Aerosols as Vectors for Contaminants: A Perspective Based on Outdoor Aerosol Data from Kuwait
Abstract
:1. Introduction
2. Radionuclides
3. Organics
3.1. Polycyclic Aromatic Hydrocarbons (PAHs) Analyses
3.2. Polybrominated Diphenyl Ethers (PBDEs)
3.3. Polychlorinated Dibenzo-p-Dioxin and Dibenzofuran (PCDD/F)
3.4. Microplastics in Aerosols
4. Microbes
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- Thurston, G.D.; Kipen, H.; Annesi-Maesano, I.; Balmes, J.; Brook, R.D.; Cromar, K.; De Matteis, S.; Forastiere, F.; Forsberg, B.; Frampton, M.W.; et al. A joint ERS/ATS policy statement: What constitutes an adverse health effect of air pollution? An analytical framework. Eur. Respir. J. 2017, 49, 1600419. [Google Scholar] [CrossRef] [Green Version]
- Pai, S.J.; Carter, T.S.; Heald, C.L.; Kroll, J.H. Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-anthropogenic PM2.5. Environ. Sci. Technol. Lett. 2022, 9, 501–506. [Google Scholar] [CrossRef]
- Chi, K.H.; Hsu, S.C.; Wang, S.H.; Chang, M.B. Increases in ambient PCDD/F and PCB concentrations in Northern Taiwan during an Asian dust storm episode. Sci. Total Environ. 2008, 401, 100–108. [Google Scholar] [CrossRef]
- Al-Awadhi, J. Dust fallout characteristics in Kuwait: A case study. Kuwait J. Sci. Eng. 2005, 32, 135–152. [Google Scholar]
- Garrison, V.H.; Foreman, W.T.; Genualdi, S.; Griffin, D.W.; Kellogg, C.A.; Majewski, M.S.; Mohammed, A.; Ramsubhag, A.; Shinn, E.A.; Simonich, S.L.; et al. Sahara dust—A carrier of persistent organic pollutants, metals and microbes to the Caribbean. Rev. Biol. Trop. 2006, 54 (Suppl. S3), 9–21. [Google Scholar]
- Al-Ghadban, A.N.; Shemmari, H.; Al Dousari, A.M. Preliminary Assessment of the Impacts of Draining of Iraqi Marshes on Kuwait’s Northern Marine Environment. Part 1. Physical Manipulation. Water Sci. Technol. 1999, 40, 75–78. [Google Scholar] [CrossRef]
- Doronzo, D.M.; Al-Dousari, A.M.; Folch, A.; Waldhauserova, P.D. Preface to the dust topical collection. Arab J. Geosci. 2016, 9, 468. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, N.; Al-Sudairawi, M.; Al-Dousari, A.; Al-Dousari, N. Probability distribution and extreme value analysis of total suspended particulate matter in Kuwait. Arab. J. Geosci. 2015, 8, 11329–11344. [Google Scholar] [CrossRef]
- Al-Shemmari, H.; Al-Dousari, A.M.; Talebi, L.; Al-Ghadban, A.N. Mineralogical Characteristics of Surface Sediments along Sulaibikhat Bay, Kuwait. Kuwait J. Sci. Eng. 2013, 40, 159–176. [Google Scholar]
- Al-Dousari, A.M.; Pye, K.; Al-Hazza, A.; Al-Shatti, F.; Ahmed, M.; Al-Dousari, N.; Rajab, M. Nanosize inclusions as a fingerprint for Aeolian sediments. J. Nanoparticle Res. 2020, 22, 94. [Google Scholar] [CrossRef]
- Subramaniam, N.; Al-Dousari, A.M. A study on the annual fallout of the dust and the associated elements into the Kuwait Bay. Arab. J. Geosci. 2015, 9, 210. [Google Scholar] [CrossRef]
- Ezeamuzie, C.I.; Beg, M.U.; Al-Ajmi, D. Responses Of Alveolar Macrophages To Post-Gulf-War Airborne Dust From Kuwait. Environ. Int. 1998, 24, 213–220. [Google Scholar] [CrossRef]
- Griffin, P.; Ford, A.W.; Alterman, L.; Thompson, J.; Parkinson, C.; Blainey, A.D.; Davies, R.J.; Topping, M.D. Allergenic and antigenic relationship between three species of storage mite and the house dust mite, Dermatophagoides pteronyssinus. J. Allergy Clin. Immunol. 1989, 84, 108–117. [Google Scholar] [CrossRef]
- Petaja, J.M.; Griffin, J.H. Activated protein C resistance: What have we learned now that the dust has settled? Ann. Med. 1997, 29, 469–472. [Google Scholar] [CrossRef]
- Griffin, D.W.; Kellogg, C.A.; Shinn, E.A. Dust in the wind: Long range transport of dust in the atomosphere and its implications for global public and ecosystem health. Glob. Chang. Hum. Health 2001, 2, 20–33. [Google Scholar] [CrossRef]
- Griffin, D.W.; Garrison, V.H.; Herman, J.R.; Shinn, E.A. African desert dust in the Caribbean atmosphere: Microbiology and public health. Aerobiologia 2001, 17, 203–213. [Google Scholar] [CrossRef]
- Griffin, D.; Kellogg, C. Dust storms and their impact on ocean and human health: Dust in earth’s atmosphere. EcoHealth 2004, 1, 284–295. [Google Scholar] [CrossRef]
- Khider, A.K.; Abdullah, J.J.; Toma, F.M. Atmospheric movement of bacteria and fungi in clouds of dust in Erbil city, Iraq. Res. J. Environ. Earth Sci. 2012, 4, 303–307. [Google Scholar]
- Thalib, L.; Al-Taiar, A. Dust storms and the risk of asthma admissions to hospitals in Kuwait. Sci. Total Environ. 2012, 433, 347–351. [Google Scholar] [CrossRef]
- Al-Taiar, A.; Thalib, L. Short-term effect of dust storms on the risk of mortality due to respiratory, cardiovascular and all-causes in Kuwait. Int. J. Biometeorol. 2014, 58, 69–77. [Google Scholar] [CrossRef]
- Gevao, B.; Al-Ghadban, A.N.; Uddin, S.; Jaward, F.M.; Bahloul, M.; Zafar, J. Polybrominated diphenyl ethers (PBDEs) in soils along a rural-urban-rural transect: Sources, concentration gradients, and profiles. Environ. Pollut. 2011, 159, 3666–3672. [Google Scholar] [CrossRef]
- Uddin, S.; Gevao, B.; Talebi, L.; Al-Yagoub, A.; Al-Shamroukh, D. Estimation of PM2.5 Concentrations Using Satellite Data, with Spatio-Temporal Variations of Chamicals Associated with PM; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2013; pp. 1–74. [Google Scholar]
- Al-Obed, M.; Uddin, S.; Ramadhan, A. Dust storm satellite images. In Atlas of Fallen Dust in Kuwait; Al-Dousari, A., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 1–46. [Google Scholar] [CrossRef]
- Foda, M.A.; Khalaf, F.I.; Al-Kadi, A.S. Estimation of Dust Fallout rates in the Northern Arabian Gulf. Sedimentology 1985, 32, 595–603. [Google Scholar] [CrossRef]
- Prasad, A.K.; Singh, R.P. Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and summer seasons (2000–2005). Remote Sens. Environ. 2007, 107, 109–119. [Google Scholar] [CrossRef]
- Boucher, O.; Haywood, J. On summing the components of radiative forcing of climate change. Clim. Dyn. 2001, 18, 297–302. [Google Scholar] [CrossRef]
- Li, X.; Maring, H.; Savoie, D.; Voss, K.; Prospero, J.M. Dominance of mineral dust in serosol light-scattering in the North Atlantic trade winds. Nature 1996, 380, 416–419. [Google Scholar] [CrossRef]
- Moulin, C.; Lambert, C.E.; Dulac, F.; Dayan, U. Control of atmospheric export of dust by North Atlantic oscillation. Nature 1997, 387, 691–694. [Google Scholar] [CrossRef]
- Alpert, P.; Kaufman, Y.J.; El-Shay, Y.; Tanre, D.; da Silva, A.; Schubert, S.; Joseph, J.H. Quantification of dust-forced heating of the lower troposphere. Nature 1998, 394, 367–370. [Google Scholar] [CrossRef]
- Miller, R.L.; Tegen, I. Climate response to soil dust serosols. J. Clim. 1998, 11, 3247–3267. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Ridgwell, A.J. Dust in Earth System: The biogeochemical linking of land, air and sea. Phylosophical Trans. R. Soc. Lond. 2002, 360, 2905–2924. [Google Scholar] [CrossRef]
- Griffin, D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 2007, 20, 459–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, K.A.; Pepper, I.L. Microorganisms in the Environment; Academic Press: San Diego, CA, USA, 2000; p. 585. [Google Scholar]
- Williamson, K.E.; Wommack, K.E.; Radosevich, M. Sampling natural viral communities from soil for culture-independent analyses. Appl. Environ. Microbiol. 2003, 69, 6628–6633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, M.V.; Yates, S.R. Modeling microbial fate in the subsurface environment. CRC Crit. Rev. Environ. Control 1988, 17, 307–344. [Google Scholar] [CrossRef]
- Griffin, D.W.; Kellogg, C.A.; Garrison, V.H.; Shinn, E.A. The global transport of dust. Am. Sci. 2002, 90, 228–235. [Google Scholar] [CrossRef]
- Di-Lella, L.A.; Loppi, S.; Protano, G.; Riccobono, F. Toxic trace elements and organic compounds in the ambient air of Kabul, Afghanistan. Atmos. Environ. 2006, 40, 225–237. [Google Scholar] [CrossRef]
- Chen, Y.S.; Yang, C.Y. Effects of Asian dust storm events on daily hospital admissions for cardiovascular disease in Taipei, Taiwan. J. Toxicol. Environ. Health A 2005, 68, 1457–1464. [Google Scholar] [CrossRef]
- Ha, M.H.; Lee, D.H.; Jacobs, D.R. Association between serum concentrations of persistent organic pollutants and self-reported cardiovascular disease prevalence: Results from the National Health and Nutrition Examination Survey, 1999-2002. Environ. Health Perspect. 2007, 115, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Mariana, M.; Feiteiro, J.; Verde, I.; Cairrao, E. The effects of phthalates in the cardiovascular and reproductive systems: A review. Environ. Int. 2016, 94, 758–776. [Google Scholar] [CrossRef]
- Wu, D.; Li, Q.; Shang, X.; Liang, Y.; Ding, X.; Sun, H.; Li, S.; Wang, S.; Chen, Y.; Chen, J. Commodity plastic burning as a source of inhaled toxic aerosols. J. Hazard. Mater. 2021, 416, 125820. [Google Scholar] [CrossRef]
- Długosz-Lisiecka, M. The sources and fate of 210Po in the urban air: A review. Environ. Int. 2016, 94, 325–330. [Google Scholar] [CrossRef]
- Martínez-Guijarro, K.; Ramadan, A.; Gevao, B. Atmospheric concentration of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) at Umm-Al-Aish oil field-Kuwait. Chemosphere 2017, 168, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Dockery, D.W.; Pope, C.A.; Xiping, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An association between air pollution and mortality in six US cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Lacis, A.; Ruedy, R.; Tegen, I.; Mathews, E. Climate forcings in the industrial era. Proc. Natl. Acad. Sci. USA 1998, 95, 12753–12758. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, E.; Vidal, A.; Caselles, V. Comparison of two atmospheric correction methods for Landsat TM thermal band. Int. J. Remote Sens. 1996, 17, 237–247. [Google Scholar] [CrossRef]
- Ramanathan, V.; Ramana, M.V.; Roberts, G.; Kim, D.; Corrigan, C.; Chung, C.; Winker, D. Warming trends in Asia amplified by brown cloud solar absorption. Nature 2007, 448, 575–578. [Google Scholar] [CrossRef]
- Hu, D.; Qiao, L.; Chen, J.; Ye, X.; Yang, X.; Cheng, T.; Fang, W. Hygroscopicity of inorganic aerosols: Size and relative humidity effects on the growth factor. Aerosol Air Qual. Res. 2010, 10, 255–264. [Google Scholar] [CrossRef]
- Uddin, S.; Fowler, S.W.; Behbehani, M. 210Po in the environment: Reassessment of dose to humans. Sustainability 2023, 15, 1674. [Google Scholar] [CrossRef]
- Baskaran, M. Radon—A Tracer for Geological, Geophysical and Geochemical Studies; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Dlugosz-Lisiecka, M. Excess of (210)Polonium activity in the surface urban atmosphere. Part (1) fluctuation of the (210)Po excess in the air. Environ. Sci. Process. Impacts 2015, 17, 458–464. [Google Scholar] [CrossRef]
- Baskaran, M. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: A review. J. Environ. Radioact. 2011, 102, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Behbehani, M.; Carvalho, F.P.; Uddin, S.; Habibi, N. Enhanced polonium concentrations in aerosols from the gulf oil producing region and the role of microorganisms. Int. J. Environ. Res. Public Health 2021, 18, 13309. [Google Scholar] [CrossRef]
- Behbehani, M.; Uddin, S.; Baskaran, M. 210Po concentration in different size fractions of aerosol likely contribution from industrial sources. J. Environ. Radioact. 2020, 222, 106323. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.P. Origins and Concentrations of Rn-222, Pb-210, Bi-210 and Po-210 in the Surface Air at Lisbon, Portugal, at the Atlantic Edge of the European Continental Landmass. Atmos. Environ. 1995, 29, 1809–1819. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M. Atmospheric 210Pb, 210Po and 210Po/210Pb activity ratio in urban aerosols: Temporal variability and impact of biomass burning emission. Tellus B Chem. Phys. Meteorol. 2012, 64, 17513. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Zhou, P.; Liu, G. Atmospheric deposition fluxes of 7Be, 210Pb and 210Po at Xiamen, China. J. Radioanal. Nucl. Chem. 2007, 273, 157–162. [Google Scholar] [CrossRef]
- Carvalho, F.P.; Oliveira, J.M.; Malta, M. Vegetation fires and release of radioactivity into the air. WIT Trans. Biomed. Health 2011, 1, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.P.; Oliveira, J.M.; Malta, M. Exposure to forest fires, radioactivity and health risks. In Proceedings of the 8th International Symposium on Occupational Safety and Hygiene (SHO), Guimaraes, Portugal, 9–10 February 2012; 2012; pp. 126–130, WOS:000320994300022. [Google Scholar]
- Carvalho, F.P.; Oliveira, J.M.; Malta, M. Forest fires and resuspension of radionuclides into the atmosphere. Am. J. Environ. Sci. 2012, 8, 1–4. [Google Scholar]
- Carvalho, F.P.; Oliveira, J.M.; Malta, M. Exposure to radionuclides in smoke from vegetation fires. Sci. Total Environ. 2014, 472, 421–424. [Google Scholar] [CrossRef]
- Eckerman, K.; Harrison, J.; Menzel, H.-G.; Clement, C.H. Compendium of Dose Coefficients based on ICRP Publication 60; Publication 119; International Commission on Radiological Protection: Ottowa, ON, Canada, 2012. [Google Scholar]
- Suzuki, T.; Maruyama, Y.; Nakayama, N.; Yamada, K.; Ohta, K. Measurement of the 210Po/210Pb activity ratio in size fractionated aerosols from the coast of the Japan sea. Atmos. Environ. 1999, 33, 2285–2288. [Google Scholar] [CrossRef]
- Dlugosz-Lisiecka, M. Excess of polonium-210 activity in the surface urban atmosphere. Part 2: Origin of 210-Po excess. Environ. Sci. Process. Impacts 2015, 17, 465–470. [Google Scholar] [CrossRef]
- Behbehani, M.; Uddin, S. Atmospheric Concentrations of 210Pb, 210Bi and 210Po in Kuwait; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2021; 38p. [Google Scholar]
- Behbehani, M.; Uddin, S.; Habibi, N.; Al-Salameen, F.; Sajid, S.; Anbdulrazack, N.; Zakir, F.; Shrishsikar, F. 210Po in Ultrafine Aerosol Particles and its Likelihood to Mutate the Microbial Community; Final Report FB160C KISR 16733; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2021; 42p. [Google Scholar]
- Chen, H.Y.; Teng, Y.G.; Wang, J.S. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Rizhao coastal area (China) using diagnostic ratios and factor analysis with nonnegative constraints. Sci. Total Environ. 2012, 414, 293–300. [Google Scholar] [CrossRef]
- Nikolaou, K.; Masclet, P.; Mouvier, H.G. Sources and chemical reactivity of polynuclear aromatic hydrocarbons in the environment- A critical review. Sci. Total Environ. 1984, 32, 103–132. [Google Scholar] [CrossRef]
- Ohura, T.; Amagai, T.; Fusaya, M.; Matsushita, H. Polycyclic aromatic hydrocarbons in indoor and outdoor environments and factors affecting their concentrations. Environ. Sci. Technol. 2004, 38, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Prevedouros, K.; Brorstrom-Lunden, E.; Halsall, C.; Jones, K.C.; Lee, R.G.M.; Sweetman, A.J. Seasonal and long-term trends in atmospheric PAH concentrations: Evidence and implications. Environ. Pollut. 2004, 128, 17–27. [Google Scholar] [CrossRef]
- Chrysikou, L.; Gemenetzis, P.; Kouras, A.; Manoli, E.; Terzi, E.; Samara, C. Distribution of persistent organic pollutants, polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a large scale landfill fire in northern Greece. Environ. Int. 2008, 34, 210–225. [Google Scholar] [CrossRef]
- Offenberg, J.H.; Baker, J.E. Aerosol size distribution of polycyclic aromatic hydrocarbons in urban and over-water atmosphere. Environ. Sci. Technol. 1999, 33, 3324–3331. [Google Scholar] [CrossRef]
- Poster, D.; Hoff, R.M.; Baker, J.E. Measurement of the particle-size distributions of semivolatile organic compounds in the atmosphere. Environ. Sci. Technol. 1995, 29, 1990–1997. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, C.; Lyons, J.M.; Friedlander, S.K. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. sampling, measurement methods, and source characterization. Environ. Sci. Technol. 1994, 26, 555–562. [Google Scholar] [CrossRef]
- Wu, S.P.; Tao, S.; Liu, W.X. Particle size distributions of polycyclic aromatic hydrocarbons in rural and urban atmosphere of Tianjin, China. Chemosphere 2006, 62, 357–367. [Google Scholar] [CrossRef]
- Allen, J.O.; Dookeran, N.M.; Smith, K.A.; Sarofim, A.F.; Taghizadeh, K.; Lafleur, A.L. Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts. Environ. Sci. Technol. 1996, 30, 1023–1031. [Google Scholar] [CrossRef]
- Sheu, H.-L.; Lee, W.-J.; Lin, S.J.; Fang, G.-C.; Chang, H.-C.; You, W.-C. Particle-bound PAH content in ambient air. Environ. Pollut. 1997, 39, 369–382. [Google Scholar] [CrossRef]
- Gouin, T.; Mackay, D.; Jones, K.C.; Harner, T.; Meijer, S.N. Evidence for the “grasshopper” effect and fractionation during long-range atmospheric transport of organic contaminants. Environ. Pollut. 2004, 128, 139–148. [Google Scholar] [CrossRef]
- Wania, F.; Mackay, D. Tracking the distribution of persistent organic pollutants: Control strategies for these contaminants will require a better understanding of how they move around the globe. Environ. Sci. Technol. 1996, 30, 390A–396A. [Google Scholar] [CrossRef]
- Gouin, T.; Harner, T. Modelling the environmental fate of the brominated diphenyl ethers. Environ. Int. 2003, 29, 717–724. [Google Scholar] [CrossRef]
- Wania, F.; Dugani, C.B. Assessing the long-range transport potential of polybrominated diphenyl ethers: A comparison of four multimedia models. Environ. Toxicol. Chem. 2003, 22, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, S.; Harrad, S. Causes of variability in concentrations of polychlorinated biphenyls and polybrominated diphenyl ethers in indoor air. Env. Sci Technol 2006, 40, 7584–7589. [Google Scholar] [CrossRef] [Green Version]
- Harrad, S.; Ibarra, C.; Diamond, M.; Melymuk, L.; Robson, M.; Douwes, J.; Roosens, L.; Dirtu, A.C.; Covaci, A. Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States. Environ. Int. 2008, 34, 232–238. [Google Scholar] [CrossRef]
- Burreau, S.; Zebuhr, Y.; Broman, D.; Ishaq, R. Biomagnification of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) studied in pike (Esox lucius), perch (perca fluviatilis) and roach (Rutilus rutilus) from the Baltic Sea. Chemosphere 2004, 55, 1043–1052. [Google Scholar] [CrossRef]
- Betts, K.S. New thinking on flame retardants. Environ. Health Perspect. 2008, 116, A210–A213. [Google Scholar] [CrossRef] [Green Version]
- Vallack, H.W.; Bakker, D.J.; Brandt, I.; Brostrom-Lunden, E.; Brouwer, A.; Bull, K.R.; Gough, C.; Guardans, R.; Holoubek, I.; Jansson, B.; et al. Controlling persistent organic pollutants-what next? Environ. Toxicol. Pharmacol. 1998, 6, 143–175. [Google Scholar] [CrossRef]
- Gevao, B.; Jaward, F.M.; MacLeod, M.; Jones, K.C. Diurnal fluctuations in polybrominated diphenyl ether concentrations during and after a severe dust storm episode in Kuwait City, Kuwait. Environ. Sci. Technol. 2010, 44, 8114–8120. [Google Scholar] [CrossRef]
- Anon. More than 8.3 Billion Tons of Plastics Made: Most Has Now Been Discarded. Available online: https://www.sciencedaily.com/releases/2017/07/170719140939.htm (accessed on 30 October 2022).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Frias, J.P.G.L.; Booth, A.M.; Vieira, L.R.; Masura, J.; Baker, J.; Foster, G.; Guilhermino, L. Microplastics Pollution in the Marine Environment. In World Seas: An Environmental Evaluation; Volume III: Ecological Issues and Environmental Impacts; Sheppard, C., Ed.; Academic Press: London, UK, 2019; Volume 3, pp. 329–351. [Google Scholar]
- Tekman, M.B.; Gutow, L.; Macario, A.; Haas, A.; Walter, A.; Bergmann, M. Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung. 2019. Available online: https://litterbase.awi.de/litter_detail (accessed on 30 November 2022).
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [Green Version]
- Uddin, S.; Fowler, S.W.; Behbehani, M. An assessment of microplastic inputs into the aquatic environment from wastewater streams. Mar. Pollut. Bull. 2020, 160, 111538. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.J.; Dominguez, A.O.; Jaafarzadeh, N. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut. 2019, 244, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Akanyange, S.N.; Lyu, X.; Zhao, X.; Li, X.; Zhang, Y.; Crittenden, J.C.; Anning, C.; Chen, T.; Jiang, T.; Zhao, H. Does microplastic really represent a threat? A review of the atmospheric contamination sources and potential impacts. Sci. Total Environ. 2021, 777, 146020. [Google Scholar] [CrossRef]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Duranteza, P.; Simonneau, A.; Stéphane, B.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Dris, R.; Gasperi, J.; Rocher, V.; Mohamed, S.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Dris, R.; Gasperi, J.; Tassin, B. Sources and fate of microplastics in urban areas: A focus on paris megacity. In Freshwater Microplastics Emerging Environmental Contaminants? Wagner, M., Lambert, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 69–83. [Google Scholar] [CrossRef] [Green Version]
- Gasperi, J.; Wright, S.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.; Tassin, B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Ji, X.; Ma, Y.; Lv, B.; Huang, W.; Zhu, X.; Fang, M.; Wang, Q.; Wang, X.; Dahlgren, R.; et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J. Hazard. Mater. 2021, 417, 126007. [Google Scholar] [CrossRef]
- Prata, J.C.; Castro, J.L.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T.; Cerqueira, M. The importance of contamination control in airborne fibers and microplastic sampling: Experiences from indoor and outdoor air sampling in Aveiro, Portugal. Mar. Pollut. Bull. 2020, 159, 111522. [Google Scholar] [CrossRef]
- Soltani, N.S.; Taylor, M.P.; Wilson, S.P. Quantification and exposure assessment of microplastics in Australian indoor house dust. Environ. Pollut. 2021, 283, 117064. [Google Scholar] [CrossRef]
- Wright, S.L.; Levermore, J.M.; Kelly, F.J. Raman Spectral Imaging for the Detection of Inhalable Microplastics in Ambient Particulate Matter Samples. Environ. Sci. Technol. 2019, 53, 8947–8956. [Google Scholar] [CrossRef]
- Wright, S.L.; Gouin, T.; Koelmans, A.A.; Scheuermann, L. Development of screening criteria for microplastic particles in air and atmospheric deposition: Critical review and applicability towards assessing human exposure. Microplast. Nanoplast. 2021, 1, 6. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Verla, A.W.; Verla, E.N.; Ibe, F.C.; Amaobi, C.E. Airborne microplastics: A review study on method for analysis, occurrence, movement and risks. Environ. Monit. Assess. 2019, 191, 668. [Google Scholar] [CrossRef]
- Vianello, A.; Jensen, R.L.; Liu, L.; Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019, 9, 8670. [Google Scholar] [CrossRef] [Green Version]
- Prata, J. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.; Laitala, K.; Klepp, I.G. Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Sci. Total Environ. 2019, 652, 483–494. [Google Scholar] [CrossRef]
- De Falco, F.; Di Pace, E.; Cocca, M.; Avella, M. The contribution of washing processes of synthetic clothes to microplastic pollution. Sci. Rep. 2019, 9, 6633. [Google Scholar] [CrossRef] [Green Version]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef]
- Beaurepaire, M.; Dris, R.; Gasperi, J.; Tassin, B. Microplastics in the atmospheric compartment: A comprehensive review on methods, results on their occurrence and determining factors. Curr. Opin. Food Sci. 2021, 41, 159–168. [Google Scholar] [CrossRef]
- Velis, C.A.; Cook, E. Mismanagement of Plastic Waste through Open Burning with Emphasis on the Global South: A Systematic Review of Risks to Occupational and Public Health. Environ. Sci. Technol. 2021, 55, 7186–7207. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Fowler, S.W.; Behbehani, M. Microplastics in the atmosphere: A review. J. Environ. Expo. Assess. 2022, 1, 6. [Google Scholar] [CrossRef]
- Uddin, S.; Fowler, S.W.; Habibi, N.; Sajid, S.; Dupont, S.; Behbehani, M. A Preliminary assessment of size-fractionated microplastics in indoor aerosol-Kuwait’s baseline. Toxics 2022, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Fischer, E.K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wang, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: Preliminary research and first evidence. Environ. Sci. Pollut. Res. 2017, 24, 24928–24935. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Tian, C.; Luo, Y. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere. Chin. Sci. Bull. 2017, 62, 3902–3909. [Google Scholar] [CrossRef] [Green Version]
- Stanton, T.; Johnson, M.; Nathanail, P.; MacNaughtan, W.; Gomes, R.L. Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres. Sci. Total Environ. 2019, 666, 377–389. [Google Scholar] [CrossRef]
- Truong, T.N.; Strady, E.; Kieu-Le, T.C.; Tran, Q.V.; Le, T.M.; Thuong, Q.T. Microplastic in atmospheric fallouts of a developing Southeast Asian megacity under tropical climate. Chemosphere 2021, 272, 129874. [Google Scholar] [CrossRef]
- Szewc, K.; Graca, B.; Dołęga, A. Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors. Sci. Total Environ. 2021, 761, 143272. [Google Scholar] [CrossRef]
- Wang, F.; Lai, Z.; Peng, G.; Luo, L.; Liu, K.; Huang, X.; Xu, Y.; Shen, Q.; Li, D. Microplastic abundance and distribution in a Central Asian desert. Sci. Total Environ. 2021, 800, 149529. [Google Scholar] [CrossRef]
- Syafei, A.; Nurasrin, N.; Assomadi, A.; Boedisantoso, R. Microplastic Pollution in the Ambient Air of Surabaya, Indonesia. Curr. World Environ. 2019, 14, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wu, T.; Wang, X.; Song, Z.; Zong, C.; Wei, N.; Li, D. Consistent Transport of Terrestrial Microplastics to the Ocean through Atmosphere. Environ. Sci. Technol. 2019, 53, 10612–10619. [Google Scholar] [CrossRef]
- Roblin, B.; Ryan, M.; Vreugdenhil, A.; Aherne, J. Ambient Atmospheric Deposition of Anthropogenic Microfibers and Microplastics on the Western Periphery of Europe (Ireland). Environ. Sci. Technol. 2020, 54, 11100–11108. [Google Scholar] [CrossRef] [PubMed]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, X.; Fang, T.; Xu, P.; Zhu, L.; Li, D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 2019, 675, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Gaston, E.; Woo, M.; Steele, C.; Sukumaran, S.; Anderson, S. Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies. Appl. Spectrosc. 2020, 74, 1079–1098. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Glamoclija, M.; Murphy, A.; Gao, Y. Characterization of microplastics in indoor and ambient air in northern New Jersey. Environ. Res. 2021, 207, 112142. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and human health: A micro issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Pauly, J.L.; Stegmeier, S.J.; Allaart, H.A.; Cheney, R.T.; Zhang, P.J.; Mayer, A.G.; Streck, R.J. Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol. Biomark. Prev. 1998, 7, 419–428. [Google Scholar]
- Law, B.D.; Bunn, W.B.; Hesterberg, T.W. Solubility of polymeric organic fibers and manmade vitreous fibers in Gambles solution. Inhal. Toxicol. 1990, 2, 321–339. [Google Scholar] [CrossRef]
- Boag, A.H.; Colby, T.V.; Fraire, A.E.; Kuhn, C.; Roggli, V.L.; Travis, W.D.; Vallyathan, V. The pathology of interstitial lung disease in nylon flock workers. Am. J. Surg. Pathol. 1999, 23, 1539–1545. [Google Scholar] [CrossRef]
- Eschenbacher, W.L.; Kreiss, K.; Lougheed, M.D.; Pransky, G.S.; Day, B.; Castellan, R.M. Nylon flock associated interstitial lung disease. Am. J. Respir. Crit. Care Med. 1999, 159, 2003–2008. [Google Scholar] [CrossRef]
- Kremer, A.M.; Pal, T.M.; Boleij, J.S.; Schouten, J.P.; Rijcken, B. Airway hyper-responsiveness and the prevalence of work-related symptoms in workers exposed to irritants. Am. J. Ind. Med. 1994, 26, 655–669. [Google Scholar] [CrossRef]
- Brennecke, D.; Ferreira, E.C.; Costa, T.M.M.; Appel, D.; da Gama, B.A.P.; Lenz, M. Ingested microplastics (>100μm) are translocated to organs of the tropical fiddler crab Uca Rapax Mar. Pollut. Bull. 2015, 96, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Carbery, M.; O’Connor, W.; Palanisami, T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ. Int. 2018, 115, 400–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato-Lourenço, L.F.; Dos Santos Galvão, L.; de Weger, L.A.; Hiemstra, P.S.; Vijver, M.G.; Mauad, T. An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? Sci. Total Environ. 2020, 749, 141676. [Google Scholar] [CrossRef] [PubMed]
- Alimba, C.G.; Faggio, C. Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environ. Toxicol. Pharmacol. 2019, 68, 61–74. [Google Scholar] [CrossRef]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Brennecke, D.; Duarte, B.; Paiva, F.; Caçador, I.; Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar. Coast. Shelf Sci. 2016, 178, 189–195. [Google Scholar] [CrossRef]
- de Sa, L.C.; Oliveira, M.; Ribeiro, F.; Rocha, T.L.; Futter, M.N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ. 2018, 645, 1029–1039. [Google Scholar] [CrossRef]
- Esmaili, Z.; Naji, A. Comparison of the frequency, type and shape of microplastics in the low and high tidal of the coastline of Bandar Abbas. J. Oceanogr. 2018, 8, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Fahrenfeld, N.L.; Arbuckle-Keil, G.; Naderi Beni, N.; Bartelt-Hunt, S.L. Source tracking microplastics in the freshwater environment. TrAC Trends Anal. Chem. 2019, 112, 248–254. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A. Microplastics in the Marine Environment: Distribution, Interactions and Effects. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 245–307. [Google Scholar] [CrossRef] [Green Version]
- Maes, T.; Jessop, R.; Wellner, N.; Haupt, K.; Mayes, A.G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci. Rep. 2017, 7, 44501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J.P.; Duarte, A.C.; Santos-Echeandía, J.; Rocha-Santos, T. Significance of interactions between microplastics and POPs in the marine environment: A critical overview. TrAC Trends Anal. Chem. 2019, 111, 252–260. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.U.; Furst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Jinadasa, B.K.K.K.; Uddin, S.; Fowler, S.W. Microplastics (MPs) in marine food chains: Is it a food safety issue? In Nano/micro-Plastics Toxicity on Food Quality and Food Safety; Ozogul, F., Ed.; Advances in Food and Nutrition Research; Elsevier Science: Amsterdam, The Netherlands, 2022; Volume 103, p. 3. ISBN 9780323988353. [Google Scholar]
- Vroom, R.J.E.; Koelmans, A.A.; Besseling, E.; Halsband, C. Aging of microplastics promotes their ingestion by marine zooplankton. Environ. Pollut. 2017, 231, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Scherer, C.; Alvarez-Munor, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we now and what we need to know. Environ. Sci. Eur. 2014, 26, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.K.; Chu, W.-L.; Kok, Y.; Lee, C. Distribution of microplastics and nanoplastics in aquatic ecosystems and their impacts on aquatic organisms, with emphasis on microalgae. Rev. Environ. Contam. Toxicol. Vol. 2018, 246, 133–158. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Liu, X.; Qu, F.; Wang, X.; Wang, X.; Li, Y.; Sun, Y. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC Trends Anal. Chem. 2019, 111, 62–72. [Google Scholar] [CrossRef]
- Endo, S.; Yuyama, M.; Takada, H. Desorption kinetics of hydrophobic organic contaminants from marine plastic pellets. Mar. Pollut. Bull. 2013, 74, 125–131. [Google Scholar]
- Franck, U.; Leitte, A.; Suppan, P. Multifactorial airborne exposures and respiratory hospital admissions—The example of Santiago de Chile. Sci. Total Environ. 2014, 502, 114–121. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Berkner, S.; Streck, G.; Herrmann, R. Development and validation of a method for determination of trace levels of alkylphenols and bisphenol A in atmospheric samples. Chemosphere 2004, 54, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Graziani, N.S.; Carreras, H.; Wannaz, E. Atmospheric levels of BPA associated with particulate matter in an urban environment. Heliyon 2019, 5, e01419. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ding, D.; Shu, M.; Wei, Z.; Wang, T.; Zhang, Q.; Ji, X.; Zhou, P.; Dan, M. Characteristics of Indoor and Outdoor Fine Phthalates during Different Seasons and Haze Periods in Beijing. Aerosol Air Qual. Res. 2019, 19, 364–374. [Google Scholar] [CrossRef]
- Jacobson, M.C.; Hansson, H.-C.; Noone, K.J.; Charlson, R.J. Organic atmospheric aerosols: Review and state of the science. Rev. Geophys. 2000, 38, 267–294. [Google Scholar] [CrossRef] [Green Version]
- Hyde, P.; Mahalov, A. Contribution of bioaerosols to airborne particulate matter. J. Air Waste Manag. Assoc. 2020, 70, 71–77. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Al-Salameen, F.; Al-Amad, S.; Kumar, V.; Otaibi, M. Identification and Characterization of Novel Corona and Associated Respiratory Viruses in Aerosols; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2021. [Google Scholar]
- Al Salameen, F.; Habibi, N.; Uddin, S.; Mataqi, K.; Al Amad, S.; Kumar, V.; Al Doaij, B.; Al Ali, E. Characterization and Identification of Micro-Organisms Associated with Airborne Dust in Kuwait Final Report (EM075C); Final Report KISR.; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2020. [Google Scholar]
- Al Salameen, F.; Habibi, N.; Uddin, S.; Al Mataqi, K.; Kumar, V.; Al Doaij, B.; Al Amad, S.; Al Ali, E.; Shirshikhar, F. Spatio-temporal variations in bacterial and fungal community associated with dust aerosol in Kuwait. PLoS ONE 2020, 15, e0241283. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Al-Salameen, F.; Al-Amad, S.; Kumar, V.; Al-Otaibi, M.; Razzak, N.A.; Sajan, A.; Shirshikar, F. SARS-CoV-2, other respiratory viruses and bacteria in aerosols: Report from Kuwait’s hospitals. Indoor Air 2021, 31, 1815–1825. [Google Scholar] [CrossRef]
- Habibi, N.; Behbehani, M.; Uddin, S.; Al Salamin, F.; Shajan, A.; Zakir, F. A safe and effective sample collection method for assessment of SARSCoV2 in aerosol samples. In Environmental Resilience and Transformation in Times of COVID-19; Ramanathan, A.L., Chidambaram, S., Jonathan, M.P., Munoz-Arriola, F., Prasanna, M.V., Kumar, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 194–199. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Salameen, F.A.; Behbehani, M.; Shirshikhar, F.; Razzack, N.A.; Shajan, A.; Zakir Hussain, F. Collection of bacterial community associated with size fractionated aerosols from Kuwait. Data 2021, 6, 123. [Google Scholar]
- Habibi, N.; Uddin, S.; Al-Salameen, F.; Al-Amad, S.; AbdulRazzack, N.; Shajan, A. Evidences of airborne spread of SARS-CoV-2 in Indoor Air; Kuwait Institute for Scientific Research: Kuwait City, Kuwait, 2021. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Behbehani, M.; Abdul Razzack, N.; Zakir, F.; Shajan, A. SARS-CoV-2 in hospital air as revealed by comprehensive respiratory viral panel sequencing. Infect. Prev. Pract. 2022, 4, 100199. [Google Scholar] [CrossRef] [PubMed]
- Habibi, N.; Uddin, S.; Behbehani, M.; Al Salameen, F.; Razzack, N.A.; Zakir, F.; Shajan, A.; Alam, F. Bacterial and fungal communities in indoor aerosols from two Kuwaiti hospitals. Front. Microbiol. 2022, 13, 955913. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.S.; Habibi, N.; Osman, A.; Shaheed, F.; Khan, M.W. Species identification and molecular typing of human Brucella isolates from Kuwait. PLoS ONE 2017, 12, e0182111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaniabadi, Y.O.; Daryanoosh, S.M.; Amrane, A.; Polosa, R.; Hopke, P.K.; Goudarzi, G.; Mohammadi, M.J.; Sicard, P.; Armin, H. Impact of middle Eastern dust storms on human health. Atmos. Pollut. Res. 2017, 8, 606–613. [Google Scholar] [CrossRef]
- Braun-Fahrlander, C.; Riedler, J.; Herz, U.; Eder, W.; Waser, M.; Grize, L. Environmental exposure to endotoxin and its relation to asthma in school-age children. New Engl. J. Med. 2002, 347, 869–877. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, C.A.; Griffin, D.W.; Garrison, V.H.; Peak, K.K.; Royall, N.; Smith, R.R. Characterization of aerosolized bacteria and fungi from desert dust events, in Mali, West Africa. Aerobiologia 2004, 20, 99–110. [Google Scholar] [CrossRef]
- Kellogg, C.A.; Griffin, D.W. Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 2006, 21, 638–644. [Google Scholar] [CrossRef]
- Molesworth, A.M.; Thomson, M.C.; Connor, S.J.; Cresswell, M.P.; Morse, A.P.; Shears, P. Where is the meningitis belt? Defining an area at risk of epidemic meningitis in Africa. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 242–249. [Google Scholar]
- Jinadu, B.A. Valley Fever Task Force Report on the Control of Coccidioides immitis Bakersfield, CA; Kern County Health Department: Bakersfield, CA, USA, 1995. [Google Scholar]
- Griffin, D.W.; Kubilay, N.; Kocak, M.; Gray, M.A.; Borden, T.C.; Shinn, E.A. Airborne desert dust and aeromicrobiology over Turkish Mediterranean coastline. Atmos. Environ. 2007, 41, 4050–4062. [Google Scholar]
- Sogin, M.L.; Morrison, H.G.; Huber, J.A.; Welch, D.M.; Huse, S.M.; Neal, P.R.; Arrieta, J.M.; Herndl, G.J. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 2006, 103, 12115–12120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeary, D.; Baskaran, M. Depositional characteristics of7Be and210Pb in southeastern Michigan. J. Geophys. Res. 2003, 108, 4210. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; Xie, S.; Zhang, C.; Yan, F.; Liu, Y.; Kang, S.; Gao, S.; Li, C. Composition and sources of heavy metals in aerosol at a remote site of Southeast Tibetan Plateau, China. Sci. Total Environ. 2022, 845, 157308. [Google Scholar] [CrossRef] [PubMed]
Size Fractions | NGS | NGS | Microscopic | |
---|---|---|---|---|
Urban | 0.39 to 0.69 μm | Aeromonas | <LOD | Streptomyces, Bacillus |
>0.69 to 1.3 μm | Aeromonas | Brevundimonas | ||
>1.3 to 2.1 μm | Aeromonas | Brevundimonas | Bacillus | |
>2.1 to 4.2 μm | Aeromonas | Brevundimonas | ||
>4.2 to 10.2 μm | Aeromonas | Brevundimonas | ||
>10.2 μm | Aeromonas | Massilia | ||
Remote | 0.39 to 0.69 μm | Brevundimonas | <LOD | Bacillus |
>0.69 to 1.3 μm | Aeromonas | Brevundimonas | ||
>1.3 to 2.1 μm | Sphingobium | Brevundimonas | Bacillus, Paenibacillus | |
>2.1 to 4.2 μm | Sphingobium | Brevundimonas | ||
>4.2 to 10.2 μm | Sphingobium | Sphingobium | ||
>10.2 μm | Brevundimonas | Brevundimonas | ||
NGS: next generation sequencing |
Size Fractions | NGS | NGS | Microscopic | |
---|---|---|---|---|
Urban | 0.39 to 0.69 μm | Alternaria | Bionectria | Fusarium cocciciocola |
>0.69 to 1.3 μm | Cryptococcus | Bionectria | ||
>1.3 to 2.1 μm | Cryptococcus | <LOD | Aspergillus brasilensis | |
>2.1 to 4.2 μm | Cryptococcus | <LOD | ||
>4.2 to 10.2 μm | Cryptococcus | <LOD | ||
>10.2 μm | Aspergillus | <LOD | ||
Remote | 0.39 to 0.69 μm | Alternaria | Alternaria | Fusarium cocciciocola |
>0.69 to 1.3 μm | Cryptococcus | Alternaria | ||
>1.3 to 2.1 μm | Schizophylum | Aspergillus | Aspergillus brasilensis | |
>2.1 to 4.2 μm | Alternaria | Aspergillus | ||
>4.2 to 10.2 μm | Aspergillus | Aspergillus | ||
>10.2 μm | Cryptococcus | Aspergillus | ||
NGS: Next-generation sequencing |
Size Fraction | Viruses | Method | References |
---|---|---|---|
<0.22 μm | Enterovirus, Rhinovirus, Flu A, Para Influenza 4, CoV-HKU1, CoV-OC43 | RT-PCR | [70] |
>0.22 μm | Adenovirus, Enterovirus, Rhinovirus, Flu A, Flu B, Para Influenza 4, CoV-OC43, SARS-CoV2 | RT-PCR | |
Whole fraction | Rhinovirus | RT-PCR | [174,177,180] |
<0.22 μm | Human bocavirus 1, HAdV-C1, HAdV-C2, HAdV-B3, HAdV-E4, HAdV-C5, HAdV-B7, HAdV-B21, H1N1, SARS CoV2 | CRVP sequencing | [182] |
> 0.22 μm | Human bocavirus 1, HAdV-C1, HAdV-C2, HAdV-B3, HAdV-E4, HAdV-C5, HAdV-B7, HAdV-B21, H1N1, SARS CoV2 | CRVP sequencing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, S.; Habibi, N.; Fowler, S.W.; Behbehani, M.; Gevao, B.; Faizuddin, M.; Gorgun, A.U. Aerosols as Vectors for Contaminants: A Perspective Based on Outdoor Aerosol Data from Kuwait. Atmosphere 2023, 14, 470. https://doi.org/10.3390/atmos14030470
Uddin S, Habibi N, Fowler SW, Behbehani M, Gevao B, Faizuddin M, Gorgun AU. Aerosols as Vectors for Contaminants: A Perspective Based on Outdoor Aerosol Data from Kuwait. Atmosphere. 2023; 14(3):470. https://doi.org/10.3390/atmos14030470
Chicago/Turabian StyleUddin, Saif, Nazima Habibi, Scott W. Fowler, Montaha Behbehani, Bondi Gevao, Mohammad Faizuddin, and Aysun Ugur Gorgun. 2023. "Aerosols as Vectors for Contaminants: A Perspective Based on Outdoor Aerosol Data from Kuwait" Atmosphere 14, no. 3: 470. https://doi.org/10.3390/atmos14030470
APA StyleUddin, S., Habibi, N., Fowler, S. W., Behbehani, M., Gevao, B., Faizuddin, M., & Gorgun, A. U. (2023). Aerosols as Vectors for Contaminants: A Perspective Based on Outdoor Aerosol Data from Kuwait. Atmosphere, 14(3), 470. https://doi.org/10.3390/atmos14030470