Sensitivity Analysis of Pipe–Soil Interaction Influencing Factors under Frost Heaving
Abstract
:1. Introduction
2. Equivalent Stress and Principal Stresses
2.1. Equivalent Stress
2.2. Pipe Stresses Caused by Frost Heaving
2.3. Temperature Stress and Oil Pressure
2.4. Overlying Soil Pressure
2.5. Weight of Pipe and Medium
3. Sensitive Analysis of Influencing Factors on Pipe–Soil Interaction
3.1. Foundation Coefficient
3.1.1. Elastic Modulus
3.1.2. Poisson’s Ratio
3.1.3. The Coefficient of Frozen Soil Foundation
3.2. Temperature Difference
3.3. Frost Heave
3.4. Oil Pressure in the Pipe
3.5. Length of the Transition Region (Frost Heaving Range)
3.6. Pipe Size
3.7. Elastic Modulus of Pipe (Material Properties)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Q.; Fu, H.; Xiao, H.; Xiao, H.; Liu, Y.; Zhang, J.; Deng, Q. Model test study on mechanical properties of pipe under the soil freeze-thaw condition. Cold Reg. Sci. Technol. 2020, 174, 103040. [Google Scholar] [CrossRef]
- Mu, Q.; Wang, R.; Niu, Y.; Shi, Y.; Zhang, C. Mechanical analysis of a buried pipeline influenced by the soil frost heave and the axial force. J. Lanzhou Univ. Nat. Sci. 2021, 57, 278–284. [Google Scholar] [CrossRef]
- Shen, M.; Ladanyi, B. Soil-pipe interaction during frost heaving around a buried chilled pipeline. In Cold Regions Engineering; ASCE: Reston, VA, USA, 1991; pp. 11–21. [Google Scholar]
- Jin, H. Design and construction of a large-diameter crude oil pipeline in Northeastern China: A special issue on permafrost pipeline. Cold Reg. Sci. Technol. 2010, 64, 209–212. [Google Scholar] [CrossRef]
- Li, G.; Cao, Y.; Ma, W.; Jin, X.; Chen, P.; Yu, Q.; Zhang, Z.; Mu, Y.; Jin, H. Permafrost engineering problem along China-Russia crude oil pipeline and mitigative measure. Bull. Chin. Acad. Sci. 2021, 36, 150–159. [Google Scholar] [CrossRef]
- Chen, L.; Voss, C.I.; Fortier, D.; McKenzie, J.M. Surface energy balance of sub–Arctic roads with varying snow regimes and properties in permafrost regions. Permafr. Periglac. Process. 2021, 32, 681–701. [Google Scholar] [CrossRef]
- Kim, K.; Zhou, W.; Huang, S.L. Frost heave predictions of buried chilled gas pipelines with the effect of permafrost. Cold Reg. Sci. Technol. 2008, 53, 382–396. [Google Scholar] [CrossRef]
- Moser, A.P.; Folkman, S. Buried Pipe Design; McGraw-Hill Education: New York, NY, USA, 2008. [Google Scholar]
- Xu, X.; Wang, J.; Zhang, L. Physics of Frozen Soil; Science Press: Beijing, China, 2010. [Google Scholar]
- Huang, S.L.; Bray, M.T.; Akagawa, S.; Fukuda, M. Field investigation of soil heave by a large diameter chilled gas pipeline experiment, Fairbanks, Alaska. J. Cold Reg. Eng. 2004, 18, 2–34. [Google Scholar] [CrossRef]
- Nixon, J.F.; MacInnes, K.L. Application of pipe temperature simulator for Norman Wells oil pipeline. Can. Geotech. J. 1996, 33, 140–149. [Google Scholar] [CrossRef]
- Carlson, L.E.; Butterwick, D.E. Testing pipelining techniques in warm permafrost. In Permafrost, Fourth International Conference, Proceedings; National Academy Press: Washington, DC, USA, 1983; pp. 97–102. [Google Scholar]
- Razaqpur, A.G.; Wang, D. Frost-induced deformations and stresses in pipelines. Int. J. Pres. Ves. Pip. 1996, 69, 105–118. [Google Scholar] [CrossRef]
- Selvadurai, A.P.S.; Hu, J.; Konuk, I. Computational modelling of frost heave induced soil-pipeline interaction: II. Modelling of experiments at the Caen test facility. Cold Reg. Sci. Technol. 1999, 29, 229–257. [Google Scholar] [CrossRef]
- Metje, N.; Chapman, D.N.; Walton, R.; Sadeghioon, A.M.; Ward, M. Real time condition monitoring of buried water pipes. Tunn. Undergr. Space Technol. 2012, 28, 315–320. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, J.; Xu, J.; Liu, C.; Xu, L. Experiment on frost heave failure mechanism of PPR water pipe. Eng. Fail. Anal. 2020, 117, 104831. [Google Scholar] [CrossRef]
- Calvetti, F.; Di Prisco, C.; Nova, R. Experimental and numerical analysis of soil–pipe interaction. J. Geotech. Geoenviron. Eng. 2004, 130, 1292–1299. [Google Scholar] [CrossRef]
- Xu, G.; Qi, J.; Jin, H. Model test study on influence of freezing and thawing on the crude oil pipeline in cold regions. Cold Reg. Sci. Technol. 2010, 64, 262–270. [Google Scholar] [CrossRef]
- Buco, J.; Emeriault, F.; Le Gauffre, P.; Kastner, R. Statistical and 3D numerical identification of pipe and bedding characteristics responsible for longitudinal behavior of buried pipe. In Pipeline Division Specialty Conference; ASCE: Chicago, IL, USA, 2006; pp. 1–10. [Google Scholar] [CrossRef]
- Saberi, M.; Annan, C.; Sheil, B. An efficient numerical approach for simulating soil-pipe interaction behaviour under cyclic loading. Comput. Geotech. 2022, 146, 104666. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, T. Elastoplastic pipe-soil interaction analyses of partially-supported jointed water mains. J. Zhejiang Univ. Sci. A 2008, 9, 1497–1506. [Google Scholar] [CrossRef]
- Wu, Z.; Barosh, P.J.; Wang, L.; Hu, D.; Wang, W. Numerical modeling of stress and strain associated with the bending of an oil pipeline by a migrating pingo in the permafrost region of the northern Tibetan Plateau. Eng. Geol. 2008, 96, 62–77. [Google Scholar] [CrossRef]
- Wen, Z.; Sheng, Y.; Jin, H.; Li, S.; Li, G.; Niu, Y. Thermal elasto-plastic computation model for a buried oil pipeline in frozen ground. Cold Reg. Sci. Technol. 2010, 64, 248–255. [Google Scholar] [CrossRef]
- Wu, Y.; Sheng, Y.; Wang, Y.; Jin, H.; Chen, W. Stresses and deformations in a buried oil pipeline subject to differential frost heave in permafrost regions. Cold Reg. Sci. Technol. 2010, 64, 256–261. [Google Scholar] [CrossRef]
- Su, W.; Wu, X. Numerical analysis and treatment of the frost heave deformation for buried gas pipelines. Energy Res. Inf. 2017, 33, 118–123. [Google Scholar] [CrossRef]
- Vazouras, P.; Karamanos, S.; Dakoulas, P. Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dyn. Earthq. Eng. 2010, 30, 1361–1376. [Google Scholar] [CrossRef]
- Rajeev, P.; Kodikara, J. Numerical analysis of an experimental pipe buried in swelling soil. Comput. Geotech. 2011, 38, 897–904. [Google Scholar] [CrossRef]
- Tohidi, R.; Shakib, H. Response of steel buried pipelines to the three dimensional fault movement. J. Sci. Technol. 2003, 14, 1127–1135. [Google Scholar]
- Trickey, S.A. Three Dimensional Finite Element Modeling of Buried Pipes Including Frost Action. Master Thesis, Queen’s University, Kingston, ON, Canada, 2005. [Google Scholar]
- Han, B.; Wang, Z.; Zhao, H.; Jing, H.; Wu, Z. Strain-based design for buried pipelines subjected to landslides. Petrol. Sci. 2012, 9, 236–241. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Koike, T. Structural design of buried pipelines for severe earthquakes. Soil Dyn. Earthq. Eng. 2001, 21, 199–209. [Google Scholar] [CrossRef]
- Akagawa, S.; Huang, S.L.; Kanie, S.; Fukuda, M. Movement due to heave and thaw settlement of a full-scale test chilled gas pipeline constructed in Fairbanks Alaska. In OTC Arctic Technology Conference; OnePetro: Richardson, TX, USA, 2012; pp. 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Bai, X.; You, Y.; Wei, D. Sensitivity analysis of steel catenary riser TDZ under nonlinear pipe soil coupling. Ocean Eng. 2021, 39, 20–31. [Google Scholar] [CrossRef]
- Chen, F.; Yu, J.; Zhao, Y.; Sun, Z.; Liu, J. Nonlinear buckling of subsea pipes with imperfection under complex loads. J. Cent. South Univ. 2015, 46, 2701–2706. [Google Scholar] [CrossRef]
- Gao, F. Flow-pipe-soil coupling mechanisms and predictions for submarine pipeline instability. J. Hydrodyn. Ser. B 2017, 29, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Dong, S. Two-level quantitative risk analysis of submarine pipelines from dropped objects considering pipe–soil interaction. Ocean Eng. 2022, 257, 111620. [Google Scholar] [CrossRef]
- Palmer, A.C.; Williams, P.J. Frost heave and pipeline upheaval buckling. Can. Geotech. J. 2003, 40, 1033–1038. [Google Scholar] [CrossRef]
- Huang, C. Submarine Pipeline-Soil Coupling. Master Thesis, Harbin Engineering University, Harbin, China, 2011. [Google Scholar]
- Karal, K. Lateral Stability of submarine pipelines. In Offshore Technology Conference; OnePetro: Richardson, TX, USA, 1977. [Google Scholar] [CrossRef]
- Schotman, G.J.M.; Stork, F.G. Pipe-soil interaction: A model for laterally loaded pipelines in clay. In Offshore Technology Conference; OnePetro: Richardson, TX, USA, 1987. [Google Scholar] [CrossRef]
- Hawlader, B.C.; Morgan, V.; Clark, J.I. Modelling of pipeline under differential frost heave considering post-peak reduction of uplift resistance in frozen soil. Can. Geotech. J. 2006, 43, 282–293. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Ma, W.; Zhou, Z.; Jin, H.; Zhang, P. The limit state of pipeline based on strain design in cold regions. J. Glaciol. Geocryol. 2016, 38, 1099–1105. [Google Scholar] [CrossRef]
- Huang, L.; Sheng, Y.; Wu, J.; Cao, W.; Peng, E.; Zhang, X. Experimental study on mechanical interaction between buried pipe and soil during freezing. Cold Reg. Sci. Technol. 2020, 178, 103129. [Google Scholar] [CrossRef]
- Konrad, J.M.; Morgenstern, N.R. Frost heave prediction of chilled pipelines buried in unfrozen soils. Can. Geotech. J. 1984, 21, 100–115. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Gao, M.; Ba, Z. Stress analysis of municipal buried water pipes during cold wave period. J. Saf. Environ. 2019, 19, 436–443. [Google Scholar] [CrossRef]
- Barber, J.R. Intermediate Mechanics of Materials; Springer: Dordrecht, The Netherlands, 2011; Volume 618. [Google Scholar]
- Boresi, A.P.; Schmidt, R.J.; Sidebottom, O.M. Advanced Mechanics of Materials; Wiley: New York, NY, USA, 1985; Volume 6. [Google Scholar]
- Huang, L.; Sheng, Y.; Hu, X.; Wang, S.; Huang, X.; He, B. Stress analysis of pipelines subjected to frost heave based on the theory of elastic foundation beam. J. Glaciol. Geocryol. 2018, 40, 70–78. [Google Scholar] [CrossRef]
- Nixon, J.F.; Morgenstern, N.R.; Reesor, S.N. Frost heave–pipeline interaction using continuum mechanics. Can. Geotech. J. 1983, 20, 251–261. [Google Scholar] [CrossRef]
- Foriero, A.; Ladanyi, B. Pipe uplift resistance in frozen soil and comparison with measurements. J. Cold Reg. Eng. 1994, 8, 93–111. [Google Scholar] [CrossRef]
- Huang, Y.; He, F. Beams, Plates and Shells on Elastic Foundation; Science Press: Beijing, China, 2005. [Google Scholar]
- Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity; Xu, Z., Translator; Higher Education: Beijing, China, 2013. [Google Scholar]
- Long, Y. Calculation of the Beam on Elastic Foundation; People’s Education Press: Beijing, China, 1981. [Google Scholar]
- Timoshenko, S.P. Strength of Materials, Part II: Advanced Theory and Problems, 3rd ed.; D. Van Nostrand Co., Inc.: New York, NY, USA, 1956; pp. 1–25. [Google Scholar]
- Xu, Z. Elastic Mechanics; Higher Education: Beijing, China, 2006. [Google Scholar]
- Thornton, D.E. Steady-state and quasi-static thermal results for bare and insulated pipes in permafrost. Can. Geotech. J. 1976, 13, 161–171. [Google Scholar] [CrossRef]
- Zhang, Y. Numerical Simulation Study on Effects of the Buried Oil Pipeline on Permafrost Temperature. Master Thesis, Beijing Jiaotong University, Beijing, China, 2014. [Google Scholar]
- Wang, F.; Li, G.; Ma, W. Progress in the research on the thermo-mechanical interaction between oil pipeline and permafrost in cold regions. J. Glaciol. Geocryol. 2022, 44, 217–228. [Google Scholar] [CrossRef]
- Abduvayt, P.; Manabe, R.; Arihara, N. Effects of pressure and pipe diameter on gas-liquid two-phase flow behavior in pipelines. In SPE Annual Technical Conference and Exhibition; OnePetro: Richardson, TX, USA, 2003. [Google Scholar] [CrossRef]
- Liu, Q. Calculating method and analysis of plane strain question of interaction between buried pipe and soil. Rock Soil Mech. 2007, 28, 83–88. [Google Scholar] [CrossRef]
- Ainbinder, A.B.; Kamershtein, A.G. Strength and Stability Calculation of Trunk Pipeline; Xiao, Z.; Cui, D.; Qi, B., Translators; Petroleum Industry Press: Beijing, China, 1988. [Google Scholar]
- Cheng, Z. Coupling of Temperature, Stress and Moisture Migration in Shallow Tunneling Using Multi-Freezing Pipes. Ph.D. Thesis, Central South University, Changsha, China, 2003. [Google Scholar]
- Zhu, Y.; Zhang, J. Elastic and compressive deformation of frozen soils. J. Glaciol. Geocryol. 1982, 4, 29–40. [Google Scholar]
- Tsytovich, N.A.; Swinzow, E.; Tschebotarioff, G. The Mechanics of Frozen Ground; Scripta Book Co: Washington, DC, USA, 1975. [Google Scholar]
- Yao, B.; Liu, Z.; Wang, B.; Zhang, H. Experimental study of ultrasonic longitudinal wave measuring dynamic elastic modulus of frozen soil. China Build. Mater. Sci. Technol. 2009, 18, 85–88. [Google Scholar] [CrossRef]
- Selvadurai, A.P.S. Elastic Analysis of Soil Foundation Interaction; Fan, W.; He, G.; Zhang, S.; Luo, W., Translators; China Railway Publishing House: Beijing, China, 1984. [Google Scholar]
- Liu, Q. Soil-Structure Interaction Analysis of Buried Pipelines and Study of Its Stress & Deformation Calculating Method. Ph.D Thesis, Tongji University, Shanghai, China, 2002. [Google Scholar]
- Li, G.; Wang, F.; Ma, W.; Fortier, R.; Mu, Y.; Zhou, Z.; Mao, Y.; Cai, Y. Field observations of cooling performance of thermosyphons on permafrost under the China-Russia Crude Oil Pipeline. Appl. Therm. Eng. 2018, 141, 688–696. [Google Scholar] [CrossRef]
- Yang, J. Research on Longitudinal Mechanical Characteristics of Pipelines Buried in Soft Soil under Vertical Loads. Master Thesis, Zhejiang University, Hangzhou, China, 2006. [Google Scholar]
Grade | Elastic Theory | Triaxial Load Test | Vlazov | Scheidig |
---|---|---|---|---|
Formula k | ||||
Value | 50.2 | 39.9 | 25.8 | 13.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Sheng, Y.; Chen, L.; Peng, E.; Huang, X.; Zhang, X. Sensitivity Analysis of Pipe–Soil Interaction Influencing Factors under Frost Heaving. Atmosphere 2023, 14, 469. https://doi.org/10.3390/atmos14030469
Huang L, Sheng Y, Chen L, Peng E, Huang X, Zhang X. Sensitivity Analysis of Pipe–Soil Interaction Influencing Factors under Frost Heaving. Atmosphere. 2023; 14(3):469. https://doi.org/10.3390/atmos14030469
Chicago/Turabian StyleHuang, Long, Yu Sheng, Liping Chen, Erxing Peng, Xubin Huang, and Xiyan Zhang. 2023. "Sensitivity Analysis of Pipe–Soil Interaction Influencing Factors under Frost Heaving" Atmosphere 14, no. 3: 469. https://doi.org/10.3390/atmos14030469
APA StyleHuang, L., Sheng, Y., Chen, L., Peng, E., Huang, X., & Zhang, X. (2023). Sensitivity Analysis of Pipe–Soil Interaction Influencing Factors under Frost Heaving. Atmosphere, 14(3), 469. https://doi.org/10.3390/atmos14030469