhinitis in Nanjing, China. Environ. Sci. Pollut. Res. 2019, 26, 11452–11457. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, S.; Wang, X.; Tian, Y.; Wu, Y.; Cao, Y.; Song, J.; Wu, T.; Hu, Y. The association between PM2.5 exposure and daily outpatient visits for allergic rhinitis: Evidence from a seriously air-polluted environment. Int. J. Biometeorol. 2020, 64, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wei, L.; Yan, H.; Duan, Z.; Niu, Z.; Xiao, C. Exposure to ambient air pollution during trimesters of pregnancy and childhood allergic diseases in Wuhan, China. Int. J. Environ. Health Res. 2022, 32, 1962–1972. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Hong, H.; Lu, Y.; Deng, S.; Wu, N.; Zhou, Q.; Chen, Z.; Feng, P.; Zhou, Y.; Tao, J.; et al. Impact of air pollution and meteorological factors on incidence of allergic rhinitis: A low-latitude multi-city study in China. Allergy 2023, 00, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Andrade, C. Understanding relative risk, odds ratio, and related terms: As simple as it can get. J. Clin. Psychiatry 2015, 76, e857–e861. [Google Scholar] [CrossRef] [Green Version]
- Slama, A.; Sliwczynski, A.; Woznica-Pyzikiewicz, J.; Zdrolik, M.; Wisnicki, B.; Kubajek, J.; Turzanska-Wieczorek, O.; Studnicki, M.; Wierzba, W.; Franek, E. The short-term effects of air pollution on respiratory disease hospitalizations in 5 cities in Poland: Comparison of time-series and case-crossover analyses. Environ. Sci. Pollut. Res. Int. 2020, 27, 24582–24590. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Wang, B.; Cao, S.; Zhang, K.; Duan, X.; Wu, W. Has the Risk of Outpatient Visits for Allergic Rhinitis, Related to Short-Term Exposure to Air Pollution, Changed over the Past Years in Beijing, China? Int. J. Environ. Res. Public Health 2022, 19, 12529. [Google Scholar] [CrossRef]
- Liu, K.; Li, S.; Qian, Z.M.; Dharmage, S.C.; Bloom, M.S.; Heinrich, J.; Jalaludin, B.; Markevych, I.; Morawska, L.; Knibbs, L.D. Benefits of influenza vaccination on the associations between ambient air pollution and allergic respiratory diseases in children and adolescents: New insights from the Seven Northeastern Cities study in China. Environ. Pollut. 2020, 256, 113434. [Google Scholar] [CrossRef]
- Zhou, P.E.; Qian, Z.; McMillin, S.E.; Vaughn, M.G.; Xie, Z.Y.; Xu, Y.J.; Lin, L.Z.; Hu, L.W.; Yang, B.Y.; Zeng, X.W. Relationships between long-term ozone exposure and allergic rhinitis and bronchitic symptoms in Chinese children. Toxics 2021, 9, 221. [Google Scholar] [CrossRef]
- Miettine, O.S. Propotion of disease caused or prevented by a given exposure, trait or prevented by a given exposure. Am. J. Epidemiol. 1974, 99, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Xiu, A.; Zhang, X.; Chen, W.; Liu, Y.; Zhao, H.; Zhang, S. Spatiotemporal characteristics of ozone pollution and policy implications in Northeast China. Atmos. Pollut. Res. 2020, 11, 357–369. [Google Scholar] [CrossRef]
- Munir, S.; Chen, H.; Ropkins, K. Modelling the impact of road traffic on ground level ozone concentration using a quantile regression approach. Atmos. Environ. 2012, 60, 283–291. [Google Scholar] [CrossRef]
- Vingarzan, R. A review of surface ozone background levels and trends. Atmos. Environ. 2004, 38, 3431–3442. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Hu, F.; Li, J.; Ma, Y.; Liu, H. A comparison study of the simulation accuracy between WRF and MM5 in simulating local atmospheric circulations over Greater Beijing. Sci. China Earth Sci. 2011, 55, 418–427. [Google Scholar] [CrossRef]
- He, J.J.; Yu, Y.; Yu, L.J.; Liu, N.; Zhao, S.P. Impacts of uncertainty in land surface information on simulated surface temperature and precipitation over China. Int. J. Climatol. 2017, 37, 829–847. [Google Scholar] [CrossRef]
- Kong, X.; Wang, A.; Bi, X.; Wang, D. Assessment of temperature extremes in China using RegCM4 and WRF. Adv. Atmos. Sci. 2019, 36, 363–377. [Google Scholar] [CrossRef]
- Yan, D.; Liu, T.; Dong, W.; Liao, X.; Luo, S.; Wu, K.; Zhu, X.; Zheng, Z.; Wen, X. Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. Dyn. Atmos. Oceans 2020, 89, 101127. [Google Scholar] [CrossRef]
- Liao, J.; Wang, T.; Wang, X.; Xie, M.; Jiang, Z.; Huang, X.; Zhu, J. Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River Delta, China. Atmos. Res. 2014, 145–146, 226–243. [Google Scholar] [CrossRef] [Green Version]
- Schicker, I.; Arias, D.A.; Seibert, P. Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteorol. Atmos. Phys. 2015, 128, 279–301. [Google Scholar] [CrossRef]
- Tao, Z.; Chin, M.; Gao, M.; Kucsera, T.; Kim, D.; Bian, H.; Kurokawa, J.I.; Wang, Y.; Liu, Z.; Carmichael, G.R. Evaluation of NU-WRF model performance on air quality simulation under various model resolutions–an investigation within the framework of MICS-Asia Phase III. Atmos. Chem. Phys. 2020, 20, 2319–2339. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, E.; Standl, M.; Cyrys, J.; Berdel, D.; von Berg, A.; Bauer, C.P.; Kramer, U.; Sugiri, D.; Lehmann, I.; Koletzko, S.; et al. A longitudinal analysis of associations between traffic-related air pollution with asthma, allergies and sensitization in the GINIplus and LISAplus birth cohorts. PeerJ 2013, 1, 20. [Google Scholar] [CrossRef]
- Gehring, U.; Wijga, A.H.; Hoek, G.; Bellander, T.; Berdel, D.; Bruske, I.; Fuertes, E.; Gruzieva, O.; Heinrich, J.; Hoffmann, B.; et al. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: A population-based birth cohort study. Lancet Respir. Med. 2015, 3, 933–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pindus, M.; Orru, H.; Maasikmets, M.; Kaasik, M.; Jogi, R. Association Between Health Symptoms and Particulate Matter from Traffic and Residential Heating—Results from RHINE III in Tartu. Open Respir. Med. J. 2016, 10, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burte, E.; Leynaert, B.; Marcon, A.; Bousquet, J.; Benmerad, M.; Bono, R.; Jacquemin, B. Long-term air pollution exposure is associated with increased severity of rhinitis in 2 European cohorts. J. Allergy Clin. Immunol. 2020, 145, 834–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burte, E.; Leynaert, B.; Bono, R.; Brunekreef, B.; Bousquet, J.; Carsin, A.E.; Jacquemin, B. Association between air pollution and rhinitis incidence in two European cohorts. Environ. Int. 2018, 115, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Skjetne, E.; Kobernus, M. Mobile phone tracking: In support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment. Environ. Health 2013, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Steinle, S.; Reis, S.; Sabel, C.E.; Semple, S.; Twigg, M.M.; Braban, C.F.; Leeson, S.R.; Heal, M.R.; Harrison, D.; Lin, C.; et al. Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci. Total Environ. 2015, 508, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.M. Assessing personal exposure to traffic-related air pollution using individual travel-activity diary data and an on-road source air dispersion model. Health Place 2020, 63, 102351. [Google Scholar] [CrossRef]
- Haga, S.L.; Hagenbjörk, A.; Olin, A.C.; Forsberg, B.; Liljelind, I.; Carlsen, H.K.; Modig, L. Personal exposure levels to O3, NOx and PM10 and the association to ambient levels in two Swedish cities. Environ. Monit. Assess. 2021, 193, 674. [Google Scholar] [CrossRef]
- Taştan, M.; Gökozan, H.J. Real-time monitoring of indoor air quality with internet of things-based E-nose. Appl. Sci. 2019, 9, 3435. [Google Scholar] [CrossRef]
- Chatzidiakou, L.; Krause, A.; Popoola, O.A.M.; Di Antonio, A.; Kellaway, M.; Han, Y.; Squires, F.A.; Wang, T.; Zhang, H.; Wang, Q.; et al. Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments. Atmos. Meas. Tech. 2019, 12, 4643–4657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Barkjohn, K.K.; Norris, C.; Schauer, J.J.; Zhang, J.; Zhang, Y.; Hu, M.; Bergin, M. Using low-cost sensors to monitor indoor, outdoor, and personal ozone concentrations in Beijing, China. Environ. Sci. Process. Impacts 2020, 22, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Kwan, M.P. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored. Health Place 2017, 43, 85–94. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, S.H.; Kang, S.H.; Kwon, O.K.; Park, J.J.; Yoon, C.H.; Cho, Y.S.; Heo, J.; Yi, S.M.; Youn, T.J.; et al. Personal exposure to fine particulate air pollutants impacts blood pressure and heart rate variability. Sci. Rep. 2020, 10, 16538. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Wang, Y.; Huang, J.; Zeng, Q.; Pan, X.; Li, G.; He, T. The construction of the air quality health index (AQHI) and a validity comparison based on three different methods. Environ. Res. 2021, 197, 110987. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, G.Z.; Liu, H.Z.; Guo, Y.M.; Ou, C.Q.; Chen, P.Y. Can the Air Pollution Index be used to communicate the health risks of air pollution? Environ. Pollut. 2015, 205, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, R.; Yin, G.; Du, X.; Meng, X.; Qiu, Y.; Zhou, M. The establishment of a new air health index integrating the mortality risks due to ambient air pollution and non-optimum temperature. Engineering 2022, 14, 156–162. [Google Scholar] [CrossRef]
- Wong, T.W.; Tam, W.W.S.; Yu, I.T.S.; Lau, A.K.H.; Pang, S.W.; Wong, A.H.S. Developing a risk-based air quality health index. Atmos. Environ. 2013, 76, 52–58. [Google Scholar] [CrossRef]
- Szyszkowicz, M. The Air Quality Health Index and all emergency department visits. Environ. Sci. Pollut. Res. 2019, 26, 24357–24361. [Google Scholar] [CrossRef]
- Olstrup, H.; Johansson, C.; Forsberg, B.; Tornevi, A.; Ekebom, A.; Meister, K. A multi-pollutant air quality health index (AQHI) based on short-term respiratory effects in Stockholm, Sweden. Int. J. Environ. Res. Public Health 2019, 16, 105. [Google Scholar] [CrossRef] [Green Version]
- Gladson, L.A.; Cromar, K.R.; Ghazipura, M.; Knowland, K.E.; Keller, C.A.; Duncan, B. Communicating respiratory health risk among children using a global air quality index. Environ. Int. 2022, 159, 107023. [Google Scholar] [CrossRef] [PubMed]
Models | Parameters | Configurations |
---|---|---|
WRF | Projection | Lambert |
Number of domain | 1 | |
Vertical layers | 30 | |
Horizonal resolution | 1 km × 1 km | |
Grids | 99 × 105 | |
Time step | 60 s | |
Microphysics scheme | Milbrandt–Yau Double Moment Scheme | |
Short wave and Longwave Radiation | RRTMG Scheme | |
Planetary boundary layer | Asymmetric Convection Model 2 Scheme | |
Land-surface | Pleim–Xiu Land Surface Model | |
Cumulus option | Grell 3D Ensemble Scheme | |
CHIMERE | Chemistry scheme | MELCHIOR2 |
Gas and aerosol partition | ISORROPIA | |
Horizontal advection | Van Leer | |
Vertical advection | Van Leer | |
Dry deposition | Zhang_2001 | |
Initial conditions | Previous forecast result | |
Boundary conditions | LMDz-INCA + GOCART | |
Dust emissions | GOCART | |
Biogenic emissions | MEGAN V3 | |
Anthropogenic emissions | MEIC_2017 | |
Traffic emissions | VEIN_2020 |
Reference | Published Year | Age Groups | Study Areas | PM2.5 | PM10 | NO2 | O3 | CO * | SO2 |
---|---|---|---|---|---|---|---|---|---|
Zou et al., 2018 [54] | 2018 | Children | Meta-analysis | 1.163 (1.074–1.260) | 1.075 (0.995–1.161) | 1.236 (1.099–1.390) | 1.044 (0.954–1.142) | ||
Zhang et al., 2022 [84] | 2021 | Children | Meta-analysis | 1.15 (1.03–1.29) | 1.02 (1.01–1.03) | 1.11 (1.05–1.18) | 0.98 (0.67–1.41) | 1.03 (1.01–1.05) | |
Lin et al., 2021 [83] | 2021 | Children | Meta-analysis | 1.09 (1.01–1.17) | 1.06 (1.02–1.11) | ||||
Jia et al., 2022 [56] | 2022 | Children | Meta-analysis | 1.08 (1.04–1.13) | |||||
Li et al., 2022 [45] | 2022 | All_ages | Meta-analysis | 1.12 (1.05–1.20) | 1.13 (1.04–1.22) | 1.13 (1.07–1.20) | 1.07 (1.01–1.12) | 1.07 (0.99–1.17) | 1.13 (1.04–1.22) |
Jia et al., 2022 [56] | 2022 | All_ages | Meta-analysis | 1.21 (1.01–1.44) | |||||
Zhang et al., 2011 [100] | 2011 | All_ages | Beijing | 1.0073 (1.0066–1.0080) | 1.0512 (1.0483–1.0542) | 1.0010 (1.0005–1.0014) | |||
Chen et al., 2016 [93] | 2016 | All_ages | Taibei | 1.067 (1.055–1.080) | 1.130 (1.115–1.145) | 1.118 (1.100–1.136) | 1.148 (1.125–1.170) | 0.990 (0.975–1.005) | |
Teng et al., 2017 [43] | 2017 | All_ages | Changchun | 1.102 (1.055–1.151) | 1.049 (1.008–1.092) | 1.111 (1.058–1.165) | 0.993 (0.941–1.048) | 0.977 (0.907–1.053) | 1.002 (0.985–1.015) |
Wang et al., 2016 [90] | 2016 | Children | Taibei | 1.54 (1.03–2.32) | 1.15 (0.79–1.45) | 0.95 (0.79–1.66) | 1.01 (0.76–1.34) | 1.02 (0.8–1.29) | 1.00 (0.78–1.29) |
Chung et al., 2016 [91] | 2016 | Children | Taiwan | 1.12 (0.79–1.45) | 1.27 (0.76–1.70) | 1.14 (1.02–1.86) | 1.05 (0.67–1.22) | ||
Chu et al., 2019 [102] | 2019 | All_ages | Nanjing | 1.0539 (1.0273–1.0812) | 1.0586 (1.0300–1.0881) | 1.085 (0.982–1.198) | |||
Wang et al., 2020 [103] | 2020 | All_ages | Beijing | 1.0047 (1.0039–1.0055) | |||||
Wang et al., 2020 [71] | 2020 | All_ages | Xinjiang | 1.007 (1.000–1.0141) | 1.0079 (1.0035–1.0123) | 1.0454 (1.0301–1.0608) | 1.0097 (0.9989–1.0205) | 1.0007 (1.0002–1.0012) | |
Wu et al.,2022 [72] | 2022 | All_ages | Beijing | 1.0124 (1.0069–1.0178) | 1.0079 (1.0043–1.0115) | 1.0305 (1.0172–1.0440) | 1.0501 (1.0118–1.0896) | 1.0343 (1.0147–1.0539) | |
Li S. et al., 2022 [108] | 2022 | All_ages | Beijing | 1.010 (0.985–1.035) | 1.012 (0.991–1.033) | 1.086 (1.057–1.117) | 0.974 (0.923–1.028) | 1.002 (0.987–1.017) | 1.009 (0.995–1.023) |
Luo et al., 2022 [105] | 2022 | All_ages | Guangzhou–Shenzhen–Zhuhai | 1.0184 (1.0068–1.0302) | 1.0154 (1.0096–1.0123) | 1.0243 (1.0131–1.0356) | 1.0034 (1.0010–1.0048) | 0.982 (0.52–2.14) | 1.0769 (1.0104–1.1478) |
Lu et al., 2013 [87] | 2013 | Children | Changsha | 1.021 (1.003–1.039) | 1.037 (1.006–1.069) | 1.026 (1.005–1.048) | |||
Liu et al., 2020 [109] | 2020 | Children | NEC_7 cities | 1.28 (1.09–1.51) | 1.23 (1.06–1.43) | 1.22 (1.05–1.42) | |||
Zhou et al., 2021 [110] | 2021 | Children | NEC_7 cities | 1.13 (1.07–1.18) | |||||
Hao et al., 2021 [53] | 2021 | Children | Shenyang | 1.31 (1.08–1.90) | 1.15 (1.02–2.23) | 0.52 (0.23–1.02) | 1.13 (0.77–2.02) | ||
Guo et al., 2022 [104] | 2022 | Children | Wuhan | 1.270 (1.004–1.606) | 1.210 (1.042–1.405) | 1.292 (1.005–1.662) | 1.137 (0.973–1.329) | 1.02 (0.95–1.11) |
Variables | Site | July | December | ||||
---|---|---|---|---|---|---|---|
R | MB | RMSE | R | MB | RMSE | ||
T | CLIA | 0.90 | 0.80 | 1.97 | 0.98 | −0.51 | 2.16 |
CTS | 0.86 | −0.53 | 2.38 | 0.94 | −1.39 | 3.05 | |
RH | CLIA | 0.80 | 2.43 | 10.21 | 0.65 | 10.64 | 14.92 |
CTS | 0.76 | −5.91 | 13.23 | 0.56 | 10.22 | 15.75 | |
WS | CLIA | 0.72 | 0.10 | 1.20 | 0.79 | 0.31 | 1.22 |
CTS | 0.75 | 1.00 | 1.42 | 0.61 | 0.91 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, W.; Zhang, X.; He, F.; Chen, X.; Ma, S.; Tong, Q.; Wen, Z.; Teng, B. Health Risks Forecast of Regional Air Pollution on Allergic Rhinitis: High-Resolution City-Scale Simulations in Changchun, China. Atmosphere 2023, 14, 393. https://doi.org/10.3390/atmos14020393
Tong W, Zhang X, He F, Chen X, Ma S, Tong Q, Wen Z, Teng B. Health Risks Forecast of Regional Air Pollution on Allergic Rhinitis: High-Resolution City-Scale Simulations in Changchun, China. Atmosphere. 2023; 14(2):393. https://doi.org/10.3390/atmos14020393
Chicago/Turabian StyleTong, Weifang, Xuelei Zhang, Feinan He, Xue Chen, Siqi Ma, Qingqing Tong, Zeyi Wen, and Bo Teng. 2023. "Health Risks Forecast of Regional Air Pollution on Allergic Rhinitis: High-Resolution City-Scale Simulations in Changchun, China" Atmosphere 14, no. 2: 393. https://doi.org/10.3390/atmos14020393
APA StyleTong, W., Zhang, X., He, F., Chen, X., Ma, S., Tong, Q., Wen, Z., & Teng, B. (2023). Health Risks Forecast of Regional Air Pollution on Allergic Rhinitis: High-Resolution City-Scale Simulations in Changchun, China. Atmosphere, 14(2), 393. https://doi.org/10.3390/atmos14020393