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Abstract: The surface texture of urbanized regions is altered by the replacement of natural vegetated
surfaces with hardened pavement surfaces, which have been described as a heat source for the
formation of urban heat islands. Grasslands may store rainfall in their roots and leaves for later
cooling, but this has received little attention. This study investigated the radiant flux and temperature
of a tropical grassland throughout the summer in order to understand the albedo, long-wave radiation,
short-wave radiation, and surface temperature of the grassland over 10 days. The grassland had
an albedo of 0.13, which did not fluctuate during the day compared to the albedo of other surfaces
in metropolitan areas. Even if the local weather changes considerably, this albedo does not alter
significantly. The surface temperature and the air temperature above the grassland increase linearly
with the upwelling reflectance, incident solar radiation, and upwelling long-wave radiation. These
two temperatures do not correspond with downwelling long-wave radiation, which is influenced by
cloud cover in the sky. However, the peaks of these temperatures lag behind the incident shortwave
radiation and net radiation that reaches the grassland surface. The finding that the thermal properties
of grasslands could be harnessed to reduce the heat absorbed by urban surfaces provides valuable
insights into the grasslands’ potential to mitigate the impacts of urbanization on temperature.

Keywords: air temperature; surface temperature; reflectance; solar radiation; long-wave radiation;
lag effect

1. Introduction

Urbanization has altered local environments by increasing impermeable surfaces,
building artificial structures, fragmenting the landscape, and more [1–4]. These surfaces
include pavements, parking lots, concrete roofing, and other hardened surfaces. In the
summertime, when exposed to sunlight, these surfaces typically absorb more sunlight than
they used to and thus stay hotter [5]. Without evaporation, the heat released from these sur-
faces is sensible heat. It has been reported that the replacement of natural ground surfaces
by man-made surfaces has contributed to urban heat islands (UHIs) in metropolitan areas,
where the local air is several degrees warmer than the surrounding rural areas [6,7]. Under-
standing the thermal conditions of these surfaces is greatly important to find engineering
solutions that can alleviate the urban heat island.

UHIs are a growing concern in cities around the world. UHIs occur when a city’s
buildings, roads, and other infrastructure absorb and retain heat from the sun, creating a
bubble of warm air that can be several degrees warmer than the surrounding countryside.
In recent decades, the thermal characteristics of urban surfaces have been well studied.
Oke’s group [8–10] studied the energetic basis of the urban heat island by analyzing
the inherent complexity of the city-atmosphere system. A group of studies has been

Atmosphere 2023, 14, 649. https://doi.org/10.3390/atmos14040649 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14040649
https://doi.org/10.3390/atmos14040649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0001-8738-2766
https://doi.org/10.3390/atmos14040649
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14040649?type=check_update&version=1


Atmosphere 2023, 14, 649 2 of 12

devoted to understanding energy partitions on the surfaces of bald roofs, green roofs, and
ventilation roofs [11–19]. At the same time, the temperatures of different paved surfaces
have been simulated and measured in order to understand the sensible heat, temperature
development, and heat storage of these surfaces and to conclude the development of urban
heat islands [20–23]. On a small scale, the temperature and thermal flux of these surfaces
has been logged by designed sensors. Qin et al. [24] found that the temperature of a paved
surface increased linearly with the absorbed solar radiation. Santamouris and Fiorito [25]
found that an increase in an urban albedo of 0.1 resulted in a decrease in the ambient
temperature of 0.09 ◦C. Over the last decade, many studies have attempted to find effective
engineered solutions to cool urban surface temperatures as a strategy to mitigate urban heat
island effects [1,22,26,27]. In addition, the thermal properties of these surfaces have been
studied using remote sensing [28–31]. While remote sensing can visualize the temperature
of urban texture on large scale, the anisotropy of the urban textures cannot be well decoded
by remote sensing [32–34].

While the thermal properties of hardened surfaces have been widely studied, few
studies have reported radiation and the heat of surfaces such as lakes and grassland. As
an important urban texture, grasslands can hold water in their grassroots and leaves for
subsequent cooling via transpiration and evaporation [35,36]. These meadows are planted
with low-lying native grasses and wildflowers that are designed to absorb and store heat
during the day and release it back into the atmosphere at night. By providing shade and
insulation from the sun’s rays, urban meadows can help keep the temperature in cities
cooler and reduce the intensity of UHIs. In addition, by planting vegetation and providing
water features, UHI meadows have the potential to reduce temperatures in the built
environment and create a more pleasant urban environment for citizens. Understanding
these benefits is important to estimate the contribution of grassland to the urban heat
island. The reasons why the radiation and heat of these surfaces receive little attentions lie
in the fact that the temperature of these surfaces is hard to measure precisely, and these
surfaces are the natural heat sink for urban heat islands [37–39]. Since few studies have
been reported on the radiation and heat of grassland, it remains unknown in the albedo,
upwelling long-wave radiation, surface temperature, and near-surface air temperature
of grasslands. Therefore, this study measures the radiation and temperature of tropical
grassland in the summertime to fill this gap, further understand its contribution to the
UHIs and explore potential solutions for mitigating this effect.

2. Methods

To measure the radiation and temperature of tropical grassland, a four-component
net radiometer (CNR4) manufactured by Kipp & Zonen, a company based in Delft, the
Netherlands, with a measurement range from −2000 to 2000 W/m2 for net radiation and
0 to 2000 W/m2 for solar radiation and accuracy of ±5%, was applied in the experiment.
The solar radiation (I), reflective solar radiation (R), upwelling long-wave radiation (U),
and downwelling long-wave radiation (D) from a typical grassland were logged. The
grassland was located at the western campus of Guangxi Minzu University (E108.20◦,
N22.84◦, Figure 1), Nanning, Guangxi. The grassland was a square shape, with a length
of 200 m and a width of 150 m. The north sits a small hill (about 10 m in height) covered
with shrubs, and to both the east and the south is a 7-story building. Around this site is the
campus, which is surrounded by buildings with 7–10 stories. The grassland is trimmed
monthly. At the measurement time, the grass had a height of 10 cm approximately.

A radiometer was leveled at 0.5 m above the grassland to log I, R, U, and D at the center
of the grassland. The radiometer was cantilevered by a rod that extended 2.0 m from the
supporting tripod to minimize the impact of the tripod on the readings of the radiometer.
There was a temperature sensor with an accuracy of ±0.1 ◦C embedded in the radiometer
to log the temperature of the air (Ta) around the radiometer sensor. This temperature
represents the air temperature (Ta) at 0.6 m above the grassland. While grassland surface
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temperature of grassland is hard to measure directly, it can be back-calculated via the
upwelling long-wave radiation (U) according to the Stefan-Boltzmann law:

Ts =
4

√
U
εσ

(1)

where ε (−) is the emissivity of the grassland, which is usually taken as ε = 0.94 [40];
σ = 5.67 × 10−8 W·m−2·K−4 is the Stefan-Boltzmann constant. It is noted that the Ts esti-
mated from Equation (1) is the temperature of the composite of grassland stem, grassland
root, grassland leaves, and the exposed substrate soil.
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Figure 1. The measuring site (a) Aerial view of the testing site, (b) Photo about the setting of
the radiometers.

The observation spanned from 29 July to 10 August 2022, which was a time spell of
about two weeks. During this time, most days were sunny days, with between one and two
days being partly cloudy and with one day showing heavy showers on and off throughout
the day. Electric wires connected to sensors were routed to a case, which was covered
to prevent it from being overturned by wind, becoming wet by rain, and exposed to the
sun. The signals of all sensors were logged at an interval of one minute by a Campbell
CR3000 compliment with AM16/32B 32-Channel Relay Multiplexer, both of which are
manufactured by Campbell Scientific, Inc., a company based in Logan, Utah, United States.
While I, R, U, and D can be measured directly, the net radiation (Rn) is a useful parameter to
the thermal balance of the grassland. Rn stands for the net radiation absorbed by a surface
and can be calculated by:

Rn = I + D − U − R (2)

It was noted that the data were measured in Beijing time, but the plotted data are
shown in local standard solar time. In this study, MATLAB software, developed by Math-
Works based in Natick, Massachusetts, United States, was employed to assist in the analysis
of the data, with Adobe Illustrator developed by Adobe Inc., based in San Jose, California,
United States for image post-processing.

3. Results
3.1. Upwelling and Downwelling Radiation of the Grassland

The observed variation in upwelling and downwelling short-wave radiation followed
a distinct pattern. As can be seen in Figure 2a, the daily peak incident solar radiation
varied significantly, ranging from 200 W/m2 on rainy days, 600 W/m2 on cloudy days, to
1000 W/m2 on sunny days. This reflects the typical weather conditions that are encountered.
Similarly, the reflected radiation (R) follows a pattern similar to the incident radiation (I).
The upwelling and downwelling long-wave radiations also exhibit a coincident variation,
with a peak occurring in the afternoon, as shown in Figure 2b. It is noteworthy that the
downwelling long-wave radiation (D) is smaller than the upwelling long-wave radiation
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due to the fact that the sky is consistently cooler than the grassland. Using the equation
presented in Equation (2), the net radiation can be plotted, as shown in Figure 2c. The net
radiation (Rn) shows a coincidental variation with the incident solar radiation. Additionally,
the measured air temperature (Ta), shown in Figure 2d, seems to vary in conjunction with
long-wave radiations.
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In practice, the albedo of grassland is important to estimate the solar absorption of the
ground texture. The albedo, on a scale of 0–1, is the ratio of the incident solar radiation to
the reflected solar radiation. Usually, this ratio varies diurnally, with a low value at noon
and a large value when the sun is in a low position. Due to these variations, it is hard to
specify the albedo of a grassland. Here, we summated the daily incident solar radiation
and the daily reflected solar radiation (Figure 3a) and found that the summated reflection
(ΣRd) varied coincidently with the summated incident (ΣId). We then plotted ΣRd against
ΣId and regressed them using a linear correlation of y = kx (Figure 3b). A correlation
of ΣRd = 0.13 ΣId was found, with regression confidence of 0.99. Except for some small
deviations when the ΣId was of high value, the line passed the original coordinate well.
This correlation meant that the albedo of this grassland was about 0.13. This albedo was
lower than the albedo measured by Takebayashi and Moriyama, who found that the albedo
of the grassland varied from 0.19 to 0.24 [41]. Usually, the albedo of a surface varies over the
course of days. However, in this grassland, the ΣRd varied just along the y = kx line, with
very few deviations even on cloudy days (ΣId is a low value). As a result, it was concluded
that the albedo of the grassland was insensitive to variations in the local weather.



Atmosphere 2023, 14, 649 5 of 12

Atmosphere 2023, 14, x FOR PEER REVIEW 5 of 13 
 

 

correlation meant that the albedo of this grassland was about 0.13. This albedo was lower 
than the albedo measured by Takebayashi and Moriyama, who found that the albedo of 
the grassland varied from 0.19 to 0.24 [41]. Usually, the albedo of a surface varies over the 
course of days. However, in this grassland, the ΣRd varied just along the y = kx line, with 
very few deviations even on cloudy days (ΣId is a low value). As a result, it was concluded 
that the albedo of the grassland was insensitive to variations in the local weather. 

ΣDd did not have a clear correlation with ΣUd. Similar to the short-wave radiation (I 
and R), it seemed that the upwelling and downwelling of long-wave radiations varied 
coincidently (Figure 4a). We thereby summated the daily downwelling long-wave radia-
tion (ΣDd) and the daily upwelling long-wave radiation (ΣUd). It was found that ΣDd did 
not correlate with ΣUd clearly (Figure 4b). The reason for this is possible because the 
downwelling long-wave radiation was strongly affected by the clouds. During the meas-
urement spell, the sky was occasionally full of clouds. This is especially the case when the 
summation on 31 July was viewed, as demonstrated by the ΣUd peaks and the ΣDd nadirs 
(Figure 4a). Revisiting the incident solar radiation on 31 July, one can find on this date, 
the incident solar radiation was seldom blocked by clouds, weather that has low down-
welling long-wave radiation, and a great upwelling long-wave radiation. This correlation 
means that it is hard to model the downwelling radiation using the upwelling long-wave 
radiation. 

 
Figure 3. Id and ΣRd. (a) Daily cumulative solar radiation and reflected solar radiation, (b) ΣId cor-
relates well with ΣRd, meaning that the grassland had an albedo of 0.13. 

 
Figure 4. Dd and ΣUd. (a) Daily cumulative long-wave radiation, (b) ΣDd does not correlate with 
ΣUd. 

  

Figure 3. Id and ΣRd. (a) Daily cumulative solar radiation and reflected solar radiation, (b) ΣId

correlates well with ΣRd, meaning that the grassland had an albedo of 0.13.

ΣDd did not have a clear correlation with ΣUd. Similar to the short-wave radiation
(I and R), it seemed that the upwelling and downwelling of long-wave radiations varied
coincidently (Figure 4a). We thereby summated the daily downwelling long-wave radi-
ation (ΣDd) and the daily upwelling long-wave radiation (ΣUd). It was found that ΣDd
did not correlate with ΣUd clearly (Figure 4b). The reason for this is possible because
the downwelling long-wave radiation was strongly affected by the clouds. During the
measurement spell, the sky was occasionally full of clouds. This is especially the case
when the summation on 31 July was viewed, as demonstrated by the ΣUd peaks and the
ΣDd nadirs (Figure 4a). Revisiting the incident solar radiation on 31 July, one can find
on this date, the incident solar radiation was seldom blocked by clouds, weather that has
low downwelling long-wave radiation, and a great upwelling long-wave radiation. This
correlation means that it is hard to model the downwelling radiation using the upwelling
long-wave radiation.
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Figure 4. Dd and ΣUd. (a) Daily cumulative long-wave radiation, (b) ΣDd does not correlate
with ΣUd.

3.2. Radiation and Air Temperature of the Grassland

The daily mean near-ground air temperature (Ta,d) was corrected with ΣId and with
ΣRd. It was found that Ta,d increased with ΣId, with a slope of 0.29 and a regression
coefficient of 0.75 (Figure 5a). This is reasonable because the near-surface air temperature
is heated up by the sensible heat from the ground. Similarly, Ta,d increased with ΣId,
producing a slope of 2.29 and a regression coefficient of 0.86 (Figure 5b). This correlation
means that the near-surface is heated up by the incident solar radiation. It is surprising that
when the ΣId was of great value, the data deviated from the linear correlation. Intuitively,
when the ΣId was higher, the impact of solar radiation on the near-ground air temperature
was more apparent. In contrast, the impact of solar radiation weakens during the day
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with low ΣId. The reason for this pattern of deviation from linear correlation needs
further investigation.
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The daily mean near-ground air temperature (Ta,d) did not correlate with the cumula-
tive downwelling long-wave radiation (ΣDd) but correlated to the cumulative upwelling
long-wave radiation (ΣUd). As shown in Ta,d against the ΣDd (Figure 6a), the data are
scattered, and it is hard to draw a confident correlation. The reason for this is that the ΣDd
is primarily determined by the sky cloud cover but Ta,d, by the near-surface temperate.
Figure 6b plotted the Ta,d against the ΣUd. It was found that the Ta,d correlated well
with the ΣUd, with a slope of 1.76 (m2 K/MJ) and a coefficient of determination (R2) of
0.96. This correlation is reasonable because the air temperature measured in this study
was 0.6 m above the ground, which is directly heated up by the sensible heat discharged
from grassland.
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3.3. Radiation and Surface Temperature of the Grassland

Using the correlation in Equation (1), the grassland surface temperature corresponding
to the upwelling long-wave radiation (U) can be computed. While U was logged in an
interval of one minute, we averaged the U in the daily mean to reduce the randomness of
the data. Figure 7a plots the daily surface temperature (Ts,d) against the daily downwelling
solar radiation (ΣId). It was found that the ground Ts,d increased linearly with the ΣId. This
is reasonable because the ground surface is heated up by solar radiation. The plot deviates
somewhat from the linearity, meaning that other factors, such as air temperature and wind
speed, also influence the ground surface temperature. Figure 7b further plots the daily
reflected radiation (ΣRd) against the daily ground surface temperature (Ts,d). Geometrically,
Ts,d also varies linearly with ΣRd except for some differences in the regression coefficient.
The slope was 2.31, which is the production of 0.29 (Figure 7a) and the reflectance of the
grassland (0.13, in Figure 3). Differently, in Figure 8, the daily grassland surface temperature
(Ts,d) did not vary linearly with the daily downwelling long-wave radiation (ΣDd). This
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was expected because the downwelling long-wave radiation was not controlled by the
cloud in the sky but by the grassland surface temperature by the incident solar radiation.
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Figure 8. The daily grassland surface temperature (Ts,d) did not vary linearly with daily downwelling
long-wave radiation ΣDd.

3.4. Ts,d Increases Linearly with Ta,d

The air at 0.5 m above the grassland was directly heated up by the grassland. Figure 9a
shows the daily temperature of the grassland surface and of the air at 0.5 m above the
grassland. It was found that Ts,d varied in the same pattern as the Ta,d (Figure 9a). The
similarity meant that the Ta,d was directly heated by the heat released from the grassland
as the air received sensible heat from the grassland. It further suggests that reducing the
grassland surface temperature is critical when cooling the local air. As indicated in Figure 9b,
Ta,d increased linearly with Ts,d, a slope of 0.88, and a regression coefficient of 0.96. The
data do not deviate from the linearity even when the solar radiation is of high value. As
indicated in Figure 7, Ts,d linearly increases the incident solar radiation, suggesting that
reducing the solar absorption could effectively cool the air above the grassland.
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3.5. Temperature-Radiation Lag Effect of the Grassland

The correlation between the temperatures and the radiation of the grassland was
further searched. Figure 10a plots the Rn,h against Ta,h on 29 July, which was a sunny
day during the observations. It was found that the Ta,h did not vary linearly with the
hourly net radiation; rather, the data were distributed elliptically along the major axis
of an ellipse. Using the correlation of Equation (3), where a1, a2 and a3 are regressed
coefficients, we found a lag effect coefficient of a2 = −0.03 and a regression coefficient of
0.91. Similarly, Figure 10b plots the Rn,h against Ts,h on 29 July, which obeys Equation (4),
and a lag effect coefficient of b2 = −0.027 and a regression coefficient of 0.97 was found.
These two regressions mean that both the grassland surface temperature and the above air
temperature varied coincidently, without a notable lag effect. However, both these two
temperatures varied by 0.03 behind the net radiation, which was about 3.0 h, according to
Qin and Hiller [42]. The lag effect of temperature and net radiation on 5 August, which was
a cloudy day, was further plotted (Figure 11). It was found that the lag-effect coefficient was
a2 = −0.018 and b2 = −0.016, respectively. This is reasonable because, on a cloudy day, both
the air temperature and the grassland temperature are controlled less by solar radiation
and more by ground heat storage. Other parameters related to the temperature-radiation
lag effect of the grassland can be found in Table 1.

Ta,h = a1Rn,h + a2
∂Rn,h

∂t
+ a3 (3)

Ts,h = b1Rn,h + b2
∂Rn,h

∂t
+ b3 (4)
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Table 1. Regressed coefficients characterizing temperature-radiation lag effect of the grassland.

Date
Ta,h=a1Rn,h+a2

∂Rn,h
∂t +a3 Ts,h=b1Rn,h+b2

∂Rn,h
∂t +b3

a1 a2 a3 b1 b2 b3

29 July 0.020 −0.047 27.753 0.027 −0.039 31.710
30 July 0.021 −0.048 28.388 0.028 −0.039 32.190
31 July 0.021 −0.033 28.182 0.029 −0.029 31.736

1 August 0.023 −0.034 27.358 0.031 −0.031 31.642
2 August 0.023 −0.046 28.471 0.032 −0.004 32.547
3 August 0.024 −0.064 29.557 0.032 −0.054 33.550
4 August 0.016 −0.017 29.024 0.025 −0.017 33.428
5 August 0.004 −0.018 25.658 0.017 −0.016 30.713
6 August 0.013 −0.005 26.222 0.016 −0.003 30.884
7 August 0.025 −0.028 25.955 0.023 −0.022 30.686
8 August 0.022 −0.019 25.679 0.020 −0.013 30.531
9 August 0.019 −0.030 24.963 0.017 −0.019 29.778

4. Discussion

This study aimed to measure the radiation and temperature of a tropical grassland
during summertime, with the goal of understanding its contribution to the urban heat
island (UHI) effect and exploring potential solutions for mitigating this impact. The results
of the study showed that the albedo of the grassland was about 0.13, which is lower
than that measured by others [41]. The variation in the upwelling and downwelling of
short-wave radiation followed a distinct pattern, with a daily peak incident solar radiation
ranging from 200 W/m2 on rainy days to 1000 W/m2 on sunny days. The upwelling
and downwelling long-wave radiations exhibited a coincidental variation, with a peak
occurring in the afternoon. The downwelling long-wave radiation was smaller than the
upwelling long-wave radiation, likely due to the fact that the sky was consistently cooler
than the grassland. The net radiation coincided with the incident solar radiation, and the
measured air temperature varied in conjunction with the long-wave radiations.

Our findings are consistent with previous research on grasslands and their potential
role in mitigating UHIs [43,44]. The low albedo of the grassland suggests that it is an
important absorber of solar radiation, which is essential for reducing the amount of heat
absorbed by the surface. This supports the idea that grasslands can act as natural heat sinks
for UHIs. By absorbing and storing heat during the day, grasslands can help to keep the
temperature in cities cooler and reduce the intensity of UHIs.

Additionally, this study’s results suggest that grasslands may be a useful tool for
reducing the impact of UHIs on the built environment. By planting vegetation and provid-
ing water features, UHI meadows have the potential to reduce temperatures in the built
environment and create a more pleasant urban environment for citizens. These findings
are consistent with previous research on green roofs and other green infrastructures that
have been shown to reduce the impact of UHIs [45].

However, some limitations to this study should be noted. For instance, a specific
grassland was focused on in this study, and thus, it would be interesting to investigate how
different types of grassland, with varying vegetation density and water content, affect their
thermal properties. Furthermore, studying the influence of cloud cover on the thermal
properties of grassland and further shedding light on the mechanisms driving temperature
variations in different weather conditions were not mentioned in this research. Another
promising avenue for future research would be to explore the impact of anthropogenic
activities, such as grazing or mowing, on the thermal properties of grasslands and their abil-
ity to store and release heat. Finally, employing more advanced measurement techniques,
such as thermal imaging, would enable a more in-depth understanding of the spatial and
temporal variability of grassland temperatures and their underlying processes.
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5. Conclusions

A radiometer was placed 0.5 m above a grassland to log downwelling and upwelling
radiation in order to better understand the thermal dynamics of a grassland. A temperature
of 0.5 m above the grassland was also recorded. The grassland surface temperature
was regressed by estimating upwelling long-wave radiation using the Stefan-Boltzmann
formula. Based on the analysis of the relationship between solar radiation (I), reflective solar
radiation (R), upwelling long-wave radiation (U), and downwelling long-wave radiation
(D) from a typical grassland, the preliminary conclusions below were obtained.

(1) The grassland has an albedo of around 0.13. While the albedo of a surface normally
fluctuates with incoming radiation, the albedo of the grassland varies less over the
course of a day.

(2) The temperature of the air above the grassland changes linearly with downwelling
short-wave radiation and upwelling long-wave radiation in this grassland but fluctu-
ates arbitrarily with downwelling long-wave radiation. This is due to the fact that the
cloud in the sky controls the downwelling long-wave radiation.

(3) The grassland surface temperature and near-surface air temperature fluctuate concur-
rently, both of which lag behind incoming shortwave radiation and net radiation.
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Nomenclature

Variables Unit Physical Meanings
I W/m2 Incident solar radiation
R W/m2 Reflected solar radiation
U W/m2 Upwelling long-wave radiation
D W/m2 Downwelling long-wave radiation
Rn W/m2 Net radiation
T ◦C Temperature
Σx - The daily summation of variable x
Subscript
s Ground surface
a Air
h Hourly
d Daily
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