Multiscale Flood Disaster Risk Assessment in the Lancang-Mekong River Basin: A Focus on Watershed and Community Levels
Abstract
:1. Introduction
2. Methods and Data
2.1. Lancang-Mekong River Basin
2.2. Indicator-Based Assessment
2.3. Hydrodynamic Model-Based Assessment
2.4. Date Preparation
2.4.1. Hazard Data
- Watershed scale
- 2.
- Community Scale
2.4.2. Vulnerability Data
- Watershed scale
- 2.
- Community-scale
3. Results
3.1. Watershed Scale
3.2. Community Scale
4. Discussion
4.1. Flood Disaster Risk at Watershed Scale
4.2. Flood Disaster Risk at Community Scale
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO (World Health Organization). Floods. Available online: https://www.who.int/health-topics/floods/#tab=tab_1 (accessed on 20 April 2022).
- Wilby, R.L.; Keenan, R. Adapting to flood risk under climate change. Prog. Phys. Geogr. 2012, 36, 348–378. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; She, D.; Wang, G.; Zhang, Q. Future projections of flooding characteristics in the Lancang-Mekong River Basin under climate change. J. Hydrol. 2021, 602, 126778. [Google Scholar] [CrossRef]
- Delgado, J.M.; Apel, H.; Merz, B. Flood trends and variability in the Mekong river. Hydrol. Earth Syst. Sci. 2010, 14, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood Mapping and Flood Dynamics of the Mekong Delta: ENVISAT-ASAR-WSM Based Time Series Analyses. Remote Sens. 2013, 5, 687–715. [Google Scholar] [CrossRef] [Green Version]
- Balica, S.; Dinh, Q.; Popescu, I.; Vo, T.Q.; Pham, D.Q. Flood impact in the Mekong delta, Vietnam. J. Maps 2014, 10, 257–268. [Google Scholar] [CrossRef]
- Trung, N.H.; Thanh, V.Q. Vulnerability to flood in the Vietnamese Mekong Delta: Mapping and uncertainty assessment. J. Environ. Sci. Eng. B 2013, 2, 229. [Google Scholar]
- UNDRR (United Nations for Disaster Risk Reduction). Terminology: Disaster Risk. Available online: https://www.undrr.org/terminology/disaster-risk (accessed on 29 May 2020).
- Lei, Y.; Huang, J.; Cui, Y.; Jiang, S.-H.; Wu, S.; Ching, J. Time capsule for landslide risk assessment. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 2023, 1–22. [Google Scholar] [CrossRef]
- Ntajal, J.; Lamptey, B.L.; Mahamadou, I.B.; Nyarko, B.K. Flood disaster risk mapping in the Lower Mono River Basin in Togo, West Africa. Int. J. Disaster Risk Reduct. 2017, 23, 93–103. [Google Scholar] [CrossRef]
- Cui, P.; Lei, Y. Disaster Risk Assessment. In Glance at the Silk Road Disaster Risk; Springer Nature: Singapore, 2022; pp. 61–106. [Google Scholar]
- Tang, C.; Zhu, J. GIS-based flash flood disaster risk zoning. Acta Geogr. Sin. 2005, 60, 87–94. [Google Scholar]
- Romali, N.S.; Yusop, Z.; Ismail, A.Z. Hydrological Modelling using HEC-HMS for Flood Risk Assessment of Segamat Town, Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2018, 318, 012029. [Google Scholar] [CrossRef]
- Erena, S.H.; Worku, H.; De Paola, F. Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. J. Hydrol. Reg. Stud. 2018, 19, 224–239. [Google Scholar] [CrossRef]
- Mishra, B.K.; Rafiei Emam, A.; Masago, Y.; Kumar, P.; Regmi, R.K.; Fukushi, K. Assessment of future flood inundations under climate and land use change scenarios in the Ciliwung River Basin, Jakarta. J. Flood Risk Manag. 2018, 11, S1105–S1115. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.S.; Julien, P.Y.; Fullerton, W.T. Two-dimensional water flood and mudflow simulation. J. Hydraul. Eng. 1993, 119, 244–261. [Google Scholar] [CrossRef]
- Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting future urban waterlogging-prone areas by coupling the maximum entropy and FLUS model. Sustain. Cities Soc. 2022, 80, 103812. [Google Scholar] [CrossRef]
- Boin, A.; Busuioc, M.; Groenleer, M. Building E uropean U nion capacity to manage transboundary crises: Network or lead-agency model? Regul. Gov. 2014, 8, 418–436. [Google Scholar] [CrossRef]
- Boin, A. Meeting the challenges of transboundary crises: Building blocks for institutional design. J. Contingencies Crisis Manag. 2009, 17, 203–205. [Google Scholar] [CrossRef]
- Shi, P.; Xu, W.; Ye, T. World Atlas of Natural Disaster Risk; Springer: Berlin/Heidelberg, Germany, 2015; pp. 309–323. [Google Scholar]
- Muis, S.; Güneralp, B.; Jongman, B.; Aerts, J.C.; Ward, P.J. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Gouldby, B.; Sayers, P.; Mulet-Marti, J.; Hassan, M.A.A.M.; Benwell, D. A methodology for regional-scale flood risk assessment. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2008; Volume 161, pp. 169–182. [Google Scholar]
- Sinha, R.; Bapalu, G.V.; Singh, L.K.; Rath, B. Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of analytical hierarchy process (AHP). J. Indian Soc. Remote Sens. 2008, 36, 335–349. [Google Scholar] [CrossRef]
- Su, W.; Zhang, X.; Wang, Z.; Su, X.; Huang, J.; Yang, S.; Liu, S. Analyzing disaster-forming environments and the spatial distribution of flood disasters and snow disasters that occurred in China from 1949 to 2000. Math. Comput. Model. 2011, 54, 1069–1078. [Google Scholar] [CrossRef]
- Hall, J.W.; Dawson, R.J.; Sayers, P.B.; Rosu, C. A methodology for national-scale flood risk assessment. In Proceedings of the Institution of Civil Engineers-Water Maritime and Engineering; The Institution of Civil Engineers by Thomas Telford Ltd.: London, UK, 2003; Volume 156, pp. 235–248. [Google Scholar]
- Tran, P.; Marincioni, F.; Shaw, R.; Sarti, M.; Van An, L. Flood risk management in Central Viet Nam: Challenges and potentials. Nat. Hazards 2007, 46, 119–138. [Google Scholar] [CrossRef]
- MRC (Mekong River Commission). Flood and Drought [EB/OL]. 29 April 2020. Available online: https://www.mrcmekong.org/our-work/topics/flood-and-drought/ (accessed on 29 April 2020).
- The Emergency Events Database, EM-DAT. Available online: http://www.emdat.be/emdat_db/ (accessed on 17 April 2020).
- FLO-2D, FLO-2D Software Inc., 2-Dimensional Flood Routine Model Manual [EB/OL]. 1 October 2004. Available online: https://flo-2d.com/ (accessed on 17 August 2019).
- Dimitriadis, P.; Tegos, A.; Oikonomou, A.; Pagana, V.; Koukouvinos, A.; Mamassis, N.; Koutsoyiannis, D.; Efstratiadis, A. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. J. Hydrol. 2016, 534, 478–492. [Google Scholar] [CrossRef]
- Ghiggi, G.; Humphrey, V.; Seneviratne, S.I.; Gudmundsson, L. GRUN: An observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst. Sci. Data 2019, 11, 1655–1674. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Xu, M.; Chen, D. GIS supported river network density extraction and its application in flood hazard analysis. J. Nat. Disasters 2001, 129–132. [Google Scholar]
- Wu, Y.; Zhong, P.-A.; Zhang, Y.; Xu, B.; Ma, B.; Yan, K. Integrated flood risk assessment and zonation method: A case study in Huaihe River basin, China. Nat. Hazards 2015, 78, 635–651. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, P.; Jin, W.; Zhang, Z.; Wang, H.; Bazai, N.A.; Li, Y.; Liu, D.; Pasuto, A. Changes in hydrological behaviours triggered by earthquake disturbance in a mountainous watershed. Sci. Total Environ. 2020, 760, 143349. [Google Scholar] [CrossRef]
- NOAA. Gridded Climate Datasets: Precipitation. Available online: https://psl.noaa.gov/data/gridded/tables/precipitation.html (accessed on 3 March 2018).
- GRDC. River Discharge Data. Available online: https://gcos.wmo.int/en/news/river-discharge-data-are-now-available-online (accessed on 13 April 2018).
- OpenStreetMap Project. Available online: https://www.openstreetmap.org/ (accessed on 14 January 2019).
- STRM. DEM. Available online: https://www.earthdata.nasa.gov/sensors/srtm (accessed on 14 December 2018).
- Jaafar, H.H.; Ahmad, F.A.; El Beyrouthy, N. GCN250, new global gridded curve numbers for hydrologic modeling and design. Sci. Data 2019, 6, 145. [Google Scholar] [CrossRef] [Green Version]
- MRC. MRC Data. Available online: https://portal.mrcmekong.org/home (accessed on 9 September 2020).
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- World Pop. Open Spatial Demographic Data and Research. Available online: https://www.worldpop.org/ (accessed on 15 September 2020).
- UN. UN Data: GDP Per Capita. Available online: https://data.un.org/ (accessed on 13 April 2019).
- World Bank. World Bank Open Data. Available online: https://data.worldbank.org.cn/ (accessed on 10 April 2019).
- WHO. Global Health Expenditure in GDP. Available online: https://apps.who.int/nha/database/Select/Indicators/en (accessed on 10 April 2019).
- Transparency International 1997 Corruption Perception Index—Press Release. Trends Organ. Crime 1997, 3, 84–87. [CrossRef]
- KOF Swiss Economic Institute. Globalization Index. Available online: https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html (accessed on 10 March 2019).
Data Category | Assessment Criteria | Data Source | Time of Access |
---|---|---|---|
Precipitation | Average annual precipitation | NOAA | 2018 |
River | Annual discharge | GRDC | 2018 |
Distance to river | OSM | 2019 | |
River density | 2019 | ||
Surface | Slope | SRTM | 2018 |
Elevation | |||
Runoff curve number | GCN250 | 2020 |
No | Country | Community | Hydrology Station | Flood | Discharge (m3/s) | ||
---|---|---|---|---|---|---|---|
Start | End | Min | Max | ||||
1 | China | Guan Lei | Jinghong | 2020/8/6 | 2020/8/7 | 821 | 1361 |
2 | Myanmar | Mong Yawng | Jinghong | 2020/8/6 | 2020/8/7 | 821 | 1361 |
3 | Myanmar | Mong Hpone | Chiang Sean | 2020/8/8 | 2020/8/9 | 2450 | 3294 |
4 | Thailand | Mae Ngeon | Chiang Sean | 2020/8/8 | 2020/8/9 | 2450 | 3294 |
5 | Thailand | Khong Chiam | Khong Chiam | 2020/8/5 | 2020/8/6 | 8001 | 10,104 |
6 | Cambodia | Stung Treng | Stung Treng | 2020/8/6 | 2020/8/7 | 14,933 | 18,490 |
Data Category | Assessment Criteria | Correlation with the Vulnerability | Data Source | Time of Access |
---|---|---|---|---|
Exposure | Population density | Positive | WP | 2020 |
GDP per capita | Positive | UN | 2019 | |
Road density | Positive | OSM | 2019 | |
Sensitivity | Child population density | Positive | WP | 2020 |
Elderly population density | Positive | WP | 2020 | |
Pregnancy population density | Positive | WP | 2020 | |
Multidimensional poverty index | Negative | UN | 2019 | |
Night light index | Negative | NOAA | 2019 | |
Human development index | Positive | UN | 2019 | |
Inequality-adjusted HDI | Positive | UN | 2019 | |
Education index | Negative | UN | 2019 | |
Adaptive capacity | Physician density per 1000 pop | Negative | WB | 2019 |
Global health expenditure in GDP | Negative | WHO | 2019 | |
Individuals using the internet | Negative | WB | 2019 | |
Access to electricity | Negative | WB | 2019 | |
Coverage of social insurance programs | Negative | WB | 2019 | |
Corruption perception index | Negative | TI | 2019 | |
Political stability/no violence | Negative | WB | 2019 | |
Globalization index | Negative | KOF Swiss Economic Institute | 2018 | |
Cooperation context index | Negative | Cooperacy Org. | 2019 |
Data Category | Assessment Criteria | Correlation with the Vulnerability | Data Source | Time of Access |
---|---|---|---|---|
Exposure | Population density | Positive | WP | 2020 |
Distance to river | Negative | OSM | 2018 | |
Land use | Positive | Google Earth | 2020 | |
Sensitivity | Female population density | Positive | WP | 2020 |
Child population density | Positive | 2020 | ||
Elderly population density | Positive | 2020 | ||
Knowledge level in DRR | Negative | Survey | 2020 | |
Disaster experience | Negative | 2020 | ||
Adaptive capacity | Access to early warnings | Negative | Survey | 2020 |
Access to disaster shelters | Negative | 2020 | ||
Access to disaster drills | Negative | 2020 | ||
Emergency response capacity | Negative | 2020 | ||
Capacity to understand emergency information | Negative | 2020 | ||
Willingness to evacuate | Negative | 2020 | ||
Evacuation behavior | Negative | 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Lei, Y. Multiscale Flood Disaster Risk Assessment in the Lancang-Mekong River Basin: A Focus on Watershed and Community Levels. Atmosphere 2023, 14, 657. https://doi.org/10.3390/atmos14040657
Wu S, Lei Y. Multiscale Flood Disaster Risk Assessment in the Lancang-Mekong River Basin: A Focus on Watershed and Community Levels. Atmosphere. 2023; 14(4):657. https://doi.org/10.3390/atmos14040657
Chicago/Turabian StyleWu, Shengnan, and Yu Lei. 2023. "Multiscale Flood Disaster Risk Assessment in the Lancang-Mekong River Basin: A Focus on Watershed and Community Levels" Atmosphere 14, no. 4: 657. https://doi.org/10.3390/atmos14040657
APA StyleWu, S., & Lei, Y. (2023). Multiscale Flood Disaster Risk Assessment in the Lancang-Mekong River Basin: A Focus on Watershed and Community Levels. Atmosphere, 14(4), 657. https://doi.org/10.3390/atmos14040657