Late-Middle Pleistocene Sedimentary Environment and Climate Variation in North Hebei Plain, China: Evidence from the SHBZK-1 Core
Abstract
:1. Introduction
2. Regional Geology
3. Materials and Methods
4. Results
4.1. Chronology
4.2. Grain Size
4.3. Magnetic Susceptibility (MS)
5. Discussion
5.1. The Relationship between MS and Grain Size
5.2. Paleoclimate Evolution of the North Hebei Plain
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, Z. The history and variability of the East Asian paleomonsoon climate. Quat. Sci. Rev. 2000, 19, 171–187. [Google Scholar] [CrossRef]
- Hu, J.; Yan, J.; Cheng, Y.; Liu, X. Geological records of late Cenozoic tectono-sedimentary-paleoclimatic events in China. Geol. Resour. 2022, 31, 303–330. [Google Scholar]
- Kukla, G. Loess stratigraphy in central China. Quat. Sci. Rev. 1987, 6, 191–207, 209–219. [Google Scholar] [CrossRef]
- Kukla, G.; An, Z.; Mélice, J.L.; Gavin, J.; Xiao, J. Magnetic susceptibility record of Chinese loess. Trans. R. Soc. Edinb. Earth Sci. 1990, 81, 263–288. [Google Scholar] [CrossRef]
- Xiao, J.; Porter, S.C.; An, Z.; Kumai, H.; Yoshikawa, S. Grain Size of Quartz as an Indicator of Winter Monsoon Strength on the Loess Plateau of Central China during the Last 130,000 Yr. Quat. Res. 1995, 43, 22–29. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, F.; Liu, X.; Duce, R.A. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China. Quat. Sci. Rev. 2004, 23, 1891–1900. [Google Scholar] [CrossRef]
- Ding, Z.; Derbyshire, E.; Yang, S.; Sun, J.; Liu, T. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implication for monsoon evolution. Earth Planet. Sci. Lett. 2005, 237, 45–55. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, J.; Clemens, S.C.; Liu, Q.; Ji, J.; Tada, R. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochem. Geophys. Geosystems 2006, 7, 1–16. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Liu, Q.; Clemens, S.C. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth Planet. Sci. Lett. 2010, 289, 171–179. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Liu, X.; Yang, H.; Wang, X.; Zhang, X.; Jonell, T.N.; Zhang, Y.; Huang, X.; Wang, Z.; et al. Paleoclimatic changes and modulation of East Asian summer monsoon by high-latitude forcing over the last 130,000 years as revealed by independently dated loess-paleosol sequences on the NE Tibetan Plateau. Quat. Sci. Rev. 2020, 237, 106283. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Wan, J.; Zhang, J.; Gao, Z. Meso-Cenozoic detachment zones in the front of the Taihang Mountains and their fission-track ages. Geol. Bull. China 2002, 21, 207–210. [Google Scholar]
- Cordier, S.; Bridgland, D.; Benito, G. Research on fluvial archives: From diversity to multidisciplinarity. Quaternaire 2015, 26, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Cordier, S.; Briant, B.; Bridgland, D.; Herget, J.; Maddy, D.; Mather, A.; Vandenberghe, J. The Fluvial Archives Group: 20 years of research connecting fluvial geomorphology and palaeoenvironments. Quat. Sci. Rev. 2017, 166, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Alluvial Stratigraphic Response to Astronomical Climate Change: Numerical Modeling and Outcrop Study in the Bighorn Basin, Wyoming, USA. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2021. [Google Scholar]
- Wang, Q.; Liu, L.; Wang, W.; Xu, H.; Sun, W. The mechanism of quaternary palaeoenvironmental change in Circum-Bohai-Sea region and North China Plain. Geol. Surv. Res. 2002, 27, 129–138. [Google Scholar]
- Ni, Z.; Yang, G.; Huang, J.; Zhang, X.; Cheng, J.; Yin, G. Organic carbon isotopic characteristics of Beijing Plain late Pleistocene and their paleoenvironmental implications. Acta Geosci. Sin. 2011, 32, 171–177. [Google Scholar]
- Cai, M.; Wei, M.; Yang, Y.; Wang, J.; Xu, D. Long-term cooling/drying record of North China since the middle Pleistocene from geochemical evidence of a 150 m deep drill core, Beijing plain, China. Quat. Int. 2014, 349, 419–427. [Google Scholar] [CrossRef]
- Jiang, H.; Guo, G.; Cai, X.; Thompson, J.A.; Xu, H.; Zhong, N. Geochemical evidence of windblown origin of the Late Cenozoic lacustrine sediments in Beijing and implications for weathering and climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 446, 32–43. [Google Scholar] [CrossRef]
- Zhang, Z. Paleoenvironmental Changes in the Eastern Plain of Beijing Since the Middle Pleistocene. Master′s Thesis, Hebei GEO University, Shijiazhuang, China, 2021. [Google Scholar]
- Liu, Z.; Shen, J.; Huang, J.; Chen, Y. Grain size analysis of the late Pleistocene sediments in Sanhe county, Hebei province. Acta Geol. Sin. 2016, 90, 997–1005. [Google Scholar]
- Gong, X. The Late Pleistocene Paleoclimate Evolution of the SG01 Core in the East of Beijing Plain. Master′s Thesis, China University of Geosciences (Beijing), Beijing, China, 2018. [Google Scholar]
- Liu, Z.; Shen, J.; Wang, C. Cyclostratigraphic analysis of the change of magnetic susceptibility based on the upper Pleistocene strata in Sanhe, Hebei Province. Sci. Technol. Eng. 2020, 20, 14410–14416. [Google Scholar]
- He, F.; Ma, X.; Wu, C.; Liu, Z.; Cui, Y.; Niu, W.; Liu, X. Evolution of Paleo-environment since the late middle Pleistocene-exemplified by Zk09 borehole in Pinggu of the Beijing Plain. Urban Geol. 2020, 15, 288–295. [Google Scholar]
- Yang, G.; Ge, Z.; Dai, Q.; Cheng, J.; Yin, G.; Zan, L.; Liu, J. A grain-size record from Beijing region in Northern China: Late Quaternary paleoclimate oscillation in response to global change. Front. Earth Sci. China 2009, 3, 164–170. [Google Scholar] [CrossRef]
- Visher, G.S. Grain size distributions and depositional processes. J. Sediment. Petrol. 1969, 39, 1074–1106. [Google Scholar]
- Murkute, Y.A. Kamthi Sandstones: Grain Size Distribution and Depositional Processes. J. Geol. Soc. India 2001, 58, 435–440. [Google Scholar]
- Bai, X.; Zhang, Y.; Guan, C.; Yuan, S.; Lu, L.; Ma, X.; Li, K. Grain size analysis of the late Pleistocene-early Holocene sediments in the lower Chaobai River. Technol. Eng. 2018, 18, 7–13. [Google Scholar]
- Ellek, S. Comparison of Grain Size Distribution and Grain Shape of Various Sand Samples. Geotech. Geol. Eng. 2019, 37, 5019–5033. [Google Scholar]
- Liu, Y.; Liu, X.; Sun, Y. QGrain: An open-source and easy-to-use software for the comprehensive analysis of grain size distributions. Sediment. Geol. 2021, 423, 105980. [Google Scholar] [CrossRef]
- Sun, D.; Bloemendal, J.; Rea, D.K.; Vandenberghe, J.; Jiang, F.C.; An, Z.; Su, R. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol. 2002, 152, 263–277. [Google Scholar] [CrossRef]
- Wacha, L.; Laag, C.; Grizelj, A.; Tsukamoto, S.; Zeeden, C.; Ivanišević, D.; Rolf, C.; Banak, A.; Frechen, M. High-resolution palaeoenvironmental reconstruction at Zmajevac (Croatia) over the last three glacial/interglacial cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 576, 110504. [Google Scholar] [CrossRef]
- Noorbergen, L.; Abels, H.; Hilgen, F.; Robson, B.; Jong, E.; Dekkers, M.; Krijgsman, W.; Smit, J.; Collinson, M.; Kuiper, K.F. Conceptual models for short-eccentricity-scale climate control on peat formation in a lower Palaeocene fluvial system, north-eastern Montana (USA). Sedimentology 2018, 65, 775–808. [Google Scholar] [CrossRef] [Green Version]
- Noorbergen, L.J.; Turtu, A.; Kuiper, K.F.; Kasse, C.; Ginneken, S.; Dekkers, M.J.; Krijgsman, W.; Abels, H.A.; Hilgen, F.J. Long-eccentricity regulated climate control on fluvial incision and aggradation in the Palaeocene of north-eastern Montana (USA). Sedimentology 2020, 67, 2529–2560. [Google Scholar] [CrossRef] [Green Version]
- Nádor, A.; Lantos, M.; Tóth-Makk, Á.; Thamó-Bozsó, E. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6 Ma, Pannonian Basin, Hungary. Quat. Sci. Rev. 2003, 22, 2157–2175. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, C. Magnetic susceptibility and its environmental significances. Chin. J. Geophys. 2009, 52, 1041–1048. [Google Scholar]
- Silva, A.C.D.; Whale, M.T.; Hladil, J.; Chadimova, L.; Chen, S.; Spassov, D.; Boulvain, F.; Devleeschouwer, X. Magnetic Susceptibility Application: A Window onto Ancient Environments and Climatic Variations: Foreword. Geol. Soc. Lond. Spec. Publ. 2015, 414, 1–13. [Google Scholar] [CrossRef]
- Ao, H.; Dekkers, M.J.; Xiao, G.; Yang, X.; Qin, L.; Liu, X.; Qiang, X.; Chang, H.; Zhao, H. Different orbital rhythms in the Asian summer monsoon records from North and South China during the Pleistocene. Glob. Planet. Chang. 2012, 80–81, 51–60. [Google Scholar] [CrossRef]
- Chen, W.; Ni, M. Quaternary Geology of Hebei; The Geological Publishing House: Beijing, China, 1987; pp. 34–75. [Google Scholar]
- Wu, C. Landform Environment and Its Formation in North China; Science Press: Beijing, China, 2008. [Google Scholar]
- Wang, X.; Feng, X.; Xu, X.; Diao, G.; Wan, Y.; Wang, L.; Ma, G. Fault plane parameters of Sanhe-Pinggu M8 earthquake in 1679 determined using present-day small earthquakes. Earthq. Sci. 2014, 27, 607–614. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ji, F.; Yu, G.; Chen, W.; Wang, F. Stratigraphic records from drill logs: A study at the Xiadian Fault, Beijing. Seismol. Geophys. 2000, 22, 9–19. [Google Scholar]
- Shi, G.; Pan, Z.; Zhang, H.; Lü, L.; Zhang, J.; Zhang, Y.; Li, Q.; Zhang, P. Core characteristics and stratigraphic classification of borehole S9 in Sanhe, Hebei Plain. Geoscience 2021, 35, 1332–1342. [Google Scholar]
- Friedman, G.M. Dynamic Processes and Statistical Parameters Compared for Size Frequency Distribution of Beach and River Sands. J. Sediment. Res. 1967, 37, 327–354. [Google Scholar]
- Friedman, G.M. Differences in size distributions of populations of particles among sands of various origins: Addendum to IAS presidential address. Sedimentology 1979, 26, 859–862. [Google Scholar] [CrossRef]
- Liu, Y. Laboratory Research Methods of Sedimentary Rocks; Geological Publishing House: Beijing, China, 1991; pp. 229–241. [Google Scholar]
- Huang, S. Calculation of grain size distribution parameters of sediments by Microsoft excel. J. Chendu Univ. Technol. 1999, 26, 98+100–101. [Google Scholar]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat. Meas. 2003, 37, 377–381. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Li, X. Luminescence dating of fine-grained quartz in Chinese loess-simplified multiple aliquot regenerative-dose (MAR) protocol. Seismol. Geophys. 2005, 27, 615–623. [Google Scholar]
- Wintle, A.G.; Murray, A.S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 2006, 41, 369–391. [Google Scholar] [CrossRef]
- Li, C.; Yang, S.; Li, Y.; Huang, X.; Jiang, W. Grain size characteristics and sedimentary environment of the Zhangjiacun Formation in the Lushi Basin, Henan Province. Quat. Sci. 2016, 36, 1428–1435. [Google Scholar]
- Murray, A.; Arnold, L.J.; Buylaert, J.; Guerin, G.; Qin, J.; Singhvi, A.K.; Smedley, R.; Thomsen, K.J. Optically stimulated luminescence dating using quartz. Rev. Methods Prim. 2021, 1, 72. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Christen, J.A.; Pérez, E.S. A new robust statistical model for radiocarbon data. Radiocarbon 2010, 51, 1047–1059. [Google Scholar] [CrossRef] [Green Version]
- Novothny, Á.; Frechen, M.; Horváth, E.; Wacha, L.; Rolf, C. Investigating the penultimate and last glacial cycles of the Süttő loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quat. Int. 2011, 234, 75–85. [Google Scholar] [CrossRef]
- Shu, Q.; Li, J.; Zhao, Z.; Chen, Y.; Zhang, M. A correlation between magnetic susceptibility and the content of different grain sizes of XH-1# core in North Jiangsu Basin and its significance. Acta Sedimentol. Sin. 2006, 24, 276–281. [Google Scholar]
- Zhou, X.; Zhao, J. Climate change was indicated by the magnetic susceptibility in Gaoling Weihe River floodplain near 120 years. J. Soil Water Conserv. 2007, 21, 196–200. [Google Scholar]
- Shi, L.; Yang, Z.; Zheng, L.; Jia, S.; Tong, Y.; Zhang, S.; Xu, D.; Guo, G. Environmental magnetic record of the fluvial sediments from the Tianzhu borehole in Beijing for the last 800 ka. Earth Planets Space 2010, 62, 631–645. [Google Scholar] [CrossRef] [Green Version]
- Paillard, D.; Labeyrie, L.; Yiou, P. Macintosh program performs time-series analysis. Eos Trans. Am. Geophys. Union 1996, 77, 379. [Google Scholar] [CrossRef]
- Xu, J. A study of depositional rate in the north China Plain during the past 40,000 years, based on 14C dating data from a large wealth of samples. Quat. Sci. 2007, 27, 437–443. [Google Scholar]
- Li, X.; Berger, A.; Loutre, M. CO2 and Northern Hemisphere ice volume variations over the middle and late Quaternary. Clim. Dyn. 1998, 14, 537–544. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef] [Green Version]
Sample | Depth (m) | U-238 (ppm) | Th-232 (ppm) | K-40 (%) | H2O (%) | Saturated H2O (%) | Dose Rate (Gy/ka) | De (Gy) | Age (ka) |
---|---|---|---|---|---|---|---|---|---|
① | 1.98 | 32.2 ± 1.6 | 40.1 ± 4.8 | 755.2 ± 15.1 | 13.129 | 39.738 | 3.3 ± 0.3 | 39.9 ± 1.6 | 12.1 ± 0.6 |
② | 4.90 | 30.4 ± 2.8 | 35.0 ± 4.2 | 788.8 ± 15.8 | 22.846 | 36.900 | 3.0 ± 0.3 | 52.4 ± 2.8 | 17.6 ± 1.0 |
③ | 16 | 33.8 ± 2.2 | 49.4 ± 5.9 | 695.5 ± 13.9 | 21.888 | 39.507 | 2.8 ± 0.3 | 141.8 ± 7.4 | 49.9 ± 2.9 |
④ | 22.11 | 29.1 ± 1.2 | 38.5 ± 2.3 | 766.6 ± 15.3 | 13.665 | 36.8157 | 2.9 ± 0.3 | 265.0 ± 12.1 | 92.5 ± 4.8 |
⑤ | 30.47 | 29.5 ± 3.1 | 35.8 ± 3.6 | 826.1 ± 16.5 | 14.953 | 28.3607 | 3.2 ± 0.3 | 309.3 ± 9.6 | 96.1 ± 3.8 |
⑥ | 32.4 | 42.7 ± 1.9 | 47.1 ± 4.7 | 776.9 ± 15.5 | 24.827 | 35 | 3.3 ± 0.3 | 358.9 ± 15.2 | 108.2 ± 5.3 |
⑦ | 38.7 | 23.4 ± 3.0 | 24.9 ± 2.5 | 1011.9 ± 20.2 | 16.079 | 34.205 | 3.2 ± 0.3 | 349.1 ± 32.9 | 109.6 ± 10.7 |
⑧ | 43.6 | 3.2 ± 1.1 | 27.3 ± 2.8 | 1095.3 ± 98.6 | 19.177 | 28.268 | 3.1 ± 0.3 | 364.9 ± 12.5 | 117.8 ± 5.1 |
⑨ | 47.32 | 7.3 ± 1.0 | 45.6 ± 4.6 | 824.4 ± 16.5 | 16.0097 | 32 | 2.7 ± 0.3 | 400.7 ± 23.6 | 147.7 ± 9.4 |
The I-Segment | The II-Segment | The III-Segment | The IV-Segment | The V-Segment | |
---|---|---|---|---|---|
Depth (m) | 0~26.72 | 26.72~44.02 | 44.02~61.76 | 61.76~92.02 | 92.02~120.8 |
Age (ka) | 0~84.4 | 84.4~132.7 | 132.7~182.1 | 182.1~266.6 | 266.6~346.9 |
Grain size (Φ) | 3~6 | 1~4 | 3~9 | 1~3 | 4~10 |
Mz (Φ) | 4~8 | 2~6 | 4~8 | 2~4 | 4~8 |
σ | 1.1~3.6 | 1.5~2.8 | 1.1~2.8 | 1.2~2.4 | 1.2~3.5 |
Sk | −2~2 | 0~2 | −2.3~1.6 | 1~3 | negative |
KG | >1.8 | >2 | >2 | >2 | --- |
Frequency distribution curves | bimodal positive type | bimodal positive type | bimodal type | bimodal positive bias | bimodal negative bias |
Probability accumulation curves | two-stage with high skipped components | two-stage type with high jumping components; well sorted | three-stage type with high suspended components | two-stage type with high jumping components | two-stage and three-stage type with high suspended components |
Grain size composition | mainly silt | mainly sand | mainly silt | mainly sand | mainly silt |
Sedimentary environment | flood plain with a few thin-layer river bar | river sand bar | flood plain | river sand bar | flood plain intercalated with river bar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Shen, J.; Dai, X.; Jiao, X. Late-Middle Pleistocene Sedimentary Environment and Climate Variation in North Hebei Plain, China: Evidence from the SHBZK-1 Core. Atmosphere 2023, 14, 575. https://doi.org/10.3390/atmos14030575
Liu Z, Shen J, Dai X, Jiao X. Late-Middle Pleistocene Sedimentary Environment and Climate Variation in North Hebei Plain, China: Evidence from the SHBZK-1 Core. Atmosphere. 2023; 14(3):575. https://doi.org/10.3390/atmos14030575
Chicago/Turabian StyleLiu, Zhirong, Jun Shen, Xunye Dai, and Xuankai Jiao. 2023. "Late-Middle Pleistocene Sedimentary Environment and Climate Variation in North Hebei Plain, China: Evidence from the SHBZK-1 Core" Atmosphere 14, no. 3: 575. https://doi.org/10.3390/atmos14030575
APA StyleLiu, Z., Shen, J., Dai, X., & Jiao, X. (2023). Late-Middle Pleistocene Sedimentary Environment and Climate Variation in North Hebei Plain, China: Evidence from the SHBZK-1 Core. Atmosphere, 14(3), 575. https://doi.org/10.3390/atmos14030575