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Abstract: In this study, a comprehensive investigation into the inter-relationships among twelve
atmospheric variables and their responses to precipitation was conducted. These variables include
two Global Navigation Satellite Systems (GNSS) tropospheric products, eight weather variables
and two time-varying parameters. Their observations and corresponding precipitation record over
the period 2008–2019 were obtained from a pair of GNSS/weather stations in Hong Kong. Firstly,
based on the correlation and regression analyses, the cross-relationships among the variables were
systematically analyzed. Typically, the variables of precipitable water vapor (PWV), zenith total
delay (ZTD), temperature, pressure, wet-bulb temperature and dew-point temperature have closer
cross-correlativity. Next, the responses of these variables to precipitation of different intensities
were investigated and some precursory information of precipitation contained in these variables
was revealed. The lead times of using ZTD and PWV to detect heavy precipitation are about 8 h.
Finally, by using the principal component analysis, it is shown that heavy precipitation can be
effectively detected using these variables, among which, ZTD, PWV and cloud coverage play more
prominent roles. The research findings can not only increase the utilization and uptake of atmospheric
variables in the detection of precipitation, but also provide clues in the development of more robust
precipitation forecasting models.

Keywords: heavy precipitation; weather variable; GNSS atmospheric sounding; principal component
analysis; correlation analysis

1. Introduction

In recent decades, affected by the warming of the planet, an increasing number of
natural disasters caused by severe weather events and climatic hazards have seriously
endangered the safety of human lives and assets. Among all hazardous phenomena, heavy
precipitation occurs the most frequently [1,2]. Regarding its formation process, warmer
surface runoffs and oceans continuously increase the amount of water that evaporates
into the atmosphere, which also facilitates the movement of moisture-laden air and water
vapor [3,4]. Then, the water vapor condenses into cloud droplets and precipitation particles
during a convergence upward motion process, and finally with diffusional and collisional
growths, they fall as raindrops [5,6]. In terms of the enormous influences brought by heavy
precipitation, it is closely linked with the occurrences of flood events, soil erosion, landslide,
crop damage and other disastrous phenomena [7]. Furthermore, according to the statistics,
over 32% of natural disasters which happened in the Chinese mainland over the period
of 1900–2011 were also caused by heavy precipitation [8]. Consequently, these facts all
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indicate that the accurate forecasting and monitoring of precipitation, especially heavy
precipitation, is of great significance for disaster prevention and mitigation.

In view of this, nowadays, various types of new models have been developed to
conduct precipitation forecasts. Generally, all existing models can be classified into three
categories. The first category consists of operational numerical weather prediction (NWP)
models. With the use of high accuracy meteorological data through the advanced data
assimilation technique, NWP models can accurately predict the occurrences of precipitation
dozens of hours ahead of the event [9–13]. For example, Rohm et al. [10] adopted the four-
dimensional variational assimilation method to effectively assimilate Global Navigation
Satellite System (GNSS) data, radiosonde profiles and surface synoptic observations into
the model. Their results showed that precipitation forecasts have significant improvements
when starting from a 9 h lead time. Sun et al. [11] assimilated radiosonde and uncrewed
aerial vehicle observations into an NWP model to improve the performance of the model.
Saito et al. [12] also took the NWP model run at the Japan Meteorological Agency to
perform an experiment for assimilating precipitable water vapor (PWV) derived from
GNSS observations to improve the accuracy of heavy precipitation prediction. The second
category are the conventional extrapolation models, e.g., threshold-based and anomaly-
based models, which adopt a set of predefined rules obtained from the analysis of historical
data to detect precipitation in future scenarios [14–17]. For example, Zhao et al. [16]
proposed a threshold-based rainfall forecasting model using the predictors of PWV, zenith
total delay (ZTD) and their derivatives as predictors. Results indicated that the mean
correct prediction rate was above 95%. Li et al. [17] employed fourteen predictors derived
from PWV and ZTD, which took the overall variation features contained in their time series
into account, to establish an anomaly-based heavy precipitation detection model. Results
showed that its true detection rate and false alarm ratio were 99.1% and 22.4%, respectively.
The third category comprises the models developed based on the neural network-based
approach, which have drawn increasing attention over the past few years [18,19]. Based
on their advanced techniques for extracting relationships/rules from a large amount of
geospatial data, these models have also been effectively applied to heavy precipitation
prediction [20–24]. For example, Sangiorgio et al. [21] proposed to use the advanced deep
neural network to detect the onset of heavy precipitation, and results indicated that with
the use of ZTD and other weather variables, the performance resulting from the deep
neural network model was improved by over 3%. Li et al. [24] used the back propagation
neural network algorithm, which was driven by seven atmospheric variables, to detect
heavy precipitation. Results showed that the correct detection rate and false alarm rate
were 94.5% and 20.8%, respectively.

Although a great number of models have been proposed, it can also be found that all
the models cannot achieve better results or even successfully operate without the incorpo-
ration of various types of atmospheric variables sensed by different techniques [25,26]. This
is mainly because high accuracy meteorological data are the backbone of all the operational
NWP models; in terms of extrapolation models, all the predetermined conditions that
can trigger a weather event should be obtained from the monitoring and analysis of the
long-term series of atmospheric variables; for the neural network-based models, it is impor-
tant to select effective variables to be used as their model inputs, as they are data-driven
approaches. Consequently, these all highlight a pressing need to understand the intrinsic
nature of different atmospheric variables and refine the existing models for the detection
of precipitation events. In other words, the correct recognition of effective atmospheric
variables and their rational use are the premises of achieving better precipitation prediction
results, which is also the main motivation of this study.

Despite the fact that a large number of advanced techniques can be used to sense
atmospheric variables, currently, the most common method is the use of in-situ weather
stations. Although their spatial resolution still needs to be improved, according to statistics,
over 10,000 meteorological stations maintained by the World Meteorological Organization
are employed all over the world at the current stage [27]. Various types of meteorological
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variables (of different temporal resolution) and weather event records can be accurately
obtained from these stations. Apart from this, satellite remote sensing technology, e.g.,
meteorological satellite-based sensing techniques and space/ground-based GNSS atmo-
spheric sounding techniques, has undergone unprecedented development in recent years.
Among these techniques, ground-based GNSS atmospheric sounding, as a deep fusion
of the conventional GNSS-based navigation and satellite-based remote sensing technique,
has opened up new opportunities for the monitoring of atmospheric variables and severe
weather events [28–32]. According to a report released by the United Kingdom Met Office,
the influences brought by per observation of various types of variables in global NWP were
carefully evaluated, and the ground-based GNSS data were even ranked the second most
influential [33]. Moreover, most of the aforementioned models also tend to incorporate
ground-based GNSS observations. Therefore, apart from the weather data, this study also
gives particular attention to ground-based GNSS atmospheric products to take advantage
of the cutting-edge sounding technique.

As a final point, even though some previous studies have also conducted some anal-
yses of different types of atmospheric data, their deficiencies mainly lie in the following
aspects, which can also be regarded as the main contributions of this study.

1. General perspective. The previous data analyses are generally preliminary analyses,
and their main focuses are on developing models for precipitation detection rather
than comprehensively analyzing their relationships [24,34].

2. Variable selection. The variables adopted in previous studies are based on their actual
situations and data availability. For example, if a study were focused on only using
GNSS products for precipitation forecasts, the weather variables probably would
not be contained and evaluated [14,16]. However, this study collected nearly all
the commonly used weather and GNSS data, as well as some essential statistical
parameters to form a more complete analysis. In addition, previous studies mainly
focused on the time series data itself, while this study also extends this application
by moving the original time series from their corresponding time epochs, thereby
providing a more accurate investigation of the precipitation precursory information
contained in the adopted time series.

3. Analytical method. The analytical methods used in previous studies are rather unitary.
For example, correlation analysis is often used as a preliminary analysis in neural
network-based studies [35], regression analysis is often adopted in the simple fitting
or prediction of variables [36] and composite analysis is often utilized to reveal a
correlation between two time series for exploring the large-scale impacts of telecon-
nections from modes of atmospheric variability [37,38]. In this study, not only are the
methods of correlation, regression, mean value and principal component analyses
used, but also their improved and revised forms are adopted, thereby making it more
applicable to analyze the responses of various variables to precipitation events.

4. Target event. The target meteorological events in previous studies vary greatly [39–41],
while in this study, we only focus on precipitation. In addition, to obtain some findings
about precipitation of different intensities, the observed precipitation amount record
is classified into the three intensities of slight, moderate and heavy precipitation
according to the hourly amount.

5. Seasonal characteristics. This study also divides the whole study period into four
parts, representing the four seasons, thus capturing the seasonal features contained in
the variables and precipitation record.

Therefore, the aims and objectives of this study are mainly to: (1) analyze the cross-
relationships among weather and GNSS variables; (2) investigate the responses of the
selected variables to precipitation and then figure out the precursory information of precip-
itation contained in the variables; and (3) test the effectiveness of using all the variables
to detect the occurrence of precipitation of different intensities. The research findings
from this study not only have the potential to increase the utilization and uptake of differ-
ent atmospheric variables in the detection of precipitation, but also could provide some
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useful clues and guidance in the development of more robust and reliable models for
precipitation forecasts.

2. Data Acquisition

Considering the focus of this study, the datasets adopted to conduct this systematic
analysis should be obtained over a rather long-term period. This could help to better
fetch and categorize some existing and notable features contained in the whole dataset
from an all-round perspective. Furthermore, more types of atmospheric variables should
also be obtained to find some more general phenomena. For these reasons, in the study,
the variables were obtained at a pair of co-located GNSS-weather stations employed in
the Hong Kong region, i.e., the HKSC-King’s Park (KP) stations, over a 12-year period
(2008–2019). As stated in [42], the geographic coordinates of the HKSC and KP stations are
(22.32◦ N, 114.14◦ E) and (22.31◦ N, 114.17◦ E), respectively, and they have a horizontal
distance of 3.29 km and a vertical difference of 45 m. What needs to be illustrated is
that if the distance between a GNSS and a weather station is within a few kilometers in
the horizontal direction, they can be regarded as “co-located”. Based on our previous
findings and the mechanisms of GNSS data retrieval, these horizontal and vertical offsets
would not affect the experiments conducted in this study [42,43]. It must also be noted
that the selection of the study period from 2008 to 2019 is because high-quality GNSS
observations can only be obtained from mid-2007 in the context of Hong Kong. In addition,
the exclusion of data from 2020 to the present is on account of the acknowledged fact that
human activities may exert certain impacts on the environment and atmosphere [44,45]. In
the context of the widespread coronavirus pandemic since 2020, to avoid the findings to
be influenced by uncommon and irregular circumstances, the dataset collected during the
densely populated study region over the past few years were ignored. Specifically, this is
due to the possible reduction in carbon dioxide production that may be associated with the
warming of the planet and atmospheric conditions.

The datasets used in this study can be divided into three main categories: weather
variables, GNSS atmospheric products and statistical time-varying parameters. Table 1 lists
the twelve types of variables adopted in this study.

Table 1. Twelve types of variables adopted in this study.

Classification No. of Variable Type of Variable Temporal
Resolution Time Period

Weather variable 8

dry-bulb temperature, dew point
temperature,

wet-bulb temperature, solar radiation,
cloud cover, pressure, wind speed and

wind direction
Hourly 12-year period

2008–2019

GNSS atmospheric product 2 ZTD and PWV
Statistical time-varying parameter 2 day-of-year and hour-of-day

2.1. Weather Variables

In this study, eight types of weather variables were adopted, including dry-bulb
temperature (T), dew point temperature (DPT), wet-bulb temperature (WBT), pressure
(P), solar radiation (SR), cloud cover (cloud), wind speed (Ws) and wind direction (Wd).
The selection of these variables is because these variables are proven to be associated with
precipitation or atmospheric humidity, most of which are also employed in operational
NWP models. Among the variables, T and P are the most commonly used in most existing
studies towards the field of meteorology. Derived from the values of T and relative humidity,
DPT has the ability to better indicate the moisture content of the air. WBT is measured from
the use of a standard mercury-in-glass thermometer with its bulb wrapped in wet muslin.
With regard to the other variables, SR indicates the electromagnetic radiation emitted by the
sun [46]. It should be mentioned that, based on the characteristics of this observation, only
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the SR values over the period from 6 am to 8 pm per day can be provided. The observations
corresponding to the other epochs (hours) were marked as “zero” in this study to form a
complete time series. Cloud cover refers to the fraction of the sky obscured by clouds on
average [47], the value of which is expressed as a percentage. Since sunlight can be blocked
by clouds, the value of cloud cover is obviously correlated to that of SR. Lastly, Ws and Wd
measurements were also included to figure out their impacts on the formation of rainfall
events. In this study, the time series of the eight variables over the whole study period
were all obtained at the KP station.

2.2. GNSS Atmospheric Products

As mentioned in Section 1, the GNSS atmospheric sounding technique has been widely
used to serve the meteorological community in recent years, and the most commonly used
variables are ZTD and PWV. Despite additional error sources that may be introduced into
PWV in the conversion process from ZTD, PWV can be taken as an effective indicator of the
atmosphere’s water vapor content, and it has proven to be closely linked with the formation
and evolution of precipitation events [48–50]. Therefore, for a systematic data analysis as
conducted in this study, the two types of variables should both be carefully evaluated. The
data processing procedure for retrieving ZTD and PWV time series at the HKSC station
over the 12-year study period is discussed as follows.

Firstly, the Bernese GNSS software V5.2 was used to retrieve ZTD and other geode-
tic variables (e.g., tropospheric gradients and site coordinates) from GNSS raw observa-
tions [51,52]. During the whole process, the strategies adopted also include the Vienna
Mapping Function 1 [53], the double-difference approach, the cut-off angle of 3◦ and the
International GNSS Service Finals clocks and orbits [54,55]. In addition, in accordance with
the International Earth Rotation and Reference Systems Service Conventions 2010 [56], the
phase wind-up effects, the solid Earth and ocean pole tide, as well as the relativistic delays
were all modeled in fine detail. It must also be noted that the temporal resolution of the
retrieved GNSS products was 5 min. However, to be consistent with the collected hourly
weather variables, ZTDs obtained corresponding to their observation epochs, i.e., hourly
ZTD values, were adopted in the following experiments.

Secondly, the total delay in the zenith direction is composed of the two parts of
zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), representing dry and wet
components in the troposphere, respectively. It is acknowledged that the ZHD can be
accurately obtained by using the Saastamoinen model [57]. Then, by simply subtracting
ZHD component from ZTD estimate, the ZWD value can be obtained.

Thirdly, the PWV estimate can be directly converted from the obtained ZWD by using
a conversion factor, which is a function of the weighted mean temperature along the zenith
direction [28–30,58]:

PWV = ∏×ZWD =
106 × ZWD

ρwaterRw

[
k3
Tm

+ k2 − k1 ×
(

Rd
Rw

)] , (1)

where ∏ denotes the empirical conversion factor; ρwater refers to the density of liquid
water (g/m3); Rd and Rw represent the specific gas constants of dry air and water vapor,
respectively; the notations of k1, k2 and k3 represent the refractivity constant values given
in [29]; and Tm is the weighted mean temperature along the vertical direction over the site,
which plays an important role in the determination of the conversion factor. Specifically, the
accuracy of PWV estimates is largely affected by the error sources of Tm and ZWD [59–61].
Therefore, in this study, Tm is determined by using a linear model proposed by Chen [62],
based on eight-year weather measurements obtained in the context of Hong Kong. There-
fore, taking each of the above steps, the ZTD and PWV time series at the HKSC site over the
whole study period can be obtained. In addition, the accuracy of PWV estimates obtained
at the HKSC station over the study period was evaluated by using sounding profiles as
the reference. As stated in [43], the HKSC station is the closest GNSS station to the only
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radiosonde station employed in the Hong Kong area, with a 2.9 km horizontal distance and
a 3.8 m height difference. By evaluating 8766 pairs (twice per day) of PWV estimates ob-
tained from GNSS and sounding profiles over the 12-year period, results indicated that the
root mean square error between the two time series were 1.63 mm, which is acceptable for
the meteorological community. More detailed information in terms of the whole retrieval
and quality control processes can be found in our previous studies [43,63].

2.3. Statistical Time-Varying Parameters

It is acknowledged that GNSS atmospheric products and weather variables all possess
obvious fast-changing characteristics. The additional inclusion of the parameters of day-of-
year (DOY) and hour-of-day (HOD) is to effectively capture the time-varying features of
these variables and precipitation records. In addition, the reason why the two parameters
are described as statistical is because their values can be simply counted rather than
observed. For example, the value of DOY is the same as that of the Julian Date, thus its
data ranges are 1–365 and 1–366 in common and leap years, respectively. Similarly, the
parameter of HOD generally possesses the same value as the Coordinated Universal Time,
representing the actual time on any certain date. Therefore, to conduct a comprehensive
investigation on the response of variables to precipitation events, these statistical time-
varying parameters are extremely indispensable.

2.4. Precipitation Record

Apart from all the above-mentioned variables, to investigate the responses of different
variables to precipitation, the hourly precipitation amount record over the 12-year period
was also collected at the KP station. According to the standard provided by the World
Meteorological Organization [64], by evaluating the record of precipitation amount, pre-
cipitation events can be classified into different intensities, including slight, moderate and
heavy. Table 2 lists the detailed definitions for differentiating the three types of precipitation
intensity. In addition, the number of epochs corresponding to each intensity and their
respective percentages of occurrence over the whole study period are also displayed.

Table 2. Definition of different precipitation intensities, as well as the number of epochs corresponding
to each intensity and their percentages of occurrence.

Intensity Range No. of Epochs Percentage

Slight r < 2.5 mm/h 6091 70.0%
Moderate 2.5 mm/h ≤ r < 10 mm/h 1886 21.7%

Heavy/Intense 10 mm/h ≤ r 722 8.3%
Note: the notation of r represents hourly precipitation amount.

It can be seen from this table that precipitation events occurred at a total of 8699 epochs
over the study period, in which the slight, moderate and heavy precipitation events account
for 70.0%, 21.7% and 8.3%, respectively. Please note, since all the variables and records were
obtained on an hourly basis, that a total of 105,192 samples for each variable should have
been collected over the 12-year study period. However, it is universally acknowledged that
only few operational weather stations have a complete unbroken record of information. The
data gaps are more likely to have been caused by equipment downtimes. With regard to the
stations adopted in this study, 101,462 hourly estimates are available over the whole 12-year
study period. Therefore, the overall data availability ratio is 96.5% (101,462/105,192),
which is optimal in comparison to any other pairs of co-located GNSS-weather stations
employed in the Hong Kong region. This not only substantiates the superiority of using
the HKSC-KP stations, but also confirms the availability of the selected dataset for the
following experiments.
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3. Methodology

In this study, various types of analytical methods were adopted to systematically ana-
lyze the relationships among the twelve variables, as well as their responses to precipitation
events. According to the temporal resolution of these variables and the total duration of the
study period, some commonly used analytical methods, e.g., the Mann-Kendall and Pettitt
tests, were not applicable. Therefore, after a careful selection, the basic methods utilized in
this study mainly include the correlation analysis, regression analysis, mean value analysis
and principal component analysis (PCA).

3.1. Correlation Analysis

With regard to the correlation analysis, the most representative metrics include the
Pearson correlation coefficient (PCC) [65] and the Spearman’s rank correlation coefficient
(SCC) [66]. Between them, the PCC is the most widely used, which is also colloquially
referred to as “correlation coefficient (denoted by r)”. It is often adopted to estimate linear
correlation between two sets of time series, and its calculation equation can be expressed
as [65]:

PCC =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
, (2)

where n is the total number of samples in the whole time series; the subscription i is the
index of a sample data; Xi and Yi denote the i-th samples of the selected two time series; X
and Y are the average values of the two sets of time series. As can be seen from the equation,
PCC is a normalized measurement of the covariance, which is generally employed to test
the dependence of two time series [65]. The value of PCC result is in the range between
−1 and 1. Although the values of 1 and −1 both represent perfect linear correlations, the
two circumstances indicate a positive and a negative correlation relationship, respectively.
Another extreme case, i.e., the PCC value of 0, implies that there is no linear correlation
between the tested time series. Moreover, by evaluating the absolute values of PCC, some
detailed interpretation principles were also developed in [67], in which several correlation
levels have been carefully categorized.

It is noted that in the calculation of PCC, which mainly evaluates the linear relation-
ship between two continuous variables, many types of correlations contained in the two
series are arbitrarily ignored, which is the main reason to use another type of correlation
coefficient, i.e., SCC, in this study. The other motivation for adopting SCC lies in the fact
that this study focuses on the time series data of the twelve variables, hence their rankings
over the whole study period should not be overlooked in analyzing their inter-relationships.
The monotonic relationships between each two series should also be tested. As mentioned
in [24], since SCC has the ability to quantify the extent of statistical independence between
the rankings of two time series, it has been effectively used in various applications [68–70].
SCC is calculated as [66]:

SCC =
∑n

i=1
(
rgXi − rgX

)(
rgYi − rgY

)√
∑n

i=1
(
rgXi − rgX

)2
√

∑n
i=1
(
rgYi − rgY

)2
, (3)

It can be seen from Equation (3) that the calculation mechanism of SCC is almost the
same as that of PCC; however, the time series data incorporated in Equations (2) and (3)
are different. Since SCC is based on the ranked values for each variable rather than the
raw data, hence rgX and rgY refer to the ranks of the time series of X and Y (as shown
in Equation (2)), respectively. In other words, to construct the time series of rgX and rgY,
the original series of X and Y should be reorganized according to their rankings over the
whole period. The definitions of the other notations (e.g., n and i) are the same as those
defined in Equation (2). In the same way as PCC, the value of SCC is also in the range of
[−1, 1], while the main difference is about the interpretation of the positive and negative
signs. In terms of the SCC value, its plus-minus signs indicate the correlation direction. To
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be clear, the result with a plus sign shows that the two series have the same variation trend,
i.e., increase or decrease simultaneously; the SCC value with a minus sign reveals that the
variation trends of the two series are diametrically opposed. The closer the SCC value is to
1 or −1, the larger the tendency is between the two variables.

3.2. Regression Analysis

In most cases, given a dataset containing at least two sets of time series, their rela-
tionships (linear, multi-linear and nonlinear) can be inferred using regression analysis [71].
According to Freund et al. [72], regression analysis can also be taken as an effective tool for
the forecasting of variables, background fields and weather phenomena, the mechanism of
which is very much similar to the cutting-edge machine learning approach. For example,
in our previous study [36], it was simply utilized to obtain a high accuracy potential evapo-
transpiration difference. In this study, the primary reason for using this method is to make
it act as an extension of the above-introduced correlation analysis. Therefore, despite the
most common form of regression analysis, i.e., linear regression, this study mainly focuses
on using a broader range of non-linear equations to figure out which form is optimal in the
estimation of conditional expectation. As inspired by Shestopaloff [73], the four nonlinear
equations adopted in this study include the quadratic polynomial, natural logarithmic (to
the base of the Euler’s constant e), natural exponential and power functions, whose basic
forms are shown in Equations (4)–(7), respectively.

y = a2x2 + a1x + b1, (4)

y = a3loge(x) + b2 = a3ln(x) + b2, (5)

y = a4ea5x, (6)

y = a6xc, (7)

where x and y are the series of the independent and dependent variables, respectively;
a1−a6 are the coefficients; b1 and b2 represent the intercepts in polynomial and logarithmic
functions, respectively; c denotes the order of the power function, as shown in Equation (7);
and e is the Euler’s constant, the value of which is 2.718281. Furthermore, the coefficient of
determination (COD), which is also known as R-squared (R2), was adopted in this study to
compare the results from the use of different functions. As one of the most commonly used
criteria, COD has the ability to examine how well the time series of one variable is reflected
by another, and it can be expressed as [74]:

R2 = 1−

n
∑

i=1
(yi − xi)

2

n
∑

i=1
(yi − y)2

, (8)

where the subscription i denotes the index of the element in the sample dataset; n is the
number of samples; xi and yi are the independent and dependent variables corresponding
to the i-th epoch, respectively; and y is the mean of all the dependent variables. Please note
that in this study, all regression analyses were performed using the IBM SPSS software
package (https://www.ibm.com/spss, accessed on 1 October 2022) [75]. Specifically, the
common problem of autocorrelation in the regression analysis was tackled by using the
Cochrane-Orcutt procedure embodied in the software [76].

3.3. Mean Value Analysis

Mean value analysis is used to simply calculate the mean value of any type of variable
over a certain period. Although this operation is easy to conduct, what really matters is the
selection of the period. In this study, by comparing the mean values over different periods,
e.g., with precipitation, without precipitation and with precipitation of different intensities,
the responses of different variables to precipitation can also be revealed to some extent.

https://www.ibm.com/spss
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In addition, this practice can also be adopted to figure out some precursor information
of precipitation if the calculation period were determined as several hours prior to the
occurrences of precipitation events.

Overall, it must be noted that the three methods described above are generally their ba-
sic forms. In the following experiments, some innovative practices and methods developed
based on these methods were also incorporated to make a more general analysis.

3.4. Principal Component Analysis

In this study, the PCA method [77,78] was also employed, whose main function is
to conduct dimensional reduction, i.e., perform a change of basis on the whole dataset,
by calculating the principal components (PCs). Then, the contribution of each variable
to the target data, e.g., precipitation in this study, can be further analyzed and deter-
mined [79]. From the perspective of data analysis, the PCA method is the simplest among
true eigenvector-based analytical methods, and the PCs represent the eigenvectors of the
samples’ covariance matrix. Therefore, a matrix with the dimension of m × n needs to be
constructed, where m and n are the numbers of the sample observations and variables,
respectively. In this study, based on the 12-year sample observation data, m was set to
101,462, and n was 12. The constructed matrix denoted by X is:

X =

[∼
V1,

∼
V2,

∼
V3,

∼
V4,

∼
V5,

∼
V6,

∼
V7,

∼
V8,

∼
V9,

∼
V10,

∼
V11,

∼
V12

]
, (9)

where
∼
V1–12 are the column vectors for the twelve variables. Each of the column vectors

was normalized by subtracting the mean of the variable samples and then being divided
by their respective standard deviation. The normalized matrix (denoted by X̂) becomes:

X̂ =

 ∼V1 −V1

σ1
,

∼
V2 −V2

σ2
,

∼
V3 −V3

σ3
, . . . ,

∼
V11 −V11

σ11
,

∼
V12 −V12

σ12

, (10)

where V1–12 and σ1–12 are the mean and standard deviations of each of the twelve column
vectors. Finally, from the normalized matrix X̂, the 12× 12 covariance matrix of the samples
(denoted by Cov

(
X̂
)
) was computed, as shown in the following equation.

Cov(X̂) =


cov
(
X̂1, X̂1

)
cov
(
X̂1, X̂2

)
cov
(
X̂2, X̂1

)
cov
(
X̂2, X̂2

) . . . cov
(
X̂1, X̂12

)
. . . cov

(
X̂2, X̂12

)
. . . . . .

cov
(
X̂12, X̂1

)
cov
(
X̂12, X̂2

) . . . . . .
. . . cov

(
X̂12, X̂12

)
, (11)

where X̂1–12 represent the twelve column vectors in the normalized matrix X̂. The twelve
new axes defined by the orthogonal eigenvectors of Cov

(
X̂
)

represent the twelve PCs,
which are uncorrelated. The proportion of the variance contributed by each PC can be
computed by dividing its corresponding eigenvalue to the sum of all eigenvalues. By
analyzing the variances interpreted by each PC, some major PCs, i.e., those that contribute
the most to the total variance, can be determined. Then, the variable loadings in those
major PCs can also be analyzed to figure out the significance of each variable to the whole
dataset. Please note that variable loading refers to the correlation coefficient between
a PC and a variable, and the sum of the squared coefficients is equal to 1. The variable
loadings for each PC can be found from the eigenvector matrix calculated from the obtained
Cov

(
X̂
)

[79,80]. The rows and columns of the eigenvector matrix correspond to variables
and PCs, respectively. Finally, by reducing the dimension of the whole dataset to those
major PCs, the potential of using the variables to discriminate precipitation events can be
effectively revealed.
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4. Cross-Relationships among the Twelve Variables

Prior to analyzing the responses of the selected twelve variables to precipitation events
of different intensities, it is important to conduct preliminary analyses among the variables
to uncover the relationships, if there are any, among them. Therefore, in this section, the
cross-relationships among the twelve variables are carefully analyzed.

4.1. Cross-Correlation Analysis among the Twelve Variables

With regard to atmospheric time series data, especially over a rather longer-term
period, the primary practice for investigating their internal relationships is to conduct a cor-
relation analysis. Although this common practice has been performed in various previous
studies [24,35], there are few studies that have tested a large number of variables [34]. This
study firstly used the PCC as the main metric to carry out the cross-correlation analysis.
Figure 1 depicts the PCC results among the twelve variables obtained at the HKSC-KP
stations over the 12-year period 2008–2019.
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Figure 1. Pearson correlation coefficient results among the twelve variables over the 12-year period
2008–2019.

In Figure 1, the lower left section of the plot shows the PCC values between each
pair of the twelve variables; the negative correlation values are shown in italics. The PCC
values are also displayed by using the darkness of the color on the upper right section
of the plot. Roughly speaking, higher PCC values are mainly concentrated among the
six typical variables of ZTD, PWV, T, WBT, DPT and P. The first reason is undeniably on
account of their calculation mechanisms. For example, as stated in Section 2.2, PWV is
directly computed from the ZTD estimate, which explains why the highest PCC value of
0.992 occurs between ZTD and PWV. It is noted that although previous studies have also
confirmed their strong positive correlation and similar variation trends [63,81], our recent
study also highlighted that if the two variables were used simultaneously, the performances
of precipitation forecasts can be further improved [24]. Moreover, the high PCC value of
0.848 between DPT and T results from the fact that the former is derived from the latter
and relative humidity. Similarly, although the WBT time series was measured from the KP
station, it can also be calculated using T, DPT and P. Therefore, this effectively accounts for
the fact that WBT has strong correlations with the three variables T, DPT and P, with PCC
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values of 0.903, 0.975 and –0.842, respectively. The second reason relates to the atmospheric
conditions that these variables manifest. Since the variables of ZTD, PWV, DPT and WBT
all have the ability to indicate the moisture content of the air, the PCC results between any
two of them are all above 0.78. As T has a strong correlation with relative humidity [34],
it also possesses high PCC values with the variables, e.g., DPT and PWV, representing
atmospheric humidity.

Looking at the other six variables, it can be found that DOY and HOD both have
the highest PCC results with T in comparison with the others. This is comprehensible
as the temperature measurements in Hong Kong are generally higher in the summer
season and the daytime. Moreover, the relative higher PCC values also corroborate the
obvious temporal variation features contained in temperature time series. With respect
to wind measurements, affected by monsoons, the Wd generally has certain directions in
different seasons; e.g., south and north winds frequently occur in summer and winter,
respectively [82–84]. Furthermore, since the Hong Kong region is surrounded by the South
China Sea on all sides except the north, the low-level monsoonal streams often transport
large amounts of water vapor to the sites [85,86]. This explains why Wd and Ws both have
moderate correlations with PWV, ZTD, T, WBT, DPT and P. Lastly, the respective PCCs
of 0.444 and 0.407 for cloud-ZTD and cloud-PWV can be attributed to the mechanism of
retrieving GNSS-derived variables: the higher the cloud coverage rate value, the larger the
atmospheric delays.

Since all the variables used in this study are time series data, it is necessary to take
their rankings and distributions into account. Therefore, apart from the PCCs obtained
above, the SCC values between each two of the twelve variables were also calculated, as
shown in Figure 2. Please note, the negative correlation values are also shown in italics.
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By comparing the results shown in Figures 1 and 2, it can be easily concluded that all
the correlations reflected by the metric of either PCC or SCC for any two types of variables
are roughly at a similar level, which is also consistent with the findings of Dancey and
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Reidy [67]. Consequently, the findings in Figure 2 are generally the same as those stated
above. However, there are three interesting phenomena that need to be mentioned. Firstly,
the absolute values of SCC obtained between each two of the variables PWV, T, WBT and
P are all above 0.7. According to the interpretation principles provided by Dancey and
Reidy [67], these variables are strongly correlated. In addition, their respective SCCs are
even larger compared with their PCC values. This indicates that by taking the variables’
rankings into consideration, their relationships become more prominent. Secondly, the
correlations revealed from SCCs between GNSS atmospheric variables (ZTD and PWV),
and time-varying parameters (DOY and HOD) are similar to those uncovered by using
PCCs. Lastly, although the signs of SCC results obtained from SR-ZTD (from −0.036 to
0.012), SR-PWV (from −0.012 to 0.031) and cloud-T (from 0.022 to −0.091) have changed
with respect to the PCC results, their values are all below 0.1, indicating that the three
pairs of variables generally have little or almost no correlation. The signs of these SCC
results only have the ability to reflect whether or not these variables have a same variation
direction. Consequently, based on the above analyses from the metrics of PCC and SCC,
the correlation relationships among the twelve variables are effectively revealed.

4.2. Regression Analysis among the Twelve Variables

Since the above correlation analysis mainly focused on the linear relationships, we
also adopted the regression analysis to further investigate the nonlinear relationships
between each pair of variables. It is noted that the focal point of this section is not on
using one or a group of variables to predict another one; thus, in each experiment, the
number of dependent and independent variables were both set to 1. In other words,
the nonlinear regression analysis conducted in this section can also be recognized as a
cross-regression analysis between each two of the twelve variables, thus figuring out
which type of nonlinear functions can better reflect their relationships. As mentioned in
Section 3.2, the four commonly used types of functions, including the quadratic polynomial,
natural logarithmic, natural exponential and power functions, were tested. To establish a
connection between the linear correlation and nonlinear regression analyses, the results
obtained from linear fitting were also compared. By comparing the CODs resulting from
different functions for each two sets of time series, Figure 3 shows the optimal functions
for fitting their relationships. When conducting a regression analysis, dependent and
independent variables should be determined beforehand. Therefore, each variable was
designated as the independent and dependent variables separately, thus, to test all the
possible situations.

It can be seen from this figure that the optimal results for most pairs of variables
are from the use of the quadratic polynomial function. By changing the variables from
being independent variables to being dependent ones, the optimal fitting function types for
26 (over 1/3) pairs of variables have changed (see the bottom left and upper right). For
example, in terms of the data pair of T-ZTD, the natural exponential function is the optimal
one for fitting the temporal variations of ZTD using the variable of T; while if their roles
were exchanged, i.e., T and ZTD were designated as dependent and independent variables,
respectively, the optimal form is the quadratic polynomial function. By comparing the de-
tailed results, although these optimal function types vary greatly, the CODs obtained from
the use of different functions are generally all comparable. Consequently, for applications
that do not have extremely high demand on data accuracy, it is more efficient to simply
adopt the linear function to fit their relationships; for the others, e.g., the prediction of a
variable [36], it is better to use a function that has the potential to reflect their relationships
in a more refined way.
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5. Systematic Investigation on Responses of Twelve Variables to Precipitation

In this section, a systematic investigation on the responses of the selected twelve vari-
ables to precipitation events was conducted. Similar to Section 4, the methods of correlation
and regression analyses were adopted. Furthermore, to investigate the performance of the
variables prior to and during the occurrence of precipitation events, their mean values over
different periods were also calculated and analyzed.

5.1. Comparing the Time Series of the Twelve Variables with Precipitation Record
5.1.1. Conventional Correlation Analysis

To conduct a more systematic correlation analysis, the precipitation record collected
over the 12-year study period was further processed. As the original precipitation record
simply contains the hourly precipitation amount, to highlight the occurrence of heavy
precipitation and the intensities of precipitation, two sets of new precipitation records were
reorganized in accordance with the hourly rainfall amounts. The first set is to use the value
of “1” to indicate the occurrence of heavy precipitation, i.e., hourly precipitation amount is
above 10 mm (see Table 2); while other epochs over the whole time series were marked as
“0”. Since heavy precipitation is generally regarded as an extreme weather event that has
caused considerable damages and casualties, the use of this new set of precipitation record
is effective for this study to pay particular attention on this type of event. By using the
definitions shown in Table 2, the other set of precipitation record is composed of the values
of “0”, “1”, “2” and “3”, representing “no precipitation”, “slight precipitation”, “moderate
precipitation” and “heavy precipitation”, respectively. This record is used to indicate
the intensities of precipitation in each epoch. In terms of precipitation forecasts, the new
record and the original one are especially designed for conducting qualitative detection and
quantitative prediction, respectively. Therefore, in this study, the PCC results between each
variable and each precipitation record were all calculated, as shown in Table 3. Moreover,
the SCC results obtained by comparing each variable with the hourly precipitation amount
record were also listed in Table 3. The use of only the original record in the calculation
of SCC results is mainly because only the precipitation amount record contains effective
ranking information.
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Table 3. Pearson and Spearman’s rank correlation coefficient results by comparing each of the twelve
variables with precipitation records over the period 2008–2019.

Type Precipitation DOY HOD ZTD PWV T WBT DPT P Wd Ws Cloud SR

PCC
Heavy precipitation 0.009 −0.007 0.107 0.107 0.038 0.056 0.066 −0.083 0.041 0.045 0.075 −0.046

Precipitation Intensity 0.011 −0.024 0.264 0.256 0.054 0.114 0.151 −0.171 0.041 0.057 0.216 −0.121
Precipitation amount 0.011 −0.012 0.151 0.150 0.048 0.074 0.092 −0.113 0.049 0.046 0.113 −0.067

SCC Precipitation amount 0.008 −0.027 0.277 0.264 0.060 0.097 0.160 −0.161 0.020 0.017 0.292 −0.067

Firstly, by comparing the PCC results obtained for the three sets of precipitation
records, it can be clearly seen that the absolute values of the results are all less than 0.3,
indicating that these twelve variables do not have obvious correlation relationships with
any of the records. After a close look at the values obtained for each record, apart from the
variable of Wd, the highest PCC results (see the figures in bold type) for the other variables
all exist in their comparisons with the record of precipitation intensity. This indicates the
fact that if these data were used directly for precipitation forecasts (without the adoption of
physically-based NWP models), it would be better to conduct qualitative detection rather
than quantitative prediction. This finding also explains why previous studies [16,34,43], in
which qualitative models were well-developed, achieved excellent detection performances.

Secondly, by comparing the results shown in the shaded rows in Table 3, it is obvious
that most of the SCCs are significantly larger than their corresponding PCCs. This makes
perfect sense because although the original record is hourly precipitation amount, based
on the calculation mechanism of SCC, the information of precipitation intensity has also
been taken into consideration by calculating the SCCs. Therefore, the results are quite
similar to those PCC values obtained from the comparison with the precipitation intensity
record. As a result, for the applications of precipitation forecasts, it is important to take the
precipitation intensities fully into account to obtain better performances.

Lastly, by comparing the results obtained for each variable from an overall perspective,
it is evident that the variables of ZTD, PWV and cloud have more evident and closer corre-
lation relationships with precipitation, representing their great potential in the forecasting
of rainfall events.

5.1.2. Correlational Analysis of PCC Results Obtained by Using Precipitation Record
Moving Several Hours Forward

In the experiments conducted above, the data adopted for calculating PCCs and SCCs
are all their original time series obtained over the study period 2008–2019. Each data pair
corresponds to a fixed time epoch. To investigate some other interesting features contained
in the time series data, the correlation analysis was further extended in this section. It
is acknowledged that prior to the occurrence of precipitation events, especially heavy
rainfall events, some precursory information is contained in the time series of atmospheric
variables. For example, according to previous studies [14,43,49], during the evolution of
most precipitation events, the ZTD and PWV time series tend to increase significantly
till reaching a larger value, and then start to decrease considerably. Motivated by these
phenomena, this study proposes to move the precipitation record several hours forward
firstly, then calculate and analyze the PCC results obtained by comparing these new sets of
precipitation records with each of the twelve variables, as shown in Table 4. Please note
that the period for shifting the hourly precipitation record forward was determined as
12 h in this study, i.e., move the record forward from 0 to 12 h. This is because this period
is defined by the World Meteorological Organization for the nowcasting and very short-
range forecasting of meteorological events. In addition, precipitation, especially heavy
precipitation, is regarded as an immediate meteorological event rather than a climatic
phenomenon. Therefore, it is reasonable to use a 12 h period to uncover some precursory
information of precipitation contained in different variables. The results obtained from
this analysis can also reveal the potential lead times when using these variables to develop
conventional threshold-based models for precipitation forecasts. It is noteworthy that the
adoption of PCC rather than SCC in this experiment is because the main aim is to test
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their temporal variations instead of their rankings and distributions; the use of hourly
precipitation amount rather than the other two sets of records (i.e., precipitation intensity
and the occurrence of heavy precipitation) is due to the fact that the original record is the
actual measured data, while the others are reprocessed records with values in the range 0–3.

Table 4. Comparison of Pearson correlation coefficient results of each of the twelve variables with
precipitation record moving 0−12 h forward.

Shift (Hours) DOY HOD ZTD PWV T WBT DPT P Wd Ws Cloud SR

0 0.011 −0.012 0.151 0.150 0.048 0.074 0.092 −0.113 0.049 0.046 0.113 −0.067
1 0.011 −0.014 0.154 0.152 0.046 0.082 0.095 −0.114 0.040 0.047 0.108 −0.057
2 0.011 −0.015 0.157 0.154 0.043 0.086 0.096 −0.116 0.034 0.048 0.099 −0.049
3 0.011 −0.014 0.160 0.157 0.040 0.088 0.096 −0.117 0.030 0.048 0.093 −0.046
4 0.011 −0.015 0.163 0.160 0.036 0.088 0.096 −0.118 0.028 0.048 0.090 −0.045
5 0.011 −0.016 0.168 0.164 0.031 0.089 0.095 −0.119 0.026 0.049 0.087 −0.044
6 0.011 −0.012 0.172 0.168 0.026 0.089 0.095 −0.119 0.027 0.049 0.085 −0.042
7 0.011 −0.008 0.178 0.172 0.022 0.089 0.094 −0.119 0.030 0.050 0.084 −0.040
8 0.011 −0.005 0.181 0.176 0.038 0.089 0.094 −0.122 0.029 0.049 0.081 −0.040
9 0.011 −0.001 0.176 0.173 0.049 0.088 0.093 −0.126 0.029 0.049 0.080 −0.039

10 0.011 0.004 0.170 0.168 0.053 0.088 0.093 −0.127 0.030 0.049 0.079 −0.038
11 0.011 0.009 0.166 0.165 0.056 0.088 0.092 −0.128 0.031 0.048 0.079 −0.036
12 0.011 0.012 0.162 0.162 0.058 0.088 0.092 −0.128 0.031 0.047 0.078 −0.033

In can be seen from Table 4 that a total of 13 sets of experiments were conducted by
moving forward the hourly precipitation records from 0 to 12 h. The results shown in the
first row, corresponding with “0 h”, were calculated by using their original time series,
which are also shown in Table 3. Although the range of PCC values for these variables is
different, they generally varied greatly with the change of moving hours. This could also
reflect their instant variation features to some extent. The largest PCC values for each of the
twelve variables are all marked in bold italic type. The detailed analysis regarding each of
the twelve variables was conducted as follows:

1. DOY. This variable is the only type in which its PCC results corresponding to all the
scenarios stay the same. This is mainly on account of its data dimension. Even when
the precipitation records were moved 12 h forward, it cannot be reflected in its PCC
values with DOY, the values of which always stayed the same over a certain date.
In addition, although the occurrence of precipitation had a close relationship with
DOY as the most precipitation happened in the summer season, this cannot be fully
revealed by only moving the record over a 12 h period.

2. HOD and T. The largest PCC values for HOD and T appeared in the cases when
the record moved 5 and 12 h forward, respectively. However, the meanings behind
these values are unclear because the thirteen PCCs were unorderly distributed and
their values are too small; thus, it is unreasonable to recognize their close correlation
relationships with the precipitation amount record.

3. ZTD and PWV. It is quite evident that their PCCs both started to increase till reaching
their respective largest values (corresponding to “8 h”), then started to decrease with
the steady increase of moving hours. This further corroborates the conclusion that
with the use of ZTD and PWV to detect precipitation, the lead time is roughly 8 h in
the context of the Hong Kong region [43,63].

4. WBT, DPT and Ws. Similar to the results obtained above, the general lead times for
WBT, DPT and Ws are in the ranges of 5–8 h, 2–4 h and 7 h, respectively.

5. P. The larger the moving hours, the higher its correlation was with the precipitation
record, and the inflection point for its PCC values did not exist over the 12 h period.
This phenomenon can be explained by the formation process of precipitation, which
often takes a longer time. From another perspective, it does not matter whether the
PCC value of P would increase continuously, or an inflection point would occur over
a longer period, as the period for the nowcasting and very short-range forecasting of
precipitation is 12 h. Therefore, the lead time for taking this variable as an indicator
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to detect precipitation, especially heavy precipitation, is likely to be a lot longer than
the others.

6. Cloud, SR and Wd. The largest PCCs for these variables all corresponded to “0 h”, i.e.,
the occurrence of precipitation event, indicating the instantaneous responses of these
variables to precipitation.

5.1.3. Regression Analysis

From the results obtained above, it can be observed that the linear relationships are
not that evident, since most PCCs lie within the range defined for “slight correlation
level”. Therefore, similar to Section 4.2, the regression method was also used to test
which nonlinear function can better describe the relationships between each variable and
precipitation record. In this part, the hourly precipitation record, as the target data, was
determined as the dependent variable. Since the main aim here is to evaluate the nonlinear
relationship, each variable was separately taken as the independent variable, i.e., only
one independent variable was used at a time. According to the COD results of the twelve
variables in comparison to the time series of the precipitation record, the optimal function
for all twelve variables was found to be the quadratic polynomial function. By using the
PCCs for each data pair as the reference (see Table 3), the CODs obtained from the use of
the determined quadratic polynomial function are all larger than their respective linear fits,
as shown in Table 5.

Table 5. Coefficient of determination results obtained for each of the twelve variables compared
with the precipitation record using the linear and quadratic polynomial functions over the period
2008–2019.

Type DOY HOD ZTD PWV T WBT DPT P Wd Ws Cloud SR

Linear fitting 0.0001 0.0001 0.023 0.023 0.002 0.005 0.008 0.012 0.002 0.002 0.013 0.004

Quadratic
polynomial fitting 0.009 0.0004 0.037 0.035 0.003 0.006 0.01 0.014 0.003 0.011 0.027 0.005

It can be concluded that when using the variables to fit the hourly precipitation amount,
the more appropriate way is to construct their respective quadratic polynomial function
forms instead of using their original values. However, it can also be seen from Table 5 that
all the results are less than 0.1, meaning that there is little possibility to accurately reflect the
time series of precipitation amount using any one type of the twelve variables. Therefore,
this also highlights a pressing need to adequately adopt a combination of these variables
and better mine the information contained in them.

Apart from the fact that the results shown in Table 5 are all less than 0.04, those ob-
tained using the linear and quadratic polynomial fittings also do not have a clear distinction.
Moreover, the construction of the quadratic polynomial may cause some calculation effi-
ciency issues, and the constructed fitting functions cannot reflect the atmospheric physics
implications contained in the original values. Consequently, it is acceptable to use the
original series of the variables when conducting the nowcasting and numerical prediction
of precipitation events.

5.2. Analyzing the Mean Values of the Twelve Variables with Precipitation Record
5.2.1. Mean Value Analysis over the Whole Study Period

As described in Section 3.3, the aim of the mean value analysis is to calculate and
analyze the mean values obtained for different situations over different periods. In this
section, data collected over the whole 12-year study period 2008–2019 were firstly taken
to calculate the mean values of the selected variables. It is noted that the two parameters
of DOY and HOD were not included in this experiment; only the ten types of GNSS and
weather variables were adopted. To test their performance under different scenarios, a
total of six schemes, i.e., using data collected over six different periods, were designed. The
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periods determined for the first three schemes include the use of all the epochs, and epochs
with and without precipitation. By analyzing the results from the three schemes, the diverse
performances resulting from the ten variables in response to precipitation can be observed.
The other three schemes were designed according to the intensities of precipitation events,
i.e., using data collected at the epochs with slight, moderate and heavy precipitation to
calculate their mean values. The three schemes can be viewed as the refinement of the
above-mentioned scheme of using epochs with precipitation. By carefully analyzing the
results from the three schemes, the responses of these variables to precipitation of different
intensities can be captured. Based on these schemes, Table 6 lists the mean values calculated
under different precipitation scenarios over the whole study period.

Table 6. Mean values obtained under different precipitation circumstances over the period 2008–2019.

No. Time Period No. of
Epochs

ZTD
(mm)

PWV
(mm)

T
(◦C)

WBT
(◦C)

DPT
(◦C)

P
(hPa)

Wd
(◦)

Ws
(m/s)

Cloud
(%)

SR
(MJ/m2)

Scheme 1 All the epochs 101,462 2568.95 42.68 23.90 20.49 18.71 1010.20 137.25 2.38 68.95 0.57
Scheme 2 Epochs with no precipitation 92,763 2562.19 41.46 23.84 20.31 18.40 1010.51 136.64 2.36 66.97 0.60
Scheme 3 Epochs with precipitation 8699 2641.04 55.70 24.60 22.41 21.95 1006.81 143.70 2.58 90.11 0.20
Scheme 4 Epochs with slight precipitation 6091 2632.17 53.87 24.06 21.89 21.35 1007.73 136.26 2.51 89.34 0.22

Scheme 5 Epochs with moderate
precipitation 1866 2657.35 59.13 25.66 23.44 23.13 1004.99 154.83 2.64 91.26 0.16

Scheme 6 Epochs with heavy precipitation 722 2673.27 62.22 26.39 24.12 23.92 1003.80 177.42 3.07 93.67 0.09

Apart from the mean values of the ten variables, the number of epochs used to calculate
the mean values in each scheme are also displayed in Table 6. From the results shown in the
first three schemes, some interesting phenomena can be found. Firstly, the huge difference
contained in the numbers of epochs with and without precipitation (8699 vs. 92,763) further
corroborates that precipitation, especially heavy precipitation, can be regarded as a type
of rare event. Secondly, apart from P and SR, the mean values of the other eight variables
calculated using data collected during the occurrence of precipitation are all larger than
those obtained over the other periods. This is consistent with the finding obtained in
Section 5.1.1. Thirdly, the results also confirm the finding that the closer the DPT value
is to that of T, the higher the relative humidity and the moister the air. Lastly, according
to the results and the statements in Section 2.1, southeastern wind is the most common
prevailing wind in the study area, however, it tends to move southward when there is a
precipitation event.

With regard to the last three schemes (see the shaded rows), which are divided from
the third scheme according to the intensity of precipitation, a general phenomenon can
be found: the higher the precipitation intensity, the larger the variable values (except the
two variables of P and SR). By comparing Schemes 2 and 4, another issue contained in
the variable of Wd can be found: the mean values determined for the two schemes are
generally the same. This indicates that Wd is not quite sensitive to the occurrence of slight
precipitation. In addition, the mean value of Wd in Scheme 6 even reaches the value of
177.42, representing that the heavy precipitation occuring in Hong Kong is more likely to
be affected by southern winds.

To further extend the above analysis, as stated in Section 3.3, heavy precipitation was
taken as the target event to test whether there is obvious precursory information contained
in the ten variables. In addition to Scheme 6 listed in Table 6, another two sets of mean
values calculated using data collected at the 6 h and 12 h periods prior to the onset of heavy
precipitation were also adopted for comparison, as shown in Table 7.
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Table 7. Comparison of mean values obtained at the 6 h and 12 h periods prior to heavy precipitation
over the period 2008–2019.

Time Period No. of
Epochs

ZTD
(mm)

PWV
(mm)

T
(◦C)

WBT
(◦C)

DPT
(◦C)

P
(hPa)

Wd
(◦)

Ws
(m/s)

Cloud
(%)

SR
(MJ/m2)

Epochs with heavy
precipitation 722 2673.27 62.22 26.39 24.12 23.92 1003.80 177.42 3.07 93.67 0.09

6 h periods prior to
heavy precipitation 3018 2674.72 62.44 26.34 24.70 24.20 1003.79 166.34 2.83 88.83 0.27

12 h periods prior to
heavy precipitation 5387 2676.50 62.74 26.30 24.77 24.11 1003.79 164.41 2.74 86.55 0.40

An obvious finding from this table is the epochs used in the two new schemes are not 6
or 12 times of the number of epochs with heavy precipitation. This is because some hourly
heavy precipitations happened continuously, e.g., an event lasts for several hours straight,
thereby resulting in some overlaps contained in the 6 h and 12 h periods. In terms of the
exact values, the performance of the ten variables can be classified into several categories.

1. The first category includes ZTD, PWV and WBT. According to the results stated
above, the mean values of the variables generally become larger with the increase of
precipitation intensity. However, the mean values of the three variables obtained over
the 12 h period is larger than the others. This possibly indicates their highest hourly
values exist in the range of 6–12 h prior to heavy precipitation; in other words, there
is an obvious inflection point contained in the time series about 6−12 h ahead of the
onset of heavy precipitation. This finding corresponds to the results shown in Table 4;
i.e., the possible lead times of the three variables are about 8 h.

2. The second type only includes the variable of DPT. Its performance is similar to
the first category, with the difference that, its largest mean value was obtained over
the 6 h period, indicating that its inflection point occurs about 0–6 h before heavy
precipitation. This confirms its potential lead time is about 2–4 h from Section 5.1.2
as well.

3. The third category includes T, Wd, Ws and cloud. The performance of the variables
simply conforms to the principle obtained from Table 6; i.e., in general, their val-
ues all increase continuously, and the largest values exist with the occurrence of
heavy precipitation.

4. The fourth category includes SR, with its general variation feature being similar to the
variables in the third category. However, the variation direction of SR is diametrically
opposed to that in the third category.

5. The fifth category contains P, of which the mean values for the three schemes are
almost in the same range. As already explained in Section 5.1.2, the use of a 12 h
period is quite limited in evaluating the variation of site-level pressure.

Apart from the detailed analysis for each variable, it is noted that by comparing
the differences between T and DPT, the smallest value (representing the maximum air
humidity) exists in the range of 0–6 h ahead of heavy precipitation. Consequently, these
findings on the response of the variables to heavy precipitation could also provide insights
into heavy precipitation forecasts for future studies.

5.2.2. Mean Value Analysis over Different Seasons

The above analysis primarily focused on the overall performance of the considered
variables and precipitation record. However, on account of the rapid-changing character-
istics contained in GNSS and meteorological variables, their performance vary greatly in
different periods, e.g., different seasons. Therefore, to test the seasonal response of the ten
variables to precipitation, the 12-year period was divided into four parts, representing the
four seasons of spring (from March to May), summer (from June to August), autumn (from
September to November) and winter (from December to February). Same as the first three
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schemes shown in Table 6, the mean values of the ten variables under the three different
precipitation scenarios for the four seasons are listed in Table 8.

Table 8. Mean values obtained under different precipitation circumstances in the four seasons over
the 12-year period 2008–2019.

Season Time Period No. of
Epochs

ZTD
(mm)

PWV
(mm)

T
(◦C)

WBT
(◦C)

DPT
(◦C)

P
(hPa)

Wd
(◦)

Ws
(m/s)

Cloud
(%)

SR
(MJ/m2)

Spring
All the epochs 25,651 2575.21 43.55 23.38 20.46 19.11 1010.28 141.22 2.46 75.36 0.54

Epochs with no precipitation 23,508 2571.04 42.83 23.44 20.42 18.98 1010.40 141.74 2.45 73.91 0.58
Epochs with precipitation 2143 2620.99 51.40 22.72 20.89 20.52 1008.98 135.52 2.54 91.28 0.15

Summer
All the epochs 24,822 2643.12 57.93 29.04 26.00 24.96 1002.88 191.34 2.25 72.67 0.69

Epochs with no precipitation 21,140 2636.81 56.88 29.24 26.11 24.96 1002.98 194.71 2.20 69.86 0.77
Epochs with precipitation 3682 2679.38 63.94 27.86 25.40 24.99 1002.32 172.03 2.54 88.83 0.27

Autumn
All the epochs 25,455 2576.18 43.84 25.98 21.83 19.90 1010.51 114.45 2.49 62.98 0.60

Epochs with no precipitation 23,659 2570.70 42.88 26.01 21.73 19.69 1010.70 113.94 2.46 60.96 0.63
Epochs with precipitation 1796 2648.32 56.48 25.62 23.14 22.65 1008.04 121.24 2.93 89.63 0.18

Winter
All the epochs 25,534 2483.37 25.82 17.36 13.83 11.04 1016.90 103.41 2.31 64.84 0.45

Epochs with no precipitation 24,456 2480.97 25.42 17.44 13.82 10.94 1016.95 103.53 2.31 68.60 0.47
Epochs with precipitation 1078 2537.81 34.82 15.48 13.96 13.29 1015.79 100.64 2.23 92.97 0.10

First, by evaluating the column representing the number of epochs, it is obvious that
the summer has the most precipitation, followed by spring and autumn, while the winter
has the least. Secondly, from the mean value analysis using data over the whole period,
the variation characteristics of the ten variables in response to precipitation have been
revealed. However, some different phenomena about the variables of T, WBT, Wd and
Ws are newly discovered from Table 8 (see those figures in bold type). According to the
conclusion obtained before, the mean values of the variables T, WBT, Wd and Ws calculated
using data collected at epochs with precipitation should be larger than those obtained
corresponding to the epochs with no precipitation. However, the performance of T in
the four seasons are totally opposite to the previous conclusion, i.e., the values of T tend
to be smaller when there is a precipitation event irrespective of the season. The possible
reason for this conflicting result is possibly due to the number of epochs included in the
calculation. To be clear, compared with the number of epochs with no precipitation, the
epochs with precipitation are only few; compared with the summer season, the other three
seasons all have quite less precipitation. Therefore, these make the mean values of T shown
in Table 6 convey an apparent conflicting result; this finding also highlights the role and
effectiveness of analyzing their performance in different seasons. Similar phenomena can
also be observed in the variables of WBT and Ws in the seasons of summer and winter,
respectively. In terms of Wd, although its mean values in different seasons vary greatly,
it is shown that this region is greatly affected by southeastern wind in the four seasons.
Furthermore, as stated in Section 4.1, affected by the Asian summer monsoon, southern
wind is the most common type in the summer season.

To explore the precursory information of precipitation contained in the variables over
different periods, Table 9 lists the mean values calculated using data collected at the 6 h and
12 h periods prior to heavy precipitation, in the four seasons. The mean values obtained
during the occurrences of heavy precipitation were also shown in Table 8 for comparison.

As shown in Table 9, many new findings can be obtained. Firstly, the statistics about
the number of epochs with heavy precipitation further corroborates the results obtained
from Table 8. In terms of heavy precipitation, the number of epochs in the summer season
(411) is even larger than the total of those from the other three seasons (152, 152 and 7 for
spring, autumn and winter, respectively). Secondly, it can be found that the performance
of ZTD, PWV, cloud and SR in the four seasons are all consistent with their respective
principles concluded from Table 7. It indicates that these four variables have roughly
consistent responses to heavy precipitation throughout the whole year.
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Table 9. Comparison of mean values obtained at the 6 h and 12 h periods prior to heavy precipitation
in the four seasons over the 12-year period 2008–2019.

Season Time Period No. of
Epochs

ZTD
(mm)

PWV
(mm)

T
(◦C)

WBT
(◦C)

DPT
(◦C)

P
(hPa)

Wd
(◦)

Ws
(m/s)

Cloud
(%)

SR
(MJ/m2)

Spring

Epochs with heavy precipitation 152 2643.34 56.13 24.08 22.43 22.28 1006.32 183.82 2.41 95.49 0.06
6 h periods prior to heavy

precipitation 649 2644.35 56.17 23.91 22.98 22.53 1006.51 163.79 2.50 90.44 0.30

12 h periods prior to heavy
precipitation 1205 2649.97 57.14 24.04 23.01 22.47 1006.52 156.71 2.52 88.15 0.39

Summer

Epochs with heavy precipitation 411 2688.21 65.34 27.29 24.81 24.60 1002.25 187.15 2.94 92.99 0.09
6 h periods prior to heavy

precipitation 1720 2690.03 65.70 27.27 25.54 25.06 1002.01 175.97 2.67 88.37 0.25

12 h periods prior to heavy
precipitation 3040 2691.04 65.93 27.24 25.69 25.04 1001.91 175.61 2.60 86.41 0.41

Autumn

Epochs with heavy precipitation 152 2667.87 60.92 26.61 24.23 24.02 1004.96 145.07 4.12 93.51 0.11
6 h periods prior to heavy

precipitation 612 2670.44 61.23 26.72 24.60 23.96 1005.25 145.58 3.60 88.06 0.29

12 h periods prior to heavy
precipitation 1069 2671.61 61.39 26.68 24.66 23.82 1005.38 144.40 3.30 84.69 0.41

Winter

Epochs with heavy precipitation 7 2563.06 39.45 18.86 17.63 17.50 1014.81 170.00 2.40 98.29 0.08
6 h periods prior to heavy

precipitation 37 2566.45 40.54 19.21 17.43 17.16 1013.92 123.97 3.71 94.78 0.16

12 h periods prior to heavy
precipitation 73 2580.42 42.56 18.87 17.21 16.83 1013.99 117.81 3.70 93.07 0.18

For the other types of variables, the figures in bold type show that their seasonal
performance is different from the principles obtained before. For example, as stated in
Section 5.1, there is an obvious inflection point contained in the series of WBT about 6–12 h
before the onset of heavy precipitation. This is particularly true in spring, summer and
autumn. However, the value of WBT is likely to continuously increase with the onset of
heavy precipitation in winter, which is also the same case for reflecting the time series
of DPT in autumn and winter seasons. With regard to T and P, their performance in the
three seasons, except summer, deviates from their respective variation principles. For the
Wd, its resultant responses to heavy precipitation in autumn is quite similar to the overall
principle of DPT, i.e., a possible inflection point may lie in its time series in the range of
0–6 h prior to heavy precipitation. Lastly, it can also be seen from this table that the general
rule obtained from the use of the whole dataset perfectly represents the performance of all
the ten variables in summer season. This is largely due to the fact that heavy precipitation
frequently happens in summer; thus, by using more data obtained in the summer in the
calculation of mean values, the overall performances are considerably affected.

Therefore, based on the analyses, it can be concluded that it is quite difficult to find a
general rule to adequately represent the responses of different variables to precipitation.
Furthermore, it is also not very practical to establish only one unified model to achieve
better forecasting of heavy precipitation throughout the whole year. In a sense, these
findings also explain why our previous studies focus on developing models to detect heavy
precipitation events only in the summer months [42].

6. Principal Component Analysis
6.1. Variances Interpreted by Principal Components

The PCA method, which is often taken as a preparatory data processing step prior
to the construction of any predictive models [24,77], was also adopted in this study to
determine whether precipitation of different intensities can be effectively distinguished
using the twelve variables. Firstly, by using the methods described in Section 3.4, i.e.,
Equations (9)–(11), Figure 4 shows the proportions of the total variance interpreted by each
of the twelve PCs calculated in this study.
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Figure 4. Proportions of total variance interpreted by each of the twelve principal components.

It can be seen from Figure 4 that the first PC, named PC1 in this study, accounts for
45.429% of the total variance, and the first five PCs together contributed 85.225% of the
total variance. Since it is widely accepted that if the accumulated percentage of variance
explained by the first few PCs reach the threshold of 85%, these PCs can be taken as the
major ones for analyzing variable loadings [87–89]. Therefore, the first five PCs are taken
as the major PCs in this study.

6.2. Analysis of Variable Loadings in Principal Components

As mentioned above, to determine the significance of each of the twelve variables to
the whole dataset, the variable loadings in those major PCs should be analyzed. Hence,
based on the five major PCs (PC1–5), loadings interpreted by each variable are listed in
Figure 5.
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The interpretation method for the variable loadings shown in Figure 5 is similar to
that of PCC stated in Section 3. A positive loading value in a PC implies the variable is
positively correlated with the PC, and vice versa. From the other aspect of data value, a
larger loading value indicates that the variable has a stronger impact on the PC. Based on
these principles, a loading threshold (denoted by “TH” shown in Figure 5) needs to be
defined as a standard for deciding whether a variable can be regarded as a major factor
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for a PC. In this study, as suggested by [77], the loading threshold was simply determined
based on the number of variables (n) using:

TH =
√

1/n, (12)

Since the value of n was set to 12, the loading threshold determined for this study is
0.289. The loading values that are above the threshold are also displayed in Figure 5. In
the applications of PCA, each PC generally represents a unique phenomenon. It can be
seen from Figure 5 that the six major variables of WBT, DPT, ZTD, PWV, T and P have
greater impacts on the most critical component, i.e., PC1. Among the six variables, apart
from P, all the others possess large positive values. This phenomenon is comprehensible
for a precipitation case, especially a heavy precipitation event (as shown in Table 6), that
WBT, DPT, ZTD, PWV and T values all increase prior to and during the occurrence of
precipitation events, while P tends to drop. From another aspect, as stated in Section 4.1,
the six variables are also those with high cross-correlativity. With regard to the second
PC, only the values of SR and cloud were above the TH value. Their values with different
signs not only confirm their opposite correlations, but also exactly reveal the phenomenon
that they have opposite performances during the passing of precipitation events. Similarly,
large loadings of HOD, Ws and SR are observed in PC3, which mainly reflects the diurnal
variation of Ws and SR. The other major PCs (PC4–5) have the same two variables: DOY
and HOD with stronger impacts. This might be useful in the interpretation of the temporal
dependency of Wd, SR and precipitation events, e.g., most heavy precipitation events take
place in the summer season according to statistics.

6.3. Potential of Using the Twelve Variables for Precipitation Discrimination

For an overall analysis, Figure 6 depicts the biplot representation of the twelve vari-
ables and the dimension of the whole dataset has been reduced to the two major PCs (PC1
and PC2), as shown in the two axes. The use of the first two major PCs is mainly on account
of the fact that they account for 57.942% of the total variance, and so are recognized as
the most important PCs. In addition, in accordance with the characteristics of the biplot
representation, the results can only be displayed in the plane formed by the first two
PCs [90]. The correlations between any two of the twelve variables can be found from
the figure, e.g., WBT and P are negatively correlated and ZTD and PWV are positively
correlated, which are the same as the analyses using PCC and SCC in Section 4.
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With the distribution of these variables with respect to the first two PCs, the final step
is to test the feasibility of using the twelve variables to discriminate precipitation events and
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their intensities. As conducted above, the original data matrix should be firstly reduced to
a 2-dimensional (2D) matrix projected by the two major PCs similar to Figure 6. To be clear,
the dimension reduction practice is conducted by multiplying the 101,462 × 12 normalized
matrix X̂ by the first two columns of the eigenvector matrix of Cov

(
X̂
)
; i.e., PC1 and PC2.

The obtained 101,462 × 2 matrix can be interpreted geometrically as the projection of the
observations onto the first two PCs. Then, according to the actual precipitation record,
all the samples over the whole 12-year study period can be classified into four categories,
representing the heavy, moderate, slight and no precipitation cases. Figure 7 depicts the
samples in the new 2D subspace for separating precipitation cases of different intensities.
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Figure 7. Reduction of the original features to a 2D subspace projected by the first two PC for
precipitation discrimination. The red, blue, yellow and gray dots represent heavy precipitation,
moderate precipitation, slight precipitation and no precipitation cases.

Figure 7 indicates that the 2D subspace can effectively distinguish the four precipitation
cases, especially the heavy precipitation cases. Compared with the distributions of the
twelve variables shown in Figure 6, the distributions of the sample data representing heavy
precipitation cases mainly concentrated in the upper-right corner, which is similar to the
distribution trends of the three variables of PWV, ZTD and cloud. The finding emphasizes
the fact that although the twelve variables could all contribute to the application of heavy
precipitation classification, the three variables PWV, ZTD and cloud play more prominent
roles, which corroborates the results analyzed above as well.

7. Summary and Discussion

In this study, the inter-relationships among twelve types of variables were compre-
hensively analyzed. Then, the responses of the twelve variables to precipitation were also
systematically investigated. Finally, with the use of PCA method, this study tested whether
these variables have the potential to effectively separate precipitation of different intensities.
The variables adopted in this study include eight weather variables of T, P, WBT, DPT, SR,
cloud, Ws and Wd, as well as two GNSS atmospheric products of ZTD and PWV and two
statistical time-varying parameters of DOY and HOD. The time series of the variables and
their corresponding hourly precipitation record over the 12-year study period 2008–2019
were collected at a pair of co-located GNSS/weather stations, i.e., the HKSC-KP stations,
employed in the Hong Kong region.

At the first stage, a cross-correlation analysis was conducted to investigate the internal
relationships among all the twelve variables. With the use of PCC, not only the correlations
among these variables were clearly presented, but also their relationships were interpreted
from the perspective of atmospheric physics. It was shown that the variables of ZTD,
PWV, T, WBT, DPT and P have closer cross-correlativity. Motivated by the fact that all the
variables used in this study are time series data, the metric of SCC was also adopted to
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further consider their rankings and distributions. By analyzing the signs of SCC results,
the variation directions of these variables were revealed, e.g., P generally has opposite
variation trends with nearly all the other variables. Since correlation analysis mainly
evaluates the linear relationship, regression analysis was then employed to investigate
their nonlinear relationships. By testing the nonlinear functions of polynomial, logarithmic,
natural exponential and power functions, the optimal forms for fitting the relationship
between each two sets of time series were determined.

At the second stage, we conducted a comprehensive investigation of the responses of
the twelve variables to precipitation. The main conclusions are listed as follows:

1. The conventional correlation analysis performed in this study not only took the
original hourly precipitation amount record as the target data, two sets of new records
indicating the occurrence of heavy precipitation and precipitation intensity were
reorganized and involved in this analysis. From an overall perspective, the variables
of ZTD, PWV and cloud have more evident correlations with precipitation. It was
observed that the highest PCC values were all obtained from the comparisons with
the record of precipitation intensity. Furthermore, the SCCs are generally all larger
than their corresponding PCCs. These therefore indicate that it is important to take
the precipitation intensity into account to obtain better performances. In addition, if
the variables were used for precipitation forecasts without the use of NWP models,
it would be better and more reasonable to conduct qualitative detection rather than
quantitative prediction. Moreover, the variation directions of HOD, P and SR were
proven to be different from that of precipitation amount.

2. To investigate whether there is effective precursory information contained in the
time series of the variables, this study extended the correlation analysis to test the
PCCs obtained by using precipitation record moving several hours forward. The
results can also provide valuable information about the lead times for precipitation
forecasts. For example, it was found that the lead time of using ZTD and PWV to
detect precipitation was approximately 8 h; similarly, the lead times for WBT, DPT
and Ws are in the ranges of 5–8 h, 2–4 h and 7 h, respectively.

3. By conducting the regression analysis, it was discovered that the optimal nonlinear
function for fitting the relationship between each variable and precipitation record is
the quadratic polynomial function.

4. The mean value analysis was employed to capture the performances of variables in
different precipitation scenarios, and to test their respective precursory information of
heavy precipitation. By evaluating the data over the whole study period, it was found
that, apart from the variables P and SR, the higher the precipitation intensity, the
larger the variable values. From the analysis of the precursory information contained
in each variable with respect to heavy precipitation, the inflection points in their series
and their lead times for precipitation forecasts were obtained. With the use of GNSS
products, the possible lead time for heavy precipitation detection is about 8 h.

5. The seasonal responses of the variables to precipitation were analyzed. According to
the statistics, summer has the most precipitation events, followed by spring, autumn
and winter. By evaluating the performances of each variable in different seasons, it
can be found that it is quite difficult to find a general rule to represent the responses
of different variables to precipitation. Over different study periods in different study
regions, a comprehensive analysis of variables should be conducted before developing
any type of precipitation prediction model.

At the final stage, after reducing the original data matrix to a 2D subspace by using
the PCA method, it was shown that precipitation, especially heavy precipitation cases,
can be effectively distinguished using the whole dataset. Among all the variables, PWV,
ZTD and cloud play more prominent roles in heavy precipitation classification. Overall,
many findings from this study have the potential to help researchers in the profession
to form a better and more systematic understanding of the intrinsic nature of the forma-
tion of precipitation and the effectiveness of using these variables to detect precipitation.
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Moreover, these findings could also provide useful clues for the development of models
for precipitation forecasts. It is worth mentioning that some findings from this study are
largely linked to the selected study region (location and climate conditions) and study
period. Our future studies will be focusing on conducting these analyses in other regions
using multiple variables (additional variables of air density, integrated liquid water and
infrared brightness temperature will also be included) collected at more GNSS/weather
stations over a longer-term period. In addition, our ongoing research will also effectively
apply the findings from this study to develop more robust and reliable models for heavy
precipitation predictions.

Author Contributions: Conceptualization, H.L. (Haobo Li) and S.C.; methodology, H.L. (Haobo Li),
S.Z. and H.L. (Hong Liang); software, H.L. (Haobo Li); validation, H.L. (Haobo Li); formal analysis,
H.L. (Haobo Li) and L.L.; investigation, H.L. (Haobo Li), S.P. and L.L.; resources, S.P., H.L. (Hong
Liang) and X.W.; writing—original draft preparation, H.L. (Haobo Li); writing—review and editing,
S.C., S.Z., B.C., C.S. and X.W.; visualization, H.L. (Haobo Li); supervision, S.C., S.Z. and B.C.; project
administration, S.C. and X.W.; funding acquisition, S.C. and X.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported by the funding program from the Aerospace Information
Research Institute.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would also like to thank the International GNSS Service (IGS) for
providing high accuracy GNSS observations, the Hong Kong Observatory (HKO) for providing hourly
meteorological data and precipitation record, and Kefei Zhang for providing help and guidance
throughout the whole process.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wong, M.C.; Mok, H.Y.; Lee, T.C. Observed changes in extreme weather indices in Hong Kong. Int. J. Climatol. 2011, 31, 2300–2311.

[CrossRef]
2. Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Luca, A.D.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al.

Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution
of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press:
Cambridge, UK; New York, NY, USA, 2021; pp. 1513–1766. [CrossRef]

3. Holton, J.R. An introduction to dynamic meteorology. Am. J. Phys. 1973, 41, 752. [CrossRef]
4. Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A. Climate Science Special Report: Fourth National Climate Assessment, Volume I; US Global

Change Research Program: Washington, DC, USA, 2017. Available online: https://science2017.globalchange.gov (accessed on 16
September 2022).

5. Pruppacher, H.R.; Klett, J.D. Diffusion Growth and Evaporation of Water Drops and Snow Crystals. In Microphysics of Clouds and
Precipitation; Springer: Dordrecht, The Netherlands, 2010; pp. 502–567.

6. Wang, P.K. Physics and Dynamics of Clouds and Precipitation; Cambridge University Press: Cambridge, UK, 2013.
7. Bell, J.E.; Herring, S.C.; Jantarasami, L.; Adrianopoli, C. Ch. 4: Impacts of Extreme Events on Human Health; US Global Change

Research Program: Washington, DC, USA, 2016. Available online: https://health2016.globalchange.gov (accessed on 13
September 2022).

8. Chen, S.; Luo, Z.; Pan, X. Natural disasters in China: 1900–2011. Nat. Hazards 2013, 69, 1597–1605. [CrossRef]
9. Sharifi, M.A.; Azadi, M.; Khaniani, A.S. Numerical simulation of rainfall with assimilation of conventional and GPS observations

over north of Iran. Ann. Geophys. 2016, 59, P0322.
10. Rohm, W.; Guzikowski, J.; Wilgan, K.; Kryza, M. 4DVAR assimilation of GNSS zenith path delays and precipitable water into a

numerical weather prediction model WRF. Atmos. Meas. Tech. 2019, 12, 345–361. [CrossRef]
11. Sun, Q.; Vihma, T.; Jonassen, M.O.; Zhang, Z. Impact of assimilation of radiosonde and UAV observations from the Southern

Ocean in the Polar WRF Model. Adv. Atmos. Sci. 2020, 37, 441–454. [CrossRef]
12. Saito, K.; Shoji, Y.; Origuchi, S.; Duc, L.; Seko, H. GPS PWV assimilation with the JMA nonhydrostatic 4DVAR and cloud resolving

ensemble forecast for the 2008 August Tokyo metropolitan area local heavy rainfalls. In Data Assimilation for Atmospheric, Oceanic
and Hydrologic Applications; Springer: Cham, Switzerland, 2017; Volume 3, pp. 383–404.

http://doi.org/10.1002/joc.2238
http://doi.org/10.1017/9781009157896.013
http://doi.org/10.1119/1.1987371
https://science2017.globalchange.gov
https://health2016.globalchange.gov
http://doi.org/10.1007/s11069-013-0765-0
http://doi.org/10.5194/amt-12-345-2019
http://doi.org/10.1007/s00376-020-9213-8


Atmosphere 2023, 14, 571 26 of 28

13. Le Marshall, J.; Norman, R.; Howard, D.; Rennie, S.; Moore, M.; Kaplon, J.; Xiao, Y.; Zhang, K.; Wang, C.; Cate, A.; et al. Using
global navigation satellite system data for real-time moisture analysis and forecasting over the Australian region I. The system. J.
South. Hemisph. Earth Syst. Sci. 2020, 69, 161–171. [CrossRef]

14. Yao, Y.; Shan, L.; Zhao, Q. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its
application. Sci. Rep. 2017, 7, 12465. [CrossRef]

15. Manandhar, S.; Lee, Y.H.; Meng, Y.S.; Yuan, F.; Ong, J. GPS-Derived PWV for Rainfall Nowcasting in Tropical Region. IEEE Tran.
Geosci. Remote Sens. 2018, 56, 4835–4844. [CrossRef]

16. Zhao, Q.; Liu, Y.; Ma, X.; Yao, W.; Yao, Y.; Li, X. An Improved Rainfall Forecasting Model Based on GNSS Observations. IEEE
Trans. Geosci. Remote Sens. 2020, 58, 4891–4900. [CrossRef]

17. Li, H.; Wang, X.; Choy, S.; Wu, S.; Jiang, C.; Zhang, J.; Qiu, C.; Li, L. A new cumulative anomaly-based model for the detection of
heavy precipitation using GNSS-derived tropospheric products. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [CrossRef]

18. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for
data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef]

19. Boukabara, S.A.; Krasnopolsky, V.; Penny, S.G.; Stewart, J.Q.; McGovern, A. Outlook for exploiting artificial intelligence in the
Earth and environmental sciences. Bull. Am. Meteorol. Soc. 2020, 102, E1016–E1032. [CrossRef]

20. Benevides, P.; Catalao, J.; Nico, G. Neural network approach to forecast hourly intense rainfall using GNSS precipitable water
vapor and meteorological sensors. Remote Sens. 2019, 11, 966. [CrossRef]

21. Sangiorgio, M.; Barindelli, S.; Biondi, R.; Solazzo, E.; Realini, E.; Venuti, G.; Guariso, G. Improved extreme rainfall events
forecasting using neural networks and water vapor measures. In Proceedings of the 6th International Conference on Time Series
and Forecasting (ITISE-2019), Granada, Spain, 29 May 2019; Volume 25–27, pp. 820–826.

22. Wang, Y.; Liu, J.; Li, R.; Suo, X.; Lu, E. Precipitation forecast of the Wujiang River Basin based on artificial bee colony algorithm
and backpropagation neural network. Alex. Eng. J. 2020, 59, 1473–1483. [CrossRef]

23. Zhao, Q.; Liu, Y.; Yao, W.; Yao, Y. Hourly rainfall forecast model using supervised learning algorithm. IEEE Trans. Geosci. Remote
Sens. 2021, 60, 1–9. [CrossRef]

24. Li, H.; Wang, X.; Wu, S.; Zhang, K.; Fu, E.; Xu, Y.; Liu, Y.; Qiu, C.; Zhang, J.; Li, L. A New BP-NN-based Model for the Detection
of Heavy Precipitation Using GNSS Observations and Surface Meteorological Data. J. Atmos. Sol. Terr. Phys. 2021, 225, 105763.
[CrossRef]

25. Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [CrossRef]
[PubMed]

26. Alley, R.B.; Emanuel, K.A.; Zhang, F. Advances in weather prediction. Science 2019, 363, 342–344. [CrossRef]
27. Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, how much of the Earth’s

surface is covered by rain gauges. Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [CrossRef]
28. Elgered, G.; Davis, J.; Herring, T.; Shapiro, I. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet

delay. J. Geophys. Res. Atmos. 1991, 96, 6541–6555. [CrossRef]
29. Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.; Anthes, R.; Rocken, C.; Ware, R. GPS Meteorology: Mapping Zenith Wet Delays

onto Precipitable Water. J. Appl. Meteorol. 1994, 33, 379–386. [CrossRef]
30. Bevis, M.; Businger, S.; Herring, T.; Rocken, C.; Anthes, R.; Ware, R. GPS meteorology: Remote sensing of atmospheric water

vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [CrossRef]
31. Rocken, C.; Hove, T.; Johnson, J.; Solheim, F.; Ware, R.; Bevis, M.; Chiswell, S.; Businger, S. GPS/STORM-GPS sensing of

atmospheric water vapour for meteorology. J. Atmos. Ocean. Technol. 1995, 12, 468–478. [CrossRef]
32. Wang, X.; Zhang, K.; Wu, S.; Li, Z.; Cheng, Y.; Li, L.; Yuan, H. The correlation between GNSS-derived precipitable water vapor

and sea surface temperature and its responses to El Niño—Southern Oscillation. Remote Sens. Environ. 2018, 216, 1–12. [CrossRef]
33. Jones, J.; Guerova, G.; Douša, J.; Dick, G.; de Haan, S.; Pottiaux, E.; Bock, O.; Pacione, R.; Van Malderen, R. Advanced GNSS

Tropospheric Products for Monitoring Severe Weather Events and Climate. 2020. Available online: https://link.springer.com/
book/10.1007%2F978-3-030-13901-8 (accessed on 24 September 2022).

34. Manandhar, S.; Dev, S.; Lee, Y.H.; Meng, Y.S.; Winkler, S. A data-driven approach for accurate rainfall prediction. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 9323–9331. [CrossRef]

35. Liu, Y.; Zhao, Q.; Yao, W.; Ma, X.; Yao, Y.; Liu, L. Short-term rainfall forecast model based on the improved Bp-nn algorithm. Sci.
Rep. 2019, 9, 1–12. [CrossRef]

36. Li, H.; Choy, S.; Wang, X.; Zhang, K.; Jiang, C.; Li, L.; Liu, X.; Hu, A.; Wu, S.; Zhu, D. Estimation of diurnal-provided potential
evapotranspiration using GNSS and meteorological products. Atmos. Res. 2022, 280, 106424. [CrossRef]

37. Zhou, Y.; Wu, T. Composite analysis of precipitation intensity and distribution characteristics of western track landfall typhoons
over China under strong and weak monsoon conditions. Atmos. Res. 2019, 225, 131–143. [CrossRef]

38. Zhou, P.; Liu, Z.; Cheng, L. An alternative approach for quantitatively estimating climate variability over China under the effects
of ENSO events. Atmos. Res. 2020, 238, 104897. [CrossRef]

39. Zhao, Q.; Yao, Y.; Yao, W. GPS-based PWV for precipitation forecasting and its application to a typhoon event. J. Atmos. Sol. Terr.
Phys. 2018, 167, 124–133. [CrossRef]

40. Ma, X.; Yao, Y.; Zhao, Q. Regional GNSS-Derived SPCI: Verification and Improvement in Yunnan, China. Remote Sens. 2021,
13, 1918. [CrossRef]

http://doi.org/10.1071/ES19009
http://doi.org/10.1038/s41598-017-12593-z
http://doi.org/10.1109/TGRS.2018.2839899
http://doi.org/10.1109/TGRS.2020.2968124
http://doi.org/10.1109/TGRS.2021.3137014
http://doi.org/10.1038/s41586-019-0912-1
http://doi.org/10.1175/BAMS-D-20-0031.1
http://doi.org/10.3390/rs11080966
http://doi.org/10.1016/j.aej.2020.04.035
http://doi.org/10.1109/TGRS.2020.3042202
http://doi.org/10.1016/j.jastp.2021.105763
http://doi.org/10.1038/nature14956
http://www.ncbi.nlm.nih.gov/pubmed/26333465
http://doi.org/10.1126/science.aav7274
http://doi.org/10.1175/BAMS-D-14-00283.1
http://doi.org/10.1029/90JB00834
http://doi.org/10.1175/1520-0450(1994)033&lt;0379:GMMZWD&gt;2.0.CO;2
http://doi.org/10.1029/92JD01517
http://doi.org/10.1175/1520-0426(1995)012&lt;0468:GSOAWV&gt;2.0.CO;2
http://doi.org/10.1016/j.rse.2018.06.029
https://link.springer.com/book/10.1007%2F978-3-030-13901-8
https://link.springer.com/book/10.1007%2F978-3-030-13901-8
http://doi.org/10.1109/TGRS.2019.2926110
http://doi.org/10.1038/s41598-019-56452-5
http://doi.org/10.1016/j.atmosres.2022.106424
http://doi.org/10.1016/j.atmosres.2019.03.037
http://doi.org/10.1016/j.atmosres.2020.104897
http://doi.org/10.1016/j.jastp.2017.11.013
http://doi.org/10.3390/rs13101918


Atmosphere 2023, 14, 571 27 of 28

41. Wang, W.; Hocke, K. Atmospheric effects and precursors of rainfall over the Swiss Plateau. Remote Sens. 2022, 14, 2938. [CrossRef]
42. Li, H.; Jiang, C.; Choy, S.; Wang, X.; Zhang, K.; Zhu, D. A Comprehensive Study on Factors Affecting the Calibration of Potential

Evapotranspiration Derived from the Thornthwaite Model. Remote Sens. 2022, 14, 4644. [CrossRef]
43. Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Qiu, C.; Zhang, S.; Zhang, J.; Xie, M.; Li, L. Development of an improved model for

prediction of short-term heavy precipitation based on GNSS-derived PWV. Remote Sens. 2020, 12, 4101. [CrossRef]
44. McElroy, M.B. The Atmospheric Environment: Effects of Human Activity; Princeton University Press: Princeton, NJ, USA, 2002.

[CrossRef]
45. Xie, S.; Mo, X.; Hu, S.; Liu, S. Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP

trends in the Three-North Region of China. Agric. For. Meteorol. 2020, 295, 108183. [CrossRef]
46. Lucien, W. Basics in Solar Radiation at Earth Surface (Edition 1), Lecture Notes, MINES Paris Tech, PSL Research University.

2018. Available online: https://www.researchgate.net/profile/Lucien-Wald/publication/322314967_BASICS_IN_SOLAR_
RADIATION_AT_EARTH_SURFACE/links/5a537a9faca2725638c80224/BASICS-IN-SOLAR-RADIATION-AT-EARTH-
SURFACE.pdf (accessed on 24 August 2022).

47. Glickman, T.S. Glossary of Meteorology; American Meteorological Society: Boston, MA, USA, 2000.
48. Choy, S.; Zhang, K.; Wang, C.S.; Li, Y.; Kuleshov, Y. Remote sensing of the earth’s lower atmosphere during severe weather events

using GPS technology: A study in Victoria, Australia. In Proceedings of the 24th International Technical Meeting of the Satellite
Division of the Institute of Navigation (ION GNSS 2011), Oregon Convention Center, Portland, OR, USA, 20–23 September 2011;
Volume 1, pp. 559–571.

49. Zhang, K.; Manning, T.; Wu, S.; Rohm, W.; Silcock, D.; Choy, S. Capturing the Signature of Severe Weather Events in Australia
Using GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1839–1847. [CrossRef]

50. Sapucci, L.F.; Machado, L.A.T.; de Souza, E.M.; Campos, T.B. Global positioning system precipitable water vapour (GPS-PWV)
jumps before intense rain events: A potential application to nowcasting. Meteorol. Appl. 2018, 26, 49–63. [CrossRef]

51. Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software-Version 5.2, Astronomical Institute; University of Bern: Berne,
Switzerland, 2015.

52. Zhao, Q.; Su, J.; Xu, C.; Yao, Y.; Zhang, X.; Wu, J. High-precision ZTD model of altitude-related correction. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2023, 16, 609–621. [CrossRef]

53. Qiu, C.; Wang, X.; Li, Z.; Zhang, S.; Li, H.; Zhang, J.; Yuan, H. The Performance of Different Mapping Functions and Gradient
Models in the Determination of Slant Tropospheric Delay. Remote Sens. 2020, 12, 130. [CrossRef]

54. Kouba, J. A Guide to Using International GNSS Service (IGS) Products. Available online: http://acc.igs.org/UsingIGSProductsVer2
1.pdf (accessed on 16 June 2022).

55. Griffiths, J. Combined orbits and clocks from IGS second reprocessing. J. Geod. 2019, 93, 177–195. [CrossRef]
56. Petit, G.; Luzum, B. IERS Conventions 2010 (IERS Technical Note 36); Verlag des Bundesamts für Kartographie und Geodäsie:

Frankfurt am Main, Germany, 2010; p. 179, ISBN 3-89888-989-6.
57. Saastamoinen, J. Atmospheric correction for the troposphere andstratosphere in radio ranging satellites. Artif. Satell. Geod. 1972,

15, 247–251.
58. Businger, S.; Chiswell, S.R.; Bevis, M.; Duan, J. The promise of GPS in atmospheric monitoring. Bull. Am. Meteorol. Soc. 1996, 77,

5–18. [CrossRef]
59. Zhang, H.; Yuan, Y.; Li, W.; Ou, J.; Li, Y.; Zhang, B. GPS PPP-derived precipitable water vapor retrieval based on Tm/Ps from

multiple sources of meteorological data sets in China. J. Geophys. Res. Atmos. 2017, 122, 4165–4183. [CrossRef]
60. Huang, L.; Jiang, W.; Liu, L.; Chen, H.; Ye, S. A new global grid model for the determination of atmospheric weighted mean

temperature in GPS precipitable water vapor. J. Geod. 2019, 93, 159–176. [CrossRef]
61. Li, L.; Li, Y.; He, Q.; Wang, X. Weighted Mean Temperature Modelling Using Regional Radiosonde Observations for the Yangtze

River Delta Region in China. Remote Sens. 2022, 14, 1909. [CrossRef]
62. Chen, Y. Inversing the content of vapor in atmosphere by GPS observations. Mod. Surv. Mapp. 2005, 28, 3–6.
63. Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Zhang, J.; Qiu, C.; Zhang, S.; Li, L. An improved model for detecting heavy

precipitation using GNSS-derived zenith total delay measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14,
5392–5405. [CrossRef]

64. WMO. Guide to Instruments and Methods of Observation, Volume I—Measurement of Meteorological Variables; World Meteorological
Organization: Geneva, Switzerland, 2018.

65. Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient; Springer: Berlin/Heidelberg, Germany, 2009.
66. Myers, J.L.; Well, A.D.; Lorch, R.F., Jr. Research Design and Statistical Analysis; Routledge: London, UK, 2013.
67. Dancey, C.P.; Reidy, J. Statistics without Maths for Psychology; Pearson Education: New York, NY, USA, 2007.
68. Sangiorgio, M.; Barindelli, S.; Guglieri, V.; Venuti, G.; Guariso, G. Reconstructing environmental variables with missing field

data via end-to-end machine learning. In Proceedings of the 21st Engineering Applications of Neural Networks (EANN) 2020
Conference, Crete, Greece, 17–20 June 2020; pp. 167–178. [CrossRef]

69. Defraigne, P.; Pinat, E.; Bertrand, B. Impact of Galileo-to-GPS-time-offset accuracy on multi-GNSS positioning and timing. GPS
Solut. 2021, 25, 45. [CrossRef]

70. Wang, J.; Yu, X.; Guo, S. Inversion and characteristics of unmodeled errors in GNSS relative positioning. Measurement 2022, 195,
111151. [CrossRef]

http://doi.org/10.3390/rs14122938
http://doi.org/10.3390/rs14184644
http://doi.org/10.3390/rs12244101
http://doi.org/10.2307/j.ctv1nxcvhq
http://doi.org/10.1016/j.agrformet.2020.108183
https://www.researchgate.net/profile/Lucien-Wald/publication/322314967_BASICS_IN_SOLAR_RADIATION_AT_EARTH_SURFACE/links/5a537a9faca2725638c80224/BASICS-IN-SOLAR-RADIATION-AT-EARTH-SURFACE.pdf
https://www.researchgate.net/profile/Lucien-Wald/publication/322314967_BASICS_IN_SOLAR_RADIATION_AT_EARTH_SURFACE/links/5a537a9faca2725638c80224/BASICS-IN-SOLAR-RADIATION-AT-EARTH-SURFACE.pdf
https://www.researchgate.net/profile/Lucien-Wald/publication/322314967_BASICS_IN_SOLAR_RADIATION_AT_EARTH_SURFACE/links/5a537a9faca2725638c80224/BASICS-IN-SOLAR-RADIATION-AT-EARTH-SURFACE.pdf
http://doi.org/10.1109/JSTARS.2015.2406313
http://doi.org/10.1002/met.1735
http://doi.org/10.1109/JSTARS.2022.3228917
http://doi.org/10.3390/rs12010130
http://acc.igs.org/UsingIGSProductsVer21.pdf
http://acc.igs.org/UsingIGSProductsVer21.pdf
http://doi.org/10.1007/s00190-018-1149-8
http://doi.org/10.1175/1520-0477(1996)077&lt;0005:TPOGIA&gt;2.0.CO;2
http://doi.org/10.1002/2016JD026000
http://doi.org/10.1007/s00190-018-1148-9
http://doi.org/10.3390/rs14081909
http://doi.org/10.1109/JSTARS.2021.3079699
http://doi.org/10.1007/978-3-030-48791-1_12
http://doi.org/10.1007/s10291-021-01090-6
http://doi.org/10.1016/j.measurement.2022.111151


Atmosphere 2023, 14, 571 28 of 28

71. Freedman, D.A. Statistical Models: Theory and Practice; Cambridge University Press: Cambridge, UK, 2009.
72. Freund, R.J.; Wilson, W.J.; Sa, P. Regression Analysis; Elsevier: Amsterdam, The Netherlands, 2006.
73. Shestopaloff, Y.K. Properties and Interrelationships of Polynomial, Exponential, Logarithmic and Power Functions with Applications to

Modeling Natural Phenomena; AKVY Press: North York, ON, Canada, 2010.
74. Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [CrossRef]
75. Aljandali, A. Multivariate Methods and Forecasting with IBM® SPSS® Statistics; Springer: Berlin/Heidelberg, Germany, 2017.
76. Beach, C.M.; MacKinnon, J.G. A maximum likelihood procedure for regression with autocorrelated errors. Econom. J. Econom. Soc.

1978, 46, 51–58. [CrossRef]
77. Manandhar, S.; Dev, S.; Lee, Y.H.; Winkler, S.; Meng, Y.S. Systematic study of weather variables for rainfall detection. In

Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27
July 2018; pp. 3027–3030.

78. Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
79. Abdi, H.; Williams, L.J. Principal component analysis. WIRS Comput. Stat. 2010, 2, 433–459. [CrossRef]
80. Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. Giving meaningful interpretation to ordination axes: Assessing loading significance

in principal component analysis. Ecology 2003, 84, 2347–2363. [CrossRef]
81. Zhao, Q.; Yao, Y.; Yao, W.; Li, Z. Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting.

Sci. Rep. 2018, 8, 7939. [CrossRef]
82. Chen, B.; Liu, Z.; Wong, W.K.; Woo, W.C. Detecting water vapor variability during heavy precipitation events in Hong Kong

using the GPS tomographic technique. J. Atmos. Ocean. Technol. 2017, 34, 1001–1019. [CrossRef]
83. Liu, Z.; Chen, B.; Chan, S.T.; Cao, Y.; Gao, Y.; Zhang, K.; Nichol, J. Analysis and modelling of water vapour and temperature

changes in Hong Kong using a 40-year radiosonde record: 1973–2012. Int. J. Clim. 2014, 35, 462–474. [CrossRef]
84. Hong Kong Observatory. Climate of Hong Kong. 2017. Available online: https://www.hko.gov.hk/en/cis/climahk.htm

(accessed on 6 October 2022).
85. Zhao, P.; Zhou, Z.; Liu, J. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation

and East Asian summer monsoon rainfall: An observational investigation. J. Clim. 2007, 20, 3942–3955. [CrossRef]
86. Chow, K.C.; Tong, H.W.; Chan, J.C. Water vapor sources associated with the early summer precipitation over China. Clim. Dyn.

2008, 30, 497–517. [CrossRef]
87. Dimauro, C.; Cellesi, M.; Pintus, M.A.; Macciotta, N.P.P. The impact of the rank of marker variance–covariance matrix in principal

component evaluation for genomic selection applications. J. Anim. Breed. Genet. 2011, 128, 440–445. [CrossRef] [PubMed]
88. Jeffers, J.N.R. Two case studies in the application of principal component analysis. J. R. Stat. Soc. Ser. C Appl. 1967, 16, 225–236.

[CrossRef]
89. Joliffe, I.T.; Morgan, B.J.T. Principal component analysis and exploratory factor analysis. Stat. Methods Med. Res. 1992, 1, 69–95.

[CrossRef]
90. Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1093/biomet/78.3.691
http://doi.org/10.2307/1913644
http://doi.org/10.1016/0169-7439(87)80084-9
http://doi.org/10.1002/wics.101
http://doi.org/10.1890/00-0634
http://doi.org/10.1038/s41598-018-26299-3
http://doi.org/10.1175/JTECH-D-16-0115.1
http://doi.org/10.1002/joc.4001
https://www.hko.gov.hk/en/cis/climahk.htm
http://doi.org/10.1175/JCLI4205.1
http://doi.org/10.1007/s00382-007-0301-6
http://doi.org/10.1111/j.1439-0388.2011.00957.x
http://www.ncbi.nlm.nih.gov/pubmed/22059577
http://doi.org/10.2307/2985919
http://doi.org/10.1177/096228029200100105
http://doi.org/10.1093/biomet/58.3.453

	Introduction 
	Data Acquisition 
	Weather Variables 
	GNSS Atmospheric Products 
	Statistical Time-Varying Parameters 
	Precipitation Record 

	Methodology 
	Correlation Analysis 
	Regression Analysis 
	Mean Value Analysis 
	Principal Component Analysis 

	Cross-Relationships among the Twelve Variables 
	Cross-Correlation Analysis among the Twelve Variables 
	Regression Analysis among the Twelve Variables 

	Systematic Investigation on Responses of Twelve Variables to Precipitation 
	Comparing the Time Series of the Twelve Variables with Precipitation Record 
	Conventional Correlation Analysis 
	Correlational Analysis of PCC Results Obtained by Using Precipitation Record Moving Several Hours Forward 
	Regression Analysis 

	Analyzing the Mean Values of the Twelve Variables with Precipitation Record 
	Mean Value Analysis over the Whole Study Period 
	Mean Value Analysis over Different Seasons 


	Principal Component Analysis 
	Variances Interpreted by Principal Components 
	Analysis of Variable Loadings in Principal Components 
	Potential of Using the Twelve Variables for Precipitation Discrimination 

	Summary and Discussion 
	References

