Cyclone Separator for Air Particulate Matter Personal Monitoring: A Patent Review
Abstract
:1. Introduction
State-of-the-Art Personal Devices for Air PM
2. Materials and Methods
2.1. Patents Article Review Search Methodology
2.2. Data Sources and Patents Search Strategy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACSM | Aerosol Chemical Speciation Monitor |
EPA | Environmental Protection Agency |
FEM | Federal Equivalency Methods |
FRM | Federal Reference Methods |
IARC | International Agency for Research on Cancer |
IPC | International Patent Classifications |
NAAQS | Ambient Air Quality Standards |
NIOSH | Occupational Safety and Health |
PM | Particulate matter |
SCC | Sharp Cut Cyclone |
VSCC | Very Sharp Cut Cyclone |
WHO | World Health Organization |
WIPO | World Intellectual Property Organization |
References
- Stewart, B.W.; Kleihues, P. World Cancer Report; IARC Press: Lyon, France, 2003. [Google Scholar]
- Kloog, B.; Ridgway, P.; Koutrakis, B.; Coull, A.; Schwartz, J.D. Long- and short term exposure to PM2.5 and mortality. Epidemiology 2013, 24, 555–561. [Google Scholar] [CrossRef]
- Knibbs, L.D.; Cole-Hunter, T.; Morawska, L. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 2011, 45, 2611–2622. [Google Scholar] [CrossRef] [Green Version]
- E Neumann, J.; Amend, M.; Anenberg, S.; Kinney, P.L.; Sarofim, M.; Martinich, J.; Lukens, J.; Xu, J.-W.; Roman, H. Estimating PM2.5-related premature mortality and morbidity associated with future wildfire emissions in the western US. Environ. Res. Lett. 2021, 16, 035019. [Google Scholar] [CrossRef]
- Broome, R.A.; Powell, J.; Cope, M.E.; Morgan, G. The mortality effect of PM2.5 sources in the Greater Metropolitan Region of Sydney, Australia. Environ. Int. 2020, 137, 105429. [Google Scholar] [CrossRef] [PubMed]
- European Commission; Directorate General for Environment. Chapter 1—The Health cost of Environmental Pollution. In What Are the Health Costs of Environmental Pollution? 21st ed.; Publications Office: Luxembourg, 2018; Volume 1, pp. 8–10. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Environmental Protection Agency. Air Monitoring, Measuring and Emissions Research. EPA. Available online: https://www.epa.gov/ (accessed on 2 January 2023).
- Gilliam, J.; Hall, E. Reference and Equivalent Methods Used to Measure National Ambient Air Quality Standards (NAAQS) Criteria Air Pollutants—Volume I.; U.S. Environmental Protection Agency: Washington, DC, USA, 2016; EPA/600/R-16/139.
- Hoffmann, A.C.; Stein, L. Introduction/Removal of Particles from Gases. In Gas Cyclones and Swirl Tubes: Principles, Design and Operation, 2nd ed.; Springer: Berlin, Germany, 2008; Volume 1, pp. 6–12. [Google Scholar]
- Galperin, V.; Shapiro, M. Cyclones as dust concentrators. J. Aerosol Sci. 1999, 30, S897–S898. [Google Scholar] [CrossRef]
- Thorn, R. Reengineering the cyclone separator. Met. Finish. 1998, 96, 30. [Google Scholar] [CrossRef]
- Brar, L.S.; Sharma, R.; Elsayed, K. The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone. Powder Technol. 2015, 286, 668–677. [Google Scholar] [CrossRef]
- Brar, L.S.; Sharma, R.P.; Dwivedi, R. Effect of Vortex Finder Diameter on Flow Field and Collection Efficiency of Cyclone Separators. Part. Sci. Technol. 2014, 33, 34–40. [Google Scholar] [CrossRef]
- Fu, P.-B.; Wang, F.; Yang, X.-J.; Ma, L.; Cui, X.; Wang, H.-L. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation. Environ. Sci. Technol. 2017, 51, 1587–1594. [Google Scholar] [CrossRef]
- Avci, A.; Karagoz, I. Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. J. Aerosol Sci. 2003, 34, 937–955. [Google Scholar] [CrossRef]
- Lim, K.; Kim, H.; Lee, K. Comparative performances of conventional cyclones and a double cyclone with and without an electric field. J. Aerosol Sci. 2004, 35, 103–116. [Google Scholar] [CrossRef]
- Talbi, K.; Belghar, N.; Donnot, A.; Nemouchi, Z. An experimental study and a numerical simulation of the turbulent flow under the Vortex Finder of a cyclone separator. J. Appl. Fluid Mech. 2011, 4, 69–75. [Google Scholar]
- Wójtowicz, R.; Wolak, P.; Wójtowicz-Wróbel, A. Numerical and Experimental Analysis of Flow Pattern, Pressure Drop and Collection Efficiency in a Cyclone with a Square Inlet and Different Dimensions of a Vortex Finder. Energies 2020, 14, 111. [Google Scholar] [CrossRef]
- El-Batsh, H.M. Improving cyclone performance by proper selection of the exit pipe. Appl. Math. Model. 2012, 37, 5286–5303. [Google Scholar] [CrossRef]
- Zahir, M.Z.; Heo, J.-E.; Yook, S.-J. Effects of Three-partitioned Horizontal Inlet and Clean Air on Collection Efficiency and Wall Loss of Slit Virtual Impactors. Aerosol Air Qual. Res. 2018, 18, 1131–1140. [Google Scholar] [CrossRef]
- Zhao, B.; Shen, H.; Kang, Y. Development of a symmetrical spiral inlet to improve cyclone separator performance. Powder Technol. 2004, 145, 47–50. [Google Scholar] [CrossRef]
- Babaoğlu, N.U.; Hosseini, S.H.; Ahmadi, G.; Elsayed, K. The effect of axial cyclone inlet velocity and geometrical dimensions on the flow pattern, performance, and Acoustic Noise. Powder Technol. 2022, 407, 117692. [Google Scholar] [CrossRef]
- Bernardo, S.; Mori, M.; Peres, A.; Dionísio, R. 3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles. Powder Technol. 2006, 162, 190–200. [Google Scholar] [CrossRef]
- Martignoni, W.P.; Bernardo, S.; Quintani, C.L. Evaluation of cyclone geometry and its influence on performance parameters by computational fluid dynamics (CFD). Braz. J. Chem. Eng. 2007, 24, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.M.; Özkan, M. Numerical Investigation of The Effects of Cone Tip Diameters on The Efficiency of a Cyclone Separator. Eur. J. Tech. 2020, 10, 395–401. [Google Scholar] [CrossRef]
- Xiang, R.; Lee, K. Numerical study of flow field in cyclones of different height. Chem. Eng. Process.—Process Intensif. 2005, 44, 877–883. [Google Scholar] [CrossRef]
- Nenu, R.K.T.; Yoshida, H.; Fukui, K.; Yamamoto, T. Separation performance of sub-micron silica particles by electrical hydrocyclone. Powder Technol. 2009, 196, 147–155. [Google Scholar] [CrossRef]
- Balestrin, E.; Decker, R.; Noriler, D.; Bastos, J.; Meier, H. An alternative for the collection of small particles in cyclones: Experimental analysis and CFD modeling. Sep. Purif. Technol. 2017, 184, 54–65. [Google Scholar] [CrossRef]
- Ogawa, A.; Hironaka, A.; Kato, T.; Seito, O. Velocity distributions of gas flow and the separation efficiency of the semi-spherical cyclone. Adv. Powder Technol. 1991, 2, 191–212. [Google Scholar] [CrossRef]
- Kenny, L.C.; Merrifield, T.; Mark, D.; Gussman, R.; Thorpe, A. The Ddevelopment and Designation Testing of a New USEPA-Approved Fine Particle Inlet: A Study of the USEPA Designation Process. Aerosol Sci. Technol. 2004, 38, 15–22. [Google Scholar] [CrossRef]
- Jiao, J.; Zheng, Y.; Wang, J.; Sun, G. Experimental and numerical investigations of a dynamic cyclone with a rotary impeller. Chem. Eng. Process.—Process Intensif. 2008, 47, 1861–1866. [Google Scholar] [CrossRef]
- Raoufi, A.; Shams, M.; Kanani, H. CFD analysis of flow field in square cyclones. Powder Technol. 2009, 191, 349–357. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Wang, L.; Chen, G.; Li, J.; Li, X. Structure and performance of the circumfluent cyclone. Powder Technol. 2010, 200, 158–163. [Google Scholar] [CrossRef]
- World Health Organization. Ambient (outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 29 December 2022).
- Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook; U.S. Environmental Protection Agency: Washington, DC, USA, 2014; EPA/600/R-14/159 (NTIS PB2015-100610).
- Koehler, K.A.; Peters, T.M. New Methods for Personal Exposure Monitoring for Airborne Particles. Curr. Environ. Health Rep. 2015, 2, 399–411. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Proposed Decision for the Reconsideration of the National Ambient Air Quality Standards for Particulate Matter (PM). Available online: https://www.epa.gov/pm-pollution/proposed-decision-reconsideration-national-ambient-air-quality-standards-particulate (accessed on 9 January 2023).
- AEROCET 831. Handheld Particle Counter; Met One Instruments Inc.: Grants Pass, OR, USA, 2019; Available online: https://metone.com/wp-content/uploads/2020/01/AEROCET-831-9800-Rev-C.pdf (accessed on 29 December 2022).
- MIE pDR-1500. Instruction Manual; Thermofisher Scientific Inc.: Franklin, MA, USA, 2008; Available online: https://tools.thermofisher.com/content/sfs/manuals/EPM-manual-PDR1500.pdf (accessed on 29 December 2022).
- DC1100. Air Quality Monitor with PC Interface; Dylos Corporation: Riverside, CA, USA, 2022; Available online: http://www.dylosproducts.com/dcairqumowip.html (accessed on 29 December 2022).
- microAeth®/AE51. microAeth AE51 Specifications Sheet; Aeth Labs: San Francisco, CA, USA, 2016; Available online: https://aethlabs.com/microaeth/ae51/tech-specs (accessed on 29 December 2022).
- TSI. The SidePak™ AM520 and AM520i Personal Aerosol Monitor; TSI Incorporated: Shoreview, MN, USA, 2022; Available online: https://tsi.com/getmedia/5a43fcf0-eb4d-41d9-8cc1-ac3603654277/SidePak_AM520-AM520i_US_5001737_RevC_Web?ext=.pdf (accessed on 29 December 2022).
- Peters, T.M.; Gussman, R.A.; Kenny, L.C.; Vanderpool, R.W. Evaluation of PM2.5 Size Selectors Used in Speciation Samplers. Aerosol Sci. Technol. 2001, 34, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Caplan, K.J.; Doemeny, L.J.; Sorenson, S.D. Performance characteristics of the 10 mm cyclone respirable mass sampler: Part I—monodisperse studies. Am. Ind. Hyg. Assoc. J. 1977, 38, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Bartley, D.L.; Chen, C.-C.; Song, R.; Fischbach, T.J. Respirable Aerosol Sampler Performance Testing. Am. Ind. Hyg. Assoc. J. 1994, 55, 1036–1046. [Google Scholar] [CrossRef]
- Huawei, W. Cyclone Separator for Gas Particles and Gas Particles Detection. CN Patent 215931601U, 1 March 2022. [Google Scholar]
- Solomon, P.A. Low-Flow Size-Selective Inlet for Air Quality Sensors. U.S. Patent 20210405007A1, 30 December 2021. [Google Scholar]
- Hensesn, J. Autonomous Ambient Air Sampling System for Monitoring. U.S. Patent 10775354B2, 15 September 2020. [Google Scholar]
- Yanhui, W. Gas Particulate Matter Detection System (Utility Model). CN Patent 210690331U, 5 June 2020. [Google Scholar]
- Yongzhao, L. A Kind of Cyclone Separator. CN Patent 209697194U2, 29 November 2019. [Google Scholar]
- Velge, F. Particulate Matter Measuring Apparatus. U.S. Patent 20190339185, 7 November 2019. [Google Scholar]
- Qi, C. Automatically Switch Sampling Apparatus for Atmospheric Particulate Matter. CN Patent 208953340U, 7 June 2019. [Google Scholar]
- Goohs, K.J. Particulate Matter Monitor. EU Patent 2569069B1, 2 October 2019. [Google Scholar]
- Tan, Z. Method and Apparatus for a Portable PM2.5 Monitoring Device. U.S. Patent 9945768B, 14 April 2018. [Google Scholar]
- Miller-Lionberg, D.D. Portable Air Sampling Device. U.S. Patent 20170370809, 28 December 2017. [Google Scholar]
- Tamura, A. Measurement Device and Measurement Method. U.S. Patent 20170191974, 6 July 2017. [Google Scholar]
- Xiaowei, L. Measure the Particle Diameter distribution of super low concentration dust. China Patent 106872316A, 20 June 2017. [Google Scholar]
- Lad, N. Ash Detector. U.S. Patent 2544285, 17 May 2017. [Google Scholar]
- Zhongyang, L. System and Method for Producing High-Time Diluted PM 2.5 Aerosol. CN Patent 103566840B, 29 April 2015. [Google Scholar]
- Limin, Z. Online Monitoring System for Atmospheric Aerosol. CN Patent 104142289A, 12 November 2014. [Google Scholar]
- Jian, Z. Fine Particulate Matter Removal Device and Method with Combined Action. CN Patent 104128047A, 5 November 2014. [Google Scholar]
- Uang, S. Portable Nanoparticle Sampler. U.S Patent 20140060213, 6 March 2014. [Google Scholar]
- Bohua, D. Instrument for Continually and Automatically Monitoring Atmospheric Fine Particles. CN Patent 202916165U, 1 May 2013. [Google Scholar]
- Chen, T.H.B. Air-Sampling Device and Method of Use. U.S Patent 20120160010, 28 June 2012. [Google Scholar]
- Keinan, A. Substance Detector with Cyclone. U.S Patent 20110159596, 30 June 2011. [Google Scholar]
- Limin, Z. Device for Collecting and Monitoring Particles of Solid Source Discharged Gas. CN Patent 1330958C, 8 August 2007. [Google Scholar]
- Shinohara, M. Particulate Matter Concentration Measuring Apparatus. JP Patent 1841044, 4 October 2006. [Google Scholar]
- Gussman, R. Ambient Particulate Sampler Inlet Assembly. U.S Patent 20060000297A1, 5 January 2006. [Google Scholar]
- Difurio, G. Automatic Point Source Biological Agent Detection System. AU Patent 2003239506, 11 September 2003. [Google Scholar]
- Conrad, E. Apparatus and Method for Separating Particles from a Cyclonic Fluid Flow. U.S Patent 6221134, 24 April 2001. [Google Scholar]
- Columbia Scient, Ind. Aerial Prospecting. UK Patent 1446760, 18 August 1976.
- Barringer Research, LTD. Method and Apparatus for Transferring Particles from One Fluid Stream. UK Patent 1417481, 10 December 1975.
- Cominco, LTD. Rock Sampling Tool. UK Patent 1391373, 23 April 1975.
- Stalinslaw, B. Monitoring Dust Concentration. UK Patent 1268709, 29 March 1972. [Google Scholar]
- Koyama, D.; Wada, Y.; Nakamura, K.; Nishikawa, M.; Nakagawa, T.; Kihara, H. An ultrasonic air pump using an acoustic traveling wave along a small air gap. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 57, 253–261. [Google Scholar] [CrossRef]
- Elsayed, K. Optimization of the cyclone separator geometry for minimum pressure drop using Co-Kriging. Powder Technol. 2015, 269, 409–424. [Google Scholar] [CrossRef]
- EPA. Design and Calibration of the EPA PM2.5 Well Impactor Ninety-Six (wins), 07-Jun-2004. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=74052 (accessed on 29 December 2022).
- Tsai, P.J.; Uang, S.N.; Wang, S.M.; Wu, T.N.; Shih, T.S. Exposure assessment in the Workplace. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; pp. 163–190. [Google Scholar]
- Monitoring by Control Technique-Cyclone-Document. EPA/452/B-02-001, October 2000. Available online: https://www.epa.gov/sites/default/files/2020-11/documents/cs2ch4_3.pdf (accessed on 29 December 2022).
- Alfano, B.; Barretta, L.; Del Giudice, A.; De Vito, S.; Di Francia, G.; Esposito, E.; Formisano, F.; Massera, E.; Miglietta, M.L.; Polichetti, T. A Review of Low-Cost Particulate Matter Sensors from the Developers’ Perspectives. Sensors 2020, 20, 6819. [Google Scholar] [CrossRef]
ID | Monitor | Operating Principle | Maker | Precision | Detection Limit | Cyclone |
---|---|---|---|---|---|---|
A | 831 Aerocet handle particle counter [39] | Light scattering for mass concentration | MetOne Instruments | N/A | 0.5 µm | N/A |
B | Personal DataRAM, model pDR1500 [40] | Light scattering for mass concentration | Thermo Scientific | ±0.2% of reading or ±0.5 µg/m3 | 0.1 µm | Cyclone SCC y GK |
C | DC1100 air quality monitor [41] | Light scattering with a laser particle counter | Dylos Corp. | N/A | 0.5 µm | N/A |
D | microAeth®® model AE51 [42] | Light absorption, 880 nm | Aeth Labs; Black Carbon | ±0.1 μg/m3 | <0.16 µg/m3, 2.5 mL/s, 60-s avg | N/A |
E | Sidepack personal aerosol monitor AM520 [43] | Light scattering for mass concentration | TSI Incorporated | ±0.1 μg/m3 | 0.1 µm | Cyclone type DORRR-Oliver |
Inclusion | Exclusion |
---|---|
Must be an application for fine particle separation less than PM10 | Non-personal monitoring applications |
Air–gas cyclones | Industrial applications |
High separation efficiency |
Mesh Terms | Hits | Meet Inclusion and Exclusion Criteria | Source |
---|---|---|---|
“Cyclone,” “Cyclone Separator,” “Matter monitor,” “Centrifugal Separator,” “Particulate matter,” “PM2.5” | 582 | 19 | Free search in Google Patents |
IC: G01N 15/06 and Cyclone and Separator and Air | 75 | 4 | Patentscope by WIPO (IPC) |
IC: G01N 15/04 and IC: G01N 15/10 and Cyclone and Separator and Air | 80 | 2 | Patentscope by WIPO (IPC) |
IC: G01N 5/00 and Cyclone and Separator and Air | 124 | 3 | Patentscope by WIPO (IPC) |
ID | Country | Patent # | Patent Name | Date | Inventor | Company | ICP | Detection Technology | Flow Rate Lpm | Cut-Point µm | Cyclone Improvement |
---|---|---|---|---|---|---|---|---|---|---|---|
A | CN | 215931601U | Cyclone separator for gas particles and gas particles detection | 01/03/2022 | Wu Huawei | Thermo Fisher Scientific | B04C/514 | Not Mentioned | Not Mentioned | 2.5 and 10 | Dual cyclone controlled by a passing valve in the same body |
B | US | 20210405007A1 | Low-flow size-selective inlet for air quality sensors | 30/12/2021 | Paul Alan Solomon | USA Government | G01N 1/28 | Light Scattering, quartz balance | 0.05 to 1 | 1 to 10 | Ultra-low flow real cyclone and a virtual cyclone operating together in a parallel array |
C | US | 10775354B2 | Autonomous ambient air sampling system for monitoring | 15/09/2020 | Jaron Hensen | Brigham University | G01N/30 | Mass Spectrometer | 4 to 8 | 2.5 | Cyclone adapted to a heater chamber |
D | CN | 210690331U | Gas PM detection system (utility model) | 05/06/2020 | Wang Yanhui | Shenzhen Eyesky Technology | G01N 15/06 | Light Scattering | Not Mentioned | 2.5 and 10 | Cyclones include a dehydrator unit to remove humidity from the inlet gas |
E | CN | 209697194 U2 | A kind of cyclone separator | 29/11/2019 | Li Yongzhao Li Binjie | Qindao Chuangke Equipment | B04C 5/00 | N/A | Not Mentioned | 5 to10 | The cyclone inlet air flow tangential angle (45° to 75°) |
F | US | 20190339185 | PM measuring apparatus | 07/11/2019 | Francois Velge | Kolisch Hartwell, P.C | G01N 15/06 | Light Scattering | 0.5 to 3 | 0.8 to 2.2 | Cyclone has adaptation to work or just filter air at the outlet |
G | CN | 208953340U | Automatically switch sampling apparatus for atmospheric particulate matter | 07/06/2019 | Chen Qi | Peking University | G01N/24 | ASCM | 4.5 | 0 to 3 or 0–2.5 | Cyclone has different inlet nozzle |
H | EP | 2569069B1 | PM monitor | 10/04/2019 | Kevin J. Goohs | Thermo Fisher Scientific | G01N 1/22 | Light scattering | Not mentioned | 2.5 and 10 | Cyclone generates gas with a determinate PM concentration |
I | US | 9945768B | Method and apparatus for a portable PM2.5 monitoring device | 14/04/2018 | Zhongchao Tan | N/A | G01N/22 | Light scattering | Not mentioned | 2.5 | The inlet ports were manufactured to include an angle of less than about 15° to minimize particle loss during the sampling process |
J | US | 20170370809 | Portable air sampling device | 28/12/2017 | Daniel D. Miller-Lionberg | Colorado State University Research Foundation | G01N 1/22 | Light scattering | N/A | 1 to 10 | The cyclone body belongs to the impactor cap |
K | US | 20170191974 | Measurement device and measurement method | 06/07/2017 | Akitake Tamura | TOKYO ELECTRON LIMITED | G01N 21/64 | Light scattering, plasma emission spectroscopy | Not mentioned | Max 10 | Cyclone separates particles to combine with a liquid fluorescent target |
L | CN | 106872316A | Measure the particle diameter distribution of super low-concentration dust | 20/06/2017 | Liu Xiaowei | Huazhong University | G01N 15/06 | Light scattering | Not mentioned | 2.5 | No mentioned more features, such as ultralow flow |
M | GB | 2544285 | Ash detector | 17/05/2017 | Neetin Lad | GreenBank Terotech LTD | G01N 15/14 | Microscopy detector | Not mentioned | 0 to 2.5 | Dual cyclone operation |
N | CN | 103566840B | System and method for producing high-time diluted PM2.5 aerosol | 29/04/2015 | Luo Zhongyang | Zhejiiang University | B01J 13/00 | Light scattering | 85 to 90 | 2.5 | Cyclone separator to get mass concentration |
O | CN | 104142289A | Online monitoring system for atmospheric aerosol | 12/11/2014 | Zeng Limin | Peking University | G01N 15/06 | Microscopy detector | Not Mentioned | 0.3 to 5 | Cyclone separator to get mass concentration |
P | CN | 104128047A | Fine PM removal device and method with combined action | 05/11/2014 | Zhang Jian | Central South University | B01D 45/16 | Quantitative mass spectrometer | N/A, 800 to 3000Hz acoustic pump | 2.5 | Present an acoustic agglomerator and a cyclonic separation synergy fine particle method |
Q | US | 20140060213 | Portable nanoparticle sampler | 06/03/2014 | Shi-nian Uang | Muncy, Geissler, Olds & Lowe, P.C | G01N 1/22 | N/A | 2 | 0.1 to 4 | Complete sampler with a cyclone combined with a micro-orifice impactor |
R | CN | 202916165U | Instrument for continually and automatically monitoring fine atmospheric particles | 01/05/2013 | Dai Bohua | Wuhan Yite Environmental Protection Tech | G01N 15/06 | Beta ray method | Not mentioned | 2.5 | Cyclone separator as a secondary separator with impactors |
S | US | 20120160010/20070068223 | Air-sampling device and method of use | 28/06/2012 | The Hsun B. Chen | USA Health and Human Services | G01N1/22 | Light scattering | 2 | 1.94 | No mentioned |
T | US | 20110159596 | Substance detector with cyclone | 30/06/2011 | Alex Keinan | N/A | G01N33/22 | Light scattering | Not mentioned | 0.1 to 8 | The inventor has discovered that adjusting a nozzle angle relative to the cyclone axis can increase the efficiency with which substances are caught |
U | CN | 1330958C | Device for collecting and monitoring particles of solid source discharged gas | 08/08/2007 | Zeng Limin | Peking University | G01N 1/20 | Light scattering | Not mentioned | 2.5 and 10 | Cyclones are used in series, obtaining two cut-off points |
V | JP | 1841044 | PM concentration measuring apparatus | 04/10/2006 | Masara Shinohara | Horiba LTD | G01N 15/06 | Light scattering | Not mentioned | 2.5 | Cyclone is used as particle distributor PM2.5 inside of apparatus for particulate density tester |
W | US | 20060000297A1 | The ambient particulate sampler inlet assembly | 05/01/2006 | Robert Gussman | BGI Instruments | G01N/24 | Light scattering | 5 | 1 to 10 | Cyclone with a different kind of inlet nozzle jet to increase collection efficiency |
X | AU | 2003239506 | Automatic point source biological agent detection system | 11/09/2003 | Difurio Gabriel A. | Notthrop Grumman Corporation | C12M/134 | Light scattering | 800 | 1 to 15 | Added a dry cyclone collector as a pre-separator base |
Y | US | 6221134 | Apparatus and method for separating particles from a cyclonic fluid flow | 24/04/2001 | Ernest Conrad | G.B.D Corp | B01 45/16 | Light scattering | Not mentioned | Max 10 | Series cyclones array for increased efficiency |
Z | GB | 1446760 | Aerial prospecting | 18/08/1976 | Columbia Scient Ind Inc | G01N/22 | Not mentioned | Not mentioned | 2.5 to 10 | Cyclones using inlet ducts of flying aircraft | |
AA | GB | 1417481 | Method and apparatus for transferring particles from one fluid stream | 10/12/1975 | N/A | Barringer Research LTD | B04c/514 | Light scattering | Not mentioned | Max 10 | Cyclone separator for transferring solids to liquid before analysis in air pollution |
AB | GB | 1391373 | Rock sampling tool | 23/04/1975 | N/A | Cominco LTD | E21C 35/22 | N/A | 566 | No Mentioned | First portable cyclone |
AC | GB | 1268709 | Monitoring dust concentration | 29/03/1972 | Badzioch Stalinslaw | Coal Industry Patents LTD | G01N/22 | N/A | 113 to 183 | N/A | Cyclone used as control of PM in plant |
Cyclones | Impactors |
---|---|
Indoor and outdoor use | Indoor use |
Approved for monitoring by EPA | Wind speed sensitive |
Low cost | Low cost |
Gases and liquids (hydrocyclones) | Gas only |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-García, M.O.; Reyna, M.A.; Camarillo-Ramos, M.A.; Reyna-Vargas, M.A.; Avitia, R.L.; Cuevas-González, D.; Osornio Vargas, A.R. Cyclone Separator for Air Particulate Matter Personal Monitoring: A Patent Review. Atmosphere 2023, 14, 624. https://doi.org/10.3390/atmos14040624
Rivera-García MO, Reyna MA, Camarillo-Ramos MA, Reyna-Vargas MA, Avitia RL, Cuevas-González D, Osornio Vargas AR. Cyclone Separator for Air Particulate Matter Personal Monitoring: A Patent Review. Atmosphere. 2023; 14(4):624. https://doi.org/10.3390/atmos14040624
Chicago/Turabian StyleRivera-García, M. O., M. A. Reyna, M. A. Camarillo-Ramos, M. A. Reyna-Vargas, Roberto L. Avitia, Daniel Cuevas-González, and A. R. Osornio Vargas. 2023. "Cyclone Separator for Air Particulate Matter Personal Monitoring: A Patent Review" Atmosphere 14, no. 4: 624. https://doi.org/10.3390/atmos14040624
APA StyleRivera-García, M. O., Reyna, M. A., Camarillo-Ramos, M. A., Reyna-Vargas, M. A., Avitia, R. L., Cuevas-González, D., & Osornio Vargas, A. R. (2023). Cyclone Separator for Air Particulate Matter Personal Monitoring: A Patent Review. Atmosphere, 14(4), 624. https://doi.org/10.3390/atmos14040624