Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Mass Concentrations of PM2.5
2.2.2. Meteorological Data
2.2.3. Satellite-Derived Data
2.3. Conditional Bivariate Probability Function (CBPF)
2.4. Backward Air Trajectory and Trajectory Cluster Analysis
2.4.1. Backward Air Trajectory
2.4.2. Trajectory Cluster Analysis
2.5. Three-Dimensional Hybrid Receptor Models
2.6. Data Visualization and Statistical Analysis
3. Results and Discussion
3.1. Mass Concentrations of PM2.5
3.2. Local Emission Source Areas of PM2.5
3.3. Non-Local Emission Source Areas of PM2.5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ADB. Vietnam: Validation of the Country Partnership Strategy Final Review, 2016–2020; Asian Development Bank (ADB): Mandaluyong, Philippines, 2021. [Google Scholar]
- MONRE. Report of the National Environmental Status; Ministry of Natural Resources and Environment of Vietnam (MONRE): Ha Noi, Vietnam, 2021. [Google Scholar]
- WBG. Climate Risk Country Profile: Vietnam; The World Bank Group and Asian Developement Bank: Manila, Philippines, 2021. [Google Scholar]
- DONRE. Report of the Environmental Status of Ho Chi Minh City; Department of Natural Resources and Environment (DONRE): Ho Chi Minh, Vietnam, 2021. [Google Scholar]
- Hien, T.T.; Chi, N.D.T.; Nguyen, N.T.; Vinh, L.X.; Takenaka, N.; Huy, D.H. Current status of fine particulate matter (PM2.5) in Vietnam’s most populous city, Ho Chi Minh City. Aerosol Air Qual. Res. 2019, 19, 2239–2251. [Google Scholar] [CrossRef] [Green Version]
- Le, T.G.; Ngo, L.; Mehta, S.; Do, V.D.; Thach, T.Q.; Vu, X.D.; Nguyen, D.T.; Cohen, A. Effects of short-term exposure to air pollution on hospital admissions of young children for acute lower respiratory infections in Ho Chi Minh City, Vietnam. Res. Rep. (Health Eff. Inst.) 2012, 169, 5–72. [Google Scholar]
- Toriyama, K.; Fukae, K.; Suda, Y.; Kiyose, T.; Oda, T.; Fujii, Y.; Doan Thien Chi, N.; Huu Huy, D.; Thi Hien, T.; Takenaka, N. NO2 and HONO concentrations measured with filter pack sampling and high HONO/NO2 ratio in Ho Chi Minh city, Vietnam. Atmos. Res. 2019, 214, 116865. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO (World Health Organization): Geneva, Switzerland, 2021. [Google Scholar]
- MONRE. National Technical Regulation on Ambient Air Quality (QCVN 05:2013/BTNMT); MONRE (Ministry of Natuaral Resources and Environmemt): Ha Noi, Vietnam, 2013. [Google Scholar]
- Adgate, J.L.; Mongin, S.J.; Pratt, G.C.; Zhang, J.; Field, M.P.; Ramachandran, G.; Sexton, K. Relationships between personal, indoor, and outdoor exposures to trace elements in PM2.5. Sci. Total Environ. 2007, 386, 21–32. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Ho, Q.B.; Vu, H.N.K.; Nguyen, T.T.; Nguyen, T.T.H.; Nguyen, T.T.T. A combination of bottom-up and top-down approaches for calculating of air emission for developing countries: A case of Ho Chi Minh City, Vietnam. Air Qual. Atmos. Health 2019, 12, 1059–1072. [Google Scholar] [CrossRef]
- Nguyen, T.T.Q.; Takeuchi, W.; Misra, P.; Hayashida, S. Technical note: Emission mapping of key sectors in Ho Chi Minh City, Vietnam, using satellite-derived urban land use data. Atmos. Chem. Phys. 2021, 21, 2795–2818. [Google Scholar] [CrossRef]
- Ho, B.Q.; Vu, K.H.N.; Nguyen, T.T.; Nguyen, H.T.T.; Ho, D.M.; Nguyen, H.N.; Nguyen, T.T.T. Study loading capacties of air pollutant emissions for developing countries: A case of Ho Chi Minh City, Vietnam. Sci. Rep. 2020, 10, 5827. [Google Scholar] [CrossRef] [Green Version]
- Huy, D.H.; Hien, T.T.; Takenaka, N. Influence of urban outflow on water-soluble ions in PM2.5 and >PM2.5 particles at a suburban Ho Chi Minh City site, Vietnam. Atmos. Res. 2022, 272, 106144. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Res. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Uria-Tellaetxe, I.; Carslaw, D.C. Conditional bivariate probability function for source identification. Environ. Model. Softw. 2014, 59, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.N.T.; Vuong, Q.T.; Lee, S.-J.; Xiao, H.; Choi, S.-D. Identification of source areas of polycyclic aromatic hydrocarbons in Ulsan, South Korea, using hybrid receptor models and the conditional bivariate probability function. Environ. Sci. Process. Impacts 2022, 24, 140–151. [Google Scholar] [CrossRef]
- Ali-Taleshi, M.S.; Moeinaddini, M.; Riyahi Bakhtiari, A.; Feiznia, S.; Squizzato, S.; Bourliva, A. A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: Source apportionment, local and regional sources origins and source-specific cancer risk assessment. Environ. Pollut. 2021, 274, 115883. [Google Scholar] [CrossRef]
- Mukherjee, A.; Agrawal, M. Assessment of local and distant sources of urban PM2.5 in middle Indo-Gangetic plain of India using statistical modeling. Atmos. Res. 2018, 213, 275–287. [Google Scholar] [CrossRef]
- Squizzato, S.; Cazzaro, M.; Innocente, E.; Visin, F.; Hopke, P.K.; Rampazzo, G. Urban air quality in a mid-size city—PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmos. Res. 2017, 186, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Modell. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Kim, I.S.; Wee, D.; Kim, Y.P.; Lee, J.Y. Development and application of three-dimensional potential source contribution function (3D-PSCF). Environ. Sci. Pollut. Res. 2016, 23, 16946–16954. [Google Scholar] [CrossRef]
- Cai, Q.; Tong, L.; Zhang, J.; Zheng, J.; He, M.; Lin, J.; Chen, X.; Xiao, H. Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry. Environ. Eng. Res. 2019, 24, 690–698. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Q. An open source software suite for multi-dimensional meteorological data computation and visualisation. J. Open Res. Softw. 2019, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Fan, A.; Hopke, P.K.; Raunemaa, T.M.; Öblad, M.; Pacyna, J.M. A study on the potential sources of air pollutants observed at Tjörn, Sweden. Environ. Sci. Pollut. Res. 1995, 2, 107–115. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Modell. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Kim, I.S.; Lee, J.Y.; Wee, D.; Kim, Y.P. Estimation of the contribution of biomass fuel burning activities in North Korea to the air quality in Seoul, South Korea: Application of the 3D-PSCF method. Atmos. Res. 2019, 230, 104628. [Google Scholar] [CrossRef]
- Dimitriou, K.; Grivas, G.; Liakakou, E.; Gerasopoulos, E.; Mihalopoulos, N. Assessing the contribution of regional sources to urban air pollution by applying 3D-PSCF modeling. Atmos. Res. 2021, 248, 105187. [Google Scholar] [CrossRef]
- Stojić, A.; Stanišić Stojić, S. The innovative concept of three-dimensional hybrid receptor modeling. Atmos. Res. 2017, 164, 216–223. [Google Scholar] [CrossRef]
- Wagner, P.; Schäfer, K. Influence of mixing layer height on air pollutant concentrations in an urban street canyon. Urban Clim. 2017, 22, 64–79. [Google Scholar] [CrossRef]
- Pekney, N.J.; Davidson, C.I.; Zhou, L.; Hopke, P.K. Application of PSCF and CPF to PMF-modeled sources of PM2.5 in Pittsburgh. Aerosol Sci. Technol. 2006, 40, 952–961. [Google Scholar] [CrossRef] [Green Version]
- Vu, H.N.K.; Ha, Q.P.; Nguyen, D.H.; Nguyen, T.T.T.; Nguyen, T.T.; Nguyen, T.T.H.; Tran, N.D.; Ho, B.Q. Poor air quality and its association with mortality in Ho Chi Minh City: Case Study. Atmosphere 2020, 11, 750. [Google Scholar] [CrossRef]
- Ho, B.Q.; Khue Vu, H.N.; Nguyen, T.T.; Nguyen, T.-T.G.; Diep, T.-Q.N.; Vo, P.L.; Pham, T.-K.N. Modeling impacts of industrial park activity on air quality of surrounding area for identifying isolation distance: A case of Tan Tao Industrial Park, Ho Chi Minh City, Viet Nam. IOP Conf. Ser. Earth Environ. Sci. 2022, 964, 012023. [Google Scholar] [CrossRef]
- Mukherjee, A.; Toohey, D.W. A study of aerosol properties based on observations of particulate matter from the U.S. Embassy in Beijing, China. Earth’s Future 2016, 4, 381–395. [Google Scholar] [CrossRef]
- Ali, S.M.; Malik, F.; Anjum, M.S.; Siddiqui, G.F.; Anwar, M.N.; Lam, S.S.; Nizami, A.-S.; Khokhar, M.F. Exploring the linkage between PM2.5 levels and COVID-19 spread and its implications for socio-economic circles. Environ. Res. 2021, 193, 110421. [Google Scholar] [CrossRef]
- Shukla, K.; Aggarwal, S.G. A technical overview on beta-attenuation method for the monitoring of particulate matter in ambient air. Aerosol Air Qual. Res. 2022, 22, 220195. [Google Scholar] [CrossRef]
- Huang, G. Missing data filling method based on linear interpolation and lightgbm. J. Phys. Conf. Ser. 2021, 1754, 012187. [Google Scholar] [CrossRef]
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Platnick, S. MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA. 2015. Available online: http://dx.doi.org/10.5067/MODIS/MOD08_M3.006 (accessed on 1 February 2022).
- Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_rad_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Radiation Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2015. Available online: https://disc.gsfc.nasa.gov/datasets/M2T1NXRAD_5.12.4/summary (accessed on 1 February 2022).
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06, Edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2019. Available online: https://catalog.data.gov/dataset/gpm-imerg-final-precipitation-l3-1-day-0-1-degree-x-0-1-degree-v06-gpm-3imergdf-at-ges-dis (accessed on 1 February 2022).
- Jeričević, A.; Gašparac, G.; Mikulec, M.M.; Kumar, P.; Prtenjak, M.T. Identification of diverse air pollution sources in a complex urban area of Croatia. J. Environ. Manag. 2019, 243, 67–77. [Google Scholar] [CrossRef]
- Team, R. RStudio: Integrated Development for R. Available online: http://www.rstudio.com/ (accessed on 1 February 2022).
- Simmonds, P.G.; Seuring, S.; Nickless, G.; Derwent, R.G. Segregation and interpretation of ozone and carbon monoxide measurements by air mass origin at the TOR station mace head, Ireland from 1987 to 1995. J. Atmos. Chem. 1997, 28, 45–59. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Edwards, A.W.F.; Cavalli-Sforza, L.L. A method for cluster analysis. Biometrics 1965, 21, 362–375. [Google Scholar] [CrossRef]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Fu, S.; Qu, L.; Ji, L.; Li, J.; Zhang, G. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmos. Res. 2018, 203, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Wondola, D.; Aulele, S.; Lembang, F. Partial Least Square (PLS) method of addressing multicollinearity problems in multiple linear regressions (Case studies: Cost of electricity bills and factors affecting it). J. Phys. Conf. Ser. 2020, 1463, 012006. [Google Scholar] [CrossRef]
- Čulić, V. Triggering of cardiac arrhythmias. J. Am. Coll. Cardiol. 2014, 63, 1226–1227. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, D.; Zhao, C.; Kwan, M.-P.; Cai, J.; Zhuang, Y.; Zhao, B.; Wang, X.; Chen, B.; Yang, J.; et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environ. Int. 2020, 139, 105558. [Google Scholar] [CrossRef]
- Gramsch, E.; Cáceres, D.; Oyola, P.; Reyes, F.; Vásquez, Y.; Rubio, M.A.; Sánchez, G. Influence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration. Atmos. Res. 2014, 98, 290–298. [Google Scholar] [CrossRef]
- Nam, N.T.T.; Trinh, N.N.; Thu, N.T.M.; Bảo, P.T. Characteristics and effect of the temperature inversion on concentrations of fine particulate matter (PM2.5) in Ho Chi Minh city, Vietnam. J. Hydro-Meteorol. 2023, 746, 87–95. [Google Scholar] [CrossRef]
- Pushpawela, B.; Shelton, S.; Liyanage, G.; Jayasekara, S.; Rajapaksha, D.; Jayasundara, A.; Jayasuriya, L.D. Changes of Air Pollutants in Urban Cities during the COVID-19 Lockdown-Sri Lanka. Aerosol Air Qual. Res. 2023, 23, 220223. [Google Scholar] [CrossRef]
- Shelton, S.; Liyanage, G.; Jayasekara, S.; Pushpawela, B.; Rathnayake, U.; Jayasundara, A.; Jayasooriya, L.D. Seasonal Variability of Air Pollutants and Their Relationships to Meteorological Parameters in an Urban Environment. Adv. Meteorol. 2022, 2022, 5628911. [Google Scholar] [CrossRef]
- Huong Giang, N.T.; Kim Oanh, N.T. Roadside levels and traffic emission rates of PM2.5 and BTEX in Ho Chi Minh City, Vietnam. Atmos. Environ. 2014, 94, 806–816. [Google Scholar] [CrossRef]
- Liang, L.; Engling, G.; Cheng, Y.; Zhang, X.; Sun, J.; Xu, W.; Liu, C.; Zhang, G.; Xu, H.; Liu, X.; et al. Influence of high relative humidity on secondary organic carbon: Observations at a background site in East China. J. Meteorol. Res. 2019, 33, 905–913. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Morawska, L. The influence of wind speed on new particle formation events in an urban environment. Atmos. Res. 2019, 215, 37–41. [Google Scholar] [CrossRef]
- Shrivastava, M.; Cappa, C.D.; Fan, J.; Goldstein, A.H.; Guenther, A.B.; Jimenez, J.L.; Kuang, C.; Laskin, A.; Martin, S.T.; Ng, N.L.; et al. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 2017, 55, 509–559. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.M.; Allan, J.; Carruthers, D.; Heal, M.R.; Lewis, A.C.; Marner, B.; Murrells, T.; Williams, A. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: A review. Atmos. Res. 2021, 262, 118592. [Google Scholar] [CrossRef]
- Kroll, J.H.; Seinfeld, J.H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Res. 2008, 42, 3593–3624. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Morawska, L. Differentiating between particle formation and growth events in an urban environment. Atmos. Chem. Phys. 2018, 18, 11171–11183. [Google Scholar] [CrossRef] [Green Version]
- Sadanaga, Y.; Matsumoto, J.; Kajii, Y. Photochemical reactions in the urban air: Recent understandings of radical chemistry. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 85–104. [Google Scholar] [CrossRef]
- Hai, C.D.; Kim Oanh, N.T. Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi. Atmos. Res. 2013, 78, 105–112. [Google Scholar] [CrossRef]
- Thuy, N.T.T.; Dung, N.T.; Sekiguchi, K.; Thuy, L.B.; Hien, N.T.T.; Yamaguchi, R. Mass concentrations and carbonaceous compositions of PM1.0, PM2.5, and PM10 at urban locations of Hanoi, Vietnam. Aerosol Air Qual. Res. 2018, 18, 1591–1605. [Google Scholar] [CrossRef] [Green Version]
- Oanh, N.T.K.; Kongpran, J.; Hang, N.T.; Parkpian, P.; Hung, N.T.Q.; Lee, S.B.; Bae, G.N. Characterization of gaseous pollutants and PM2.5 at fixed roadsides and along vehicle traveling routes in Bangkok Metropolitan Region. Atmos. Res. 2013, 77, 674–685. [Google Scholar]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Suttinun, O.; Deelaman, W.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; Palakun, J.; et al. Impacts of PM2.5 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmos. Pollut. Res. 2020, 11, 1657–1667. [Google Scholar] [CrossRef]
- Sinaga, D.; Setyawati, W.; Cheng, F.Y.; Lung, S.-C.C. Investigation on daily exposure to PM2.5 in Bandung city, Indonesia using low-cost sensor. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 1001–1012. [Google Scholar] [CrossRef]
- Khan, M.F.; Sulong, N.A.; Latif, M.T.; Nadzir, M.S.M.; Amil, N.; Hussain, D.F.M.; Lee, V.; Hosaini, P.N.; Shaharom, S.; Yusoff, N.A.Y.M.; et al. Comprehensive assessment of PM2.5 physicochemical properties during the Southeast Asia dry season (southwest monsoon). J. Geophys. Res. Atmos. 2016, 121, 14,589–14,611. [Google Scholar] [CrossRef]
- Nguyen, D.L.; Czech, H.; Pieber, S.M.; Schnelle-Kreis, J.; Steinbacher, M.; Orasche, J.; Henne, S.; Popovicheva, O.B.; Abbaszade, G.; Engling, G.; et al. Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: A case study in northwestern Vietnam. Atmos. Chem. Phys. 2021, 21, 8293–8312. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Holsen, T.M.; Hopke, P.K. Locating and quantifying PCB sources in Chicago: Receptor modeling and field sampling. Environ. Sci. Technol. 2003, 37, 681–690. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.N.T.; Du, N.X.; Hoa, N.T. Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam. Atmosphere 2023, 14, 579. https://doi.org/10.3390/atmos14030579
Nguyen TNT, Du NX, Hoa NT. Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam. Atmosphere. 2023; 14(3):579. https://doi.org/10.3390/atmos14030579
Chicago/Turabian StyleNguyen, Tuyet Nam Thi, Nguyen Xuan Du, and Nguyen Thi Hoa. 2023. "Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam" Atmosphere 14, no. 3: 579. https://doi.org/10.3390/atmos14030579
APA StyleNguyen, T. N. T., Du, N. X., & Hoa, N. T. (2023). Emission Source Areas of Fine Particulate Matter (PM2.5) in Ho Chi Minh City, Vietnam. Atmosphere, 14(3), 579. https://doi.org/10.3390/atmos14030579