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Abstract: Growing evidence links intra-urban gradients in atmospheric fine particles (PM2.5), a
complex and variable cocktail of toxic chemicals, to adverse health outcomes. Here, we propose an
improved hierarchical deep learning model framework to estimate the hourly variation of PM2.5

mass concentration at the street level. By using a full-year monitoring data (including meteorological
parameters, hourly concentrations of PM2.5, and gaseous precursors) from multiple stations in
Shanghai, the largest city in China, as a training dataset, we first apply a convolutional neural
network to obtain cross-domain and time-series features so that the inherent features of air quality
and meteorological data associated with PM2.5 can be effectively extracted. Next, a Gaussian weight
calculation layer is used to determine the potential interaction effects between different regions and
neighboring stations. Finally, a long and short-term memory model layer is used to efficiently extract
the temporal evolution characteristics of PM2.5 concentrations from the previous output layer. Further
comparative analysis reveals that our proposed model framework significantly outperforms previous
benchmark methods in terms of the stability and accuracy of PM2.5 prediction, which has important
implications for the intra-urban health assessment of PM2.5-related pollution exposures.

Keywords: fine particles; deep learning; hybrid model; street-level pollution; PM2.5 prediction

1. Introduction

O3, NOx, SO2, CO, and PM2.5 are major pollutants in the urban atmosphere that have
been shown to directly or indirectly cause cardiovascular and respiratory disease, and
even premature death. Among these air pollutants, fine particles (PM2.5 or particulate
matter with an aerodynamic diameter no larger than 2.5 microns) are of particular con-
cern [1]. They are complex and variable cocktails of toxic chemicals, including carcinogenic
polycyclic aromatic hydrocarbons and dozens of heavy metals, which can suspend in the
atmosphere and accumulate over time by penetrating deep into the lungs through human
respiration [2,3]. Fuel combustion, such as motor vehicles, is the main source of PM2.5 in
the urban atmosphere, with significant spatial heterogeneity within cities. There is growing
evidence that intra-urban gradients in PM2.5 exposures are associated with different health
outcomes [4,5]. The live monitoring of air contaminants and public disclosure of current
air quality data have both been crucial strategies for reducing the impact [6]. To track and
forecast air pollution, numerous air quality monitoring stations have been constructed.
However, the observed data provided by these observation stations cannot accurately
depict the regional air pollution’s real-time geographical distribution, and have difficulty
capturing the spatial variability of PM2.5 at the urban street scale, which is of tremendous
practical value for thorough spatial analysis and time-series prediction [7,8].

Historically, statistical and physical methods have been developed and used to predict
air pollution at regional and even global scales [9–13]. Chemical transport models (CTMs)
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are arguably the most reliable prediction tool in the air quality community. However, CTMs
are still not ideal for simulating high-resolution intra-urban PM2.5 distribution due to the
high uncertainty of local emission inventories and complex urban street canyon effects.
In addition, CTMs are usually highly specialized and expensive to run in terms of time
and computational cost, making them difficult to be easily adopted by policy makers and
epidemiologists. In the past few years, artificial intelligence (AI) and machine learning (ML)
have been rapidly evolving to extract the nonlinear features of historical data effectively,
thus leading to more competitive prediction performance than statistical and physical
methods. They are now increasingly used in areas such as biology (e.g., protein structure
prediction), chemistry (e.g., chemical reaction mechanisms), pharmacology (e.g., drug
screening), computational graphics [14], and speech recognition, since they do not need to
consider the complex mechanisms within the system when predicting, and are therefore
also applicable to the prediction of atmospheric pollutants.

Deep learning-based methods are at the forefront of artificial intelligence, and are well
suited for big data mining and prediction [15]. Among them, long short-term memory
(LSTM) is particularly popular because of its significant advantages in understanding
and processing time series data [10,16–18]. This method only considers time correlation,
which is obviously insufficient to reflect the spatial and temporal coupling of air pollution.
Recently, the convolutional neural network (CNN) has been shown to compensate for
the shortcomings of LSTM in spatial analysis, leading to studies combining the two for
air quality prediction [19–22]. Nevertheless, accurately mapping air quality requires a
deeper understanding of the associations between air pollutants in time, space, and across-
domain levels. For example, for PM2.5 at a given monitoring station at a given time, its
concentration level is correlated with historical PM2.5 concentration levels at that station,
PM2.5 concentration levels at neighboring stations, and other meteorological parameters
and gaseous precursors, all of which can hardly be addressed by simply merging LSTM
and CNN.

In this study, we propose a hybrid deep learning (HDL) framework (termed as HDL-
learning) based on CNN-LSTM to improve the prediction of the intra-urban PM2.5 con-
centration (Figure 1). The framework differs from previous studies in that, firstly, a two-
dimensional CNN (2D-CNN) was applied to matrices with dimensions of data types and
time series for a given station to extract nonlinear correlations of the cross-domain informa-
tion and timing patterns. Subsequently, a Gaussian function was incorporated to extract the
distance-based correlation of air pollutant concentrations from the given station and other
stations. Finally, LSTM was designed to fully analyze and extract the long-term historical
features of the input time series data to yield time series prediction data. We tested the
efficiency and validity of our proposed method in the megacity of Shanghai.
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2. Materials and Methods
2.1. HDL-Learning

A hybrid deep learning framework called HDL-learning was developed here to predict
the intra-urban variability of PM2.5 concentrations. The overall structure of the proposed
framework is illustrated in Figure 2. In the model we consider that the local PM2.5 concentra-
tion at a given moment is influenced by three main factors: the cross-domain characteristics
represented by various other environmental and weather parameters at the area, the spatial
characteristics of environmental and weather parameters in the surrounding area, and the
time-series characteristics generated by historical environmental parameters. For this rea-
son, the model proposed in this study contains three components that effectively represent
and integrate these three interactions. Firstly, our model uses a two-dimensional CNN
network to compress and extract the cross-domain features and short-term time-dependent
features of the input data (see description below) to obtain the feature vector. Meanwhile,
in order to fully extract the spatial features, we calculate the weights based on the distances
between other stations and the target station using a Gaussian function as a representation
of the extent of environmental pollution conditions in the surrounding area on the target
station. Finally, after the vector weighting calculation, the set of vectors was imported into
the LSTM prediction model for time series prediction to obtain the results. The model
consists of three main components: the CNN feature extraction layer, the Gaussian weight
calculation layer, and the LSTM series prediction model.
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2.2. CNN Feature Extraction Layer

The CNN model is one of the most researched and widely used models in the field
of deep learning in recent years [23,24]. It uses local connectivity and shared weights
to obtain effective representations directly from the original data by alternating between
convolutional and pooling layers, automatically extracting local features of the data and
building dense, complete eigenvectors.

In a CNN network, the convolution layer extracts local features of the sample data by
controlling the size of the convolution kernel. The pooling layer is generally in the layer
below the convolution layer and is mainly used for feature selection, reducing the feature
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dimension of the original data and preventing overfitting. The fully-connected layer is
responsible for integrating the local features extracted earlier, and then outputting the final
result. The formula for calculating each element in the feature map is:

xout
i = fcov(

k

∑
n=0

wnxin
i+nn + b) (1)

In the formula, xout
i is the output value and xin

i+n is the input vector; fcov(·) is for
the activation function; wn is the weight value at position n; and b is the bias in every
calculation process.

For the ability to extract data features, we use it to extract temporal features and cross-
domain features for each station. We pre-set a time window of length D. For each moment
in a time span of length n, m-dimensional data containing air quality and meteorological
information in a time period of length D centered at moment t are extracted. In other words,
at each moment in time t in a single station, we obtain a matrix of D ∗m representing the
temporal and cross-domain features. Those matrixes are input into CNN for feature
extraction. After convolution and pooling layers the extracted features were flattened
into a 1-D array. Finally, the feature map containing the meteorological and air pollutant
information of each station in every time spot was generated through the fully connected
output layers, and the above steps were then applied to all stations. The structure diagram
of this part is shown in Figure 3.
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2.3. Gaussian Weight Calculation Layer

In each time spot, the output of the CNN layer is s high dimension vectors, in which s is
the number of air quality monitoring stations. Each output of s vectors is calculated individ-
ually by CNN; therefore, it can precisely represent the information of low-dimension inputs.
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Since pollutant concentrations are affected by the spatial relationship, and the impact
of pollutant concentrations in different areas on the target area follows the principle that
the closer the distance, the greater the influence, we used the Gaussian model to calculate
the effective degree of each neighbor station based on distance (Figure 4). In the Gaussian
weight calculation layer, the station expected to be predicted is considered as target station,
and distances between the other station and the target station are fed into a Gaussian
function with pre-set parameters to calculate the corresponding weights which represent
the spatial influence from other regions on the PM2.5 concentration at the target station.
The output of CNN for the s stations at one moment was merged into one-dimensional
vectors in a time series before being inputted to LSTM.
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s one-dimensional vectors were outputted during the time period (t− r . . . , i, . . . , t)
to calculate the effective weights for each station based on its distance between target
stations. The Gaussian function has the special feature that the weight is 1 when the
distance between two points is the shortest among all neighbors, and tends to 0 as the
distance increases. The effective weights are calculated as Equations (2) and (3).

ws = A2 × e−B (2)

A =
1

σ
√

2π
, B =

(ds − µ)2

2σ2 (3)

where ds is the geographical distance between station s and the target station. The merging
operation process is shown in Figure 5. In this operation, for each moment, the feature
vectors of each station around the target station are multiplied and summed by the cor-
responding weights to obtain the merged vector. The fused vectors are then fed into the
LSTM for temporal prediction.
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2.4. LSTM Prediction Model

The output vector of the merge operation is then inputted to the LSTM layer. Value
of vector(t−r, ..., t) for r hours before time t are the input of LSTM time series prediction
model, and the prediction target is the hourly PM2.5 concentration value for time t + 1. x is
the input and represents the dynamic time series. W is for the weight matrix. C is for the
memory unit. h is the hidden layer information and b is the bias. The training process for
LSTM is as follows:

i. The LSTM first selectively forgets some past PM2.5 data information and other
factors and we choose the σ (sigmoid) function as the activation function of the forget
gate LSTM.

The value of the forget gate ft is limited between 0 to 1. As shown in Equation (4), by
multiplying ft and in Equation (5), the memory unit of time t − 1 Ct−1, if the element value
of ft tends to 0, it means the corresponding feature information in Ct is forgotten, and if the
element value of ft tends to 1, it means that the corresponding feature information is saved.

ft = σ(W f [ht−1, xt] + b f ) (4)

C′t = ft × Ct−1 (5)

ii. determine the new information to be stored in the storage unit.
The new information consists of two parts. The output gate it determines the up-

dated information and the initial updated value C̃t is the new candidate value vector.
Equations (6) and (7) are their calculation process. By multiplying C̃t and it, the important
feature information updated value C̃t is selected and stored in the memory unit.

it = σ(Wi[ht−1, xt] + bi) (6)

C̃t = tanh(WC̃[ht−1, xt] + bC̃) (7)

iii. Update the state of memory unit:

C̃t = C′t + it × C̃t (8)

iv. Finally determine the prediction output information:

ot = σ(Wo[ht−1, xt] + bo) (9)

ht = ot × tanh(Ct) (10)

ht is obtained from the output gate ot and the memory unit status Ct , where the
calculation method of ot is the same as that of ft and it. After that, the entire model is
fine-tuned via stochastic gradient descent to attain global optimization.

LSTM adds the temporal prediction function to the model. Its inputs are one-dimensional
vectors representing the real data features. Therefore, complicated and redundant calcula-
tions are avoided and reliance of the data on the temporal dimension is considered.

2.5. Experiment Setting
2.5.1. Dataset Preparation and Model Setting

China took less than a decade to establish the world’s largest air pollution monitoring
network after severe haze pollution events in 2013. As of 2020, there were ~1630 state-
controlled monitoring sites that required data to be released publicly. In this study, historical
air quality and meteorological data (past L-hour) were used to train the model to predict
hourly PM2.5 mass concentrations (future n-hour) at a given site. To this end, we focused
on Shanghai and considered air quality (including PM2.5, PM10, SO2, NO2, CO, and O3; in
µg m−3) and meteorological data (including temperature, relative humidity, wind direction,
and wind speed) measured at six stations (i.e., Pudong, Zhoupu, Huinan, Chuansha,
Zhangjiang, and Lingang). In total, 52,705 hourly data points were successfully obtained
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throughout the year 2020, in which 200-day and 166-day datasets were used for the training
(adjusting relevant parameters in our models) and validation (to test the performance of
our model) of our method, respectively. Details of the data we used in the study are shown
in Text S1, Table S1, and Figure S1 in the Supplementary Materials. For missing data, linear
spline imputation was used to interpolate and thus reconstruct a continuous and reliable
dataset (For details, refer to Text S2 of the Supplementary Materials). To elucidate the
correlation between pollutants and each weather variable, we did a correlation analysis of
each variable prior to the formal experiment, and as a result, we found various positive
and negative correlations between and within the pollutant data and weather data, with
details in Text S2 and Figure S2 of the Supplementary Materials. After that, air quality
and data were normalized in the range of [−1, 1] as an input to the CNN model, and
wind speed/direction data were encoded and normalized as input to the subsequent
network. The hyperparameters of the proposed model are contained in Text S3 of the
Supplementary Materials.

The problem is formed as follows: given air pollutant data
{

APt
s
}T

t=1, meteorological

data
{

Mt
s
}T

t=1, where S is the set of air quality monitoring stations {S1, S2, S3, . . . , Sn},
and T is the current timestamp, we aim to predict the AQI over the next K hours for{

PM2.5T+K
S

}K

k=1
from former air pollutant and meteorological data.

2.5.2. Inter-Comparison Parameters of Model Performance

Using the same dataset as the model input, the performance of the new model pro-
posed in this study was compared with benchmark methods used previously. Three
inter-comparison parameters were used to quantitatively evaluate their performance in
terms of PM2.5 prediction.

Root mean square error (RMSE). RMSE quantifies the deviation between the predicted
data and the actual data. A low value of RMSE indicates precise prediction.

Mean absolute error (MAE). MAE is the average value of absolute error, which can
better reflect the actual situation of prediction error.

Determination coefficient (R2). The R2 score measures how well a statistical model
predicts an outcome by calculating the proportion of variance in the dependent variable
that is predicted by the statistical model.

RMSE and MAE are negatively oriented, which means that lower scores imply the
better performance of models, while the R2 scores are positively oriented.

3. Results and Discussion
3.1. Temporal Prediction of Single Station

In this section, we first measure the performance of our method on the single station
time series prediction task in order to examine the effect of temporal feature cross-domain
feature extraction of HDL-learning. pollutant and meteorological data from a single station
over the past 1 and 3h are input to the model to predict the pollutant PM2.5 concentration
in the next time periods. We compared our model with the widely used models LSTM,
ARIMA, and SVR [25] on the prediction performance in a certain station. Figure 6 shows
the fitting trends of different models, and the results are shown in Table 1.

Table 1. Performance comparison of different models in a single station task.

Model RMSE MAE MAAPE R2 RWI

LSTM 1.88 1.25 27.34 0.87 0.82
ARIMA 12.26 11.92 30.67 0.77 0.71

SVR 9.30 10.35 19.43 0.81 0.78
HDL-learning 1.78 1.18 18.43 0.91 0.88



Atmosphere 2023, 14, 599 8 of 15

Atmosphere 2023, 14, x FOR PEER REVIEW 8 of 15 
 

The problem is formed as follows: given air pollutant data ሼ𝐴𝑃௦௧ሽ௧ୀଵ் , meteorological 
data ሼ𝑀௦௧ሽ௧ୀଵ் , where S is the set of air quality monitoring stations ሼ𝑆ଵ, 𝑆ଶ, 𝑆ଷ, … , 𝑆ሽ, and T 
is the current timestamp, we aim to predict the AQI over the next K hours for ሼ𝑃𝑀2.5ௌ் ାሽୀଵ  from former air pollutant and meteorological data. 

2.5.2. Inter-comparison Parameters of Model Performance 
Using the same dataset as the model input, the performance of the new model 

proposed in this study was compared with benchmark methods used previously. Three 
inter-comparison parameters were used to quantitatively evaluate their performance in 
terms of PM2.5 prediction. 

Root mean square error (RMSE). RMSE quantifies the deviation between the 
predicted data and the actual data. A low value of RMSE indicates precise prediction.  

Mean absolute error (MAE). MAE is the average value of absolute error, which can 
better reflect the actual situation of prediction error. 

Determination coefficient (R2). The R2 score measures how well a statistical model 
predicts an outcome by calculating the proportion of variance in the dependent variable 
that is predicted by the statistical model.  

RMSE and MAE are negatively oriented, which means that lower scores imply the 
better performance of models, while the R2 scores are positively oriented.  

3. Results and Discussion 
3.1. Temporal Prediction of Single Station 

In this section, we first measure the performance of our method on the single station 
time series prediction task in order to examine the effect of temporal feature cross-domain 
feature extraction of HDL-learning. pollutant and meteorological data from a single 
station over the past 1 and 3h are input to the model to predict the pollutant PM2.5 
concentration in the next time periods. We compared our model with the widely used 
models LSTM, ARIMA, and SVR [25] on the prediction performance in a certain station. 
Figure 6 shows the fitting trends of different models, and the results are shown in Table 1. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Fitting trends of the different models. (a) LSTM; (b) ARIMA; (c) SVR; (d) HDL-learning. Figure 6. Fitting trends of the different models. (a) LSTM; (b) ARIMA; (c) SVR; (d) HDL-learning.

As can be seen from Figure 5, our model not only accurately predicts the peak, but also
fits the trend of PM2.5 concentrations more accurately. Due to the violent fluctuations in the
true values, there is some error between the predicted and true values from our model, but
this is generally within tolerable limits.

Compared with other methods, the proposed model has lower values in RMSE and
MAE. The reduction of RMSE and MAE values indicates the reliability of our model in
time-series prediction tasks.

3.2. Spatiotemporal Prediction

After evaluating the prediction performance of the proposed model in a single station,
we further validate the spatiotemporal prediction efficiency of the proposed model under
equal geographical weight, which means that the spatial and temporal influence of the
surrounding sites on the target site are considered equally. We use the data from five
stations around the target site at previous times as input and predict the PM2.5 concentration
of the target site at the next time from the perspective. This test demonstrated that by
considering the spatial influence of the surrounding area, the accuracy of prediction has
been improved significantly. The results are shown in Figure 7. According to the figure,
our model predicted the PM2.5 concentrations in Chuansha, Huinan, Pudong and Zhoupu
with relative precision, while the fitting errors in Zhangjiang and Lingang are larger. The
large fitting error for Zhangjiang may be due to data fluctuations, while the large fitting
error for Lingang is due to the fact that the other stations are too far apart to learn valid
spatial information.
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Tables 2–6 separately present the RMSE, MAE and other comparisons of our method
with baseline spatiotemporal prediction approaches including CNN-LSTM [10], CNN,
ARIMA, and FDN-learningW. According to the results, on individual station prediction
tasks (Pudong, Lingang), HDL-learning has slightly poorer prediction accuracy compared
to FDN-learning [26], which is caused by the limitation of the CNN cross-domain infor-
mation extraction layer in learning the full picture of the intrinsic relationships between
pollutants. HDL-learning in general still performs huge advantages over RMSE, MAE and
R2 value.
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Table 2. Performance comparison of different models on RMSE.

Chuansha Zhangjiang Huinan Pudong Zhoupu Lingang Average

CNN-LSTM 1.88 3.19 2.19 0.70 1.97 2.88 2.13
CNN 21.45 12.51 10.59 6.93 35.72 11.12 16.39

ARIMA 28.20 29.42 29.95 27.01 32.62 30.25 29.57
FDN-learningW 1.80 3.18 1.79 0.69 2.15 0.82 1.73

Our model 1.78 3.17 1.25 0.70 1.94 0.84 1.61

Table 3. Performance comparison of different models on MAE.

Chuansha Zhangjiang Huinan Pudong Zhoupu Lingang Average

CNN-LSTM 1.25 2.25 1.25 0.46 1.25 2.34 1.44
CNN 16.22 9.76 6.86 4.84 39.44 8.33 14.24

ARIMA 17.29 17.47 16.35 16.70 17.15 17.57 17.09
FDN-learningW 1.23 2.14 1.03 0.43 1.27 1.25 1.22

Our model 1.18 2.13 0.83 0.46 1.26 1.29 1.19

Table 4. Performance comparison of different models on R2.

Chuansha Zhangjiang Huinan Pudong Zhoupu Lingang Average

CNN-LSTM 0.86 0.94 0.83 0.83 0.90 0.84 0.87
CNN 0.78 0.85 0.70 0.88 0.84 0.7 0.81

ARIMA 0.65 0.70 0.69 0.73 0.76 0.672 0.70
FDN-learningW 0.95 0.89 0.93 0.86 0.91 0.87 0.90

Our model 0.98 0.95 0.99 0.94 0.94 0.91 0.95

Table 5. Performance comparison of different models on MAAPE.

Chuansha Zhangjiang Huinan Pudong Zhoupu Lingang Average

CNN-LSTM 18.71 19.23 18.48 20.58 18.54 18.65 19.03
CNN 27.87 22.32 21.64 23.73 19.66 22.62 22.97

ARIMA 25.24 24.56 24.71 23.27 24.56 21.96 24.05
FDN-learningW 17.74 18.63 18.90 17.89 16.51 16.73 17.73

Our model 15.36 16.25 15.18 14.63 15.92 16.26 15.6

Table 6. Performance comparison of different models on RWI.

Chuansha Zhangjiang Huinan Pudong Zhoupu Lingang Average

CNN-LSTM 0.81 0.92 0.78 0.75 0.85 0.79 0.82
CNN 0.72 0.84 0.66 0.82 0.83 0.68 0.76

ARIMA 0.64 0.67 0.66 0.72 0.74 0.62 0.68
FDN-learningW 0.92 0.84 0.89 0.81 0.86 0.82 0.86

Our model 0.92 0.91 0.93 0.90 0.89 0.85 0.9

The results also demonstrate that our model, with the contribution of a CNN time-
series cross-domain feature extraction, achieves promising results in a geographically
unweighted prediction task, and that the atmospheric dynamic and temporal patterns are
well represented.

Performance of Gaussian Function Layer

Next, the Gaussian function was added in the calculation of the effective degree of
each neighbor station based on distance. The distance matrix and weight matrix is indicated
in Figures 8 and 9.
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To prove the efficiency of the Gaussian weight calculation layer on the accuracy of the
PM2.5 concentration prediction in the target station, the weighted model was compared
with two other models: one is the unweighted HDL-learning measured in the previous ex-
periment, and the other is the FDN-learning model, which also contains the geographically
weighted mechanism. The results are shown in Table 7.

Table 7. Performance comparison of weighted and unweighted models.

Station HDL-Learning
Unweighted FDN-Learning HDL-Learning

Weighted

RMSE MAE RMSE MAE RMSE MAE

Chuansha 1.78 1.18 1.74 1.14 1.55 0.96
Zhangjiang 3.17 2.34 2.85 2.17 2.45 1.96

Huinan 1.26 0.84 1.07 0.97 1.21 0.81
Pudong 0.71 0.46 0.70 0.44 0.69 0.44
Zhoupu 1.94 1.27 1.83 1.11 1.72 1.01
Lingang 0.84 1.30 0.78 1.12 0.76 1.12
Average 1.62 1.23 1.52 1.10 1.39 1.06

Compared with the unweighted HDL-learning model, the results show that error
metrics significantly decrease by 16% on RMSE and 15% on MAE with the incorporation
of the Gaussian weight framework. Compared with FDN-learning, the performance of
our model also showed advantages. The results demonstrate that with the addition of a
geographical weighting layer, the prediction competence of our model was enhanced in
terms of extracting geographical features between different datasets and achieving more
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accurate predictions, and the excellent performance of the CNN feature extraction module
ensures that our model is more accurate than comparable geographic weighted models.

The actual versus predicted values of the model in the form of a scatter plot are shown
in Figure 10. The plots show that most of the data points are close to the regression line and
have remarkably high correlation values, indicating the good fit of our model. Therefore,
the extraction of features by CNN networks and the practice of Gaussian functions to
handle geolocation information are reasonable in this work.
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(e) Zhoupu corr = 0.948; (f) Lingang corr = 0.932.

4. Conclusions

Operating a reliable air quality forecasting model in an urban area is one of the
most important tools for health protection. The accurate prediction of air quality requires
accurate modelling of temporal patterns in air quality data as well as the precise analysis
of interactions between pollutants and meteorological data from the cross-domain aspect.
We proposed a deep learning method to accomplish this by putting together the newly
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designed CNN, Gaussian weight layer, and LSTM in a hierarchical architecture. The main
contributions of our model are as follows:

To take spatial and temporal factors which influence the PM2.5 concentration at station
level into consideration, we leveraged data from multiple sources, including air pollutants
and meteorological data from six sites covering the main area of the Pudong district. A huge
improvement over previous studies was the utilization of high-frequency meteorological
data and pollutant data from an official source.

We calculated weights by Gaussian function and applied them to different site data,
which fully considers the spatial and temporal influence of surrounding sites on the target
site. Our method can be extended to predict PM2.5 concentration in any area.

Our innovative use of CNNs to extract cross-domain features and time-dependent
features for different dimensional inputs in a single site has been shown to be accurate and
efficient in experiments, with the memory function of the LSTM network explaining the
dependence of the data on the time dimension. This improves the accuracy of the model’s
time series prediction results.

The application of the dataset in Shanghai demonstrates the improved performance of
the proposed method over classic models for next-hour air quality prediction.

The HDL-learning model was trained and validated for forecasting the air quality
of six counties in Pudong, Shanghai. When compared with the baseline geographically
unweighted approaches, our method showed huge improved accuracy, and it reduced the
error by at least 15%. Furthermore, our model showed consistent performance in predicting
instances among all counties. Therefore, the proposed method can be utilized to provide
valuable support to the city administration and to trigger early warnings for adverse air
quality events. Our model also has some limitations, including that the CNN network is
still limited in extracting deeper variable associations and the Gaussian function is still
crude in modelling the influence of the geographical location between sites. In the future,
ensemble-based approaches will be explored and incorporated along with the proposed
model for further improvement in the prediction performance of the proposed framework.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14030599/s1, Text S1: Air quality and meteorological data
used in the modeling study; Figure S1: location of city’s air quality monitoring station; Table S1: Air
quality and meteorological data used in the modeling study; Text S2: Preprocess and correlation
analysis of the raw data; Figure S2: Correlation matrix for SO2, PM2.5, NOX, Wind speed, Pressure,
and Humidity; Text S3: Introduction of our model setting.
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