Beyond Scale-by-Scale Equilibrium
Abstract
:1. Introduction
2. The Turbulence Problem
3. Turbulence Dissipation and Equilibrium Cascade
- (i)
- (ii)
- (iii)
- Predicting the power law decay of homogeneous isotropic turbulence (e.g., [39]);
- (iv)
- (v)
- (vi)
- (a)
- Local homogeneity and therefore zero average two-point turbulence production rate, zero average two-point interspace turbulence transport rate, and zero average two-point pressure gradient-velocity correlations at scale r;
- (b)
- Local stationarity and, therefore, zero average rate of change of the turbulent kinetic energy at scales smaller than r.
4. Non-Equilibrium Turbulence Dissipation Laws
5. Classification of Scale-by-Scale Non-Equilibria
5.1. Category A: Statistically Stationary and Homogeneous Turbulence
5.2. Category B: Non-Stationary Statistically Homogeneous Turbulence
5.3. Category C: Non-Homogeneous Statistically Stationary Turbulence with Two-Point Turbulence Production and without Two-Point Interspace Transport
5.4. Category D: Non-Homogeneous Statistically Stationary Turbulence with Negligible Two-Point Turbulence Production
5.5. Category E: Streamwise-Decaying Non-Homogeneous Turbulence with Negligible Two-Point Turbulence Production
5.6. Category F: External Intermittency: A Case of Extreme Fluctuating Non-Homogeneity and Non-Stationarity
6. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herring, J.R. Self-consistent-field approach to turbulence theory. Phys. FLuids 1965, 8, 2219. [Google Scholar] [CrossRef]
- Herring, J.R. Self-consistent-field approach to nonstationary turbulence. Phys. FLuids 1966, 9, 2106. [Google Scholar] [CrossRef]
- Herring, J.R. Statistical theory of quasi-geostrophic turbulence. J. Atmos. Sci. 1980, 37, 969–977. [Google Scholar] [CrossRef]
- Herring, J.R.; McWilliams, J.C. Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure: The effects of intermittency. J. Fluid Mech. 1985, 153, 229–242. [Google Scholar] [CrossRef]
- Herring, J.R.; Métais, O. Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 1989, 202, 97–115. [Google Scholar] [CrossRef]
- Valente, P.; Vassilicos, J.C. Universal dissipation scaling for non-equilibrium turbulence. Phys. Rev. Lett. 2012, 108, 214503. [Google Scholar] [CrossRef]
- Isaza, J.C.; Salazar, R.; Warhaft, Z. On grid-generated turbulence in the near- and far field regions. J. Fluid Mech. 2014, 753, 402–426. [Google Scholar] [CrossRef]
- Meldi, M.; Lejemble, H.; Sagaut, P. On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence. J. Fluid Mech. 2014, 756, 816–843. [Google Scholar] [CrossRef]
- Vassilicos, J.C. Dissipation in turbulent flows. Ann. Rev. Fluid Mech. 2015, 47, 95–114. [Google Scholar] [CrossRef]
- Hearst, R.J.; Lavoie, P. Decay of turbulence generated by a square-fractal-element grid. J. Fluid Mech. 2014, 741, 567–584. [Google Scholar] [CrossRef]
- Hearst, R.J.; Lavoie, P. Velocity derivative skewness in fractal-generated, non-equilibrium grid turbulence. Phys. Fluids 2015, 27, 071701. [Google Scholar] [CrossRef]
- Hearst, R.J.; Lavoie, P. Effects of multi-scale and regular grid geometries on decaying turbulence. J. Fluid Mech. 2016, 803, 528–555. [Google Scholar] [CrossRef]
- Nedić, J.; Tavoularis, S. Energy dissipation scaling in uniformly sheared turbulence. Phys. Rev. E 2016, 93, 033115. [Google Scholar] [CrossRef] [PubMed]
- Castro, I. Dissipative distinctions. J. Fluid Mech. 2016, 788, 1–4. [Google Scholar] [CrossRef]
- Horiuti, K.; Yanagihara, S.; Tamaki, T. Nonequilibrium state in energy spectra and transfer with implications for topological transitions and SGS modeling. Fluid Dyn. Res. 2016, 48, 021409. [Google Scholar] [CrossRef]
- Keylock, C.; Kida, S.; Peters, N. JSPS Supported Symposium on Interscale Transfers and Flow Topology in Equilibrium and Non-equilibrium Turbulence (Sheffield, UK, September 2014). Fluid Dyn. Res. 2016, 48, 020001. [Google Scholar] [CrossRef]
- Goto, S.; Vassilicos, J.C. Local equilibrium hypothesis and Taylor’s dissipation law. Fluid Dyn. Res. 2016, 48, 021402. [Google Scholar] [CrossRef]
- Goto, S.; Vassilicos, J.C. Unsteady turbulence cascades. Phys. Rev. E 2016, 94, 053108. [Google Scholar] [CrossRef]
- Nagata, K.; Saiki, T.; Sakai, Y.; Ito, Y.; Iwano, K. Effects of grid geometry on non-equilibrium dissipation in grid turbulence. Phys. Fluids 2017, 29, 015102. [Google Scholar] [CrossRef]
- Nedić, J.; Tavoularis, S.; Marusic, I. Dissipation scaling in constant-pressure turbulent boundary layers. Phys. Rev. Fluids 2017, 2, 032601. [Google Scholar] [CrossRef]
- Rubinstein, R.; Clark, T.T. ‘Equilibrium’ and ‘non-equilibrium’ turbulence. Theor. Appl. Mech. Lett. 2017, 7, 301–305. [Google Scholar] [CrossRef]
- Breda, M.; Buxton, O. Influence of coherent structures on the evolution of an axisymmetric turbulent jet. Phys. Fluids 2018, 30, 035109. [Google Scholar] [CrossRef]
- Meldi, M.; Sagaut, P. Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence. J. Turbulence 2018, 19, 390–413. [Google Scholar] [CrossRef]
- Sunita; Layek, G.C. Nonequilibrium turbulent dissipation in buoyant axisymmetric plume. Phys. Rev. FLuids 2021, 6, 104602. [Google Scholar] [CrossRef]
- Mora, D.O.; Pladellorens, E.M.; Turró, P.R.; Obligado, M.L. Energy cascades in active-grid-generated turbulent flows. Phys. Rev. Fluids 2019, 4, 104601. [Google Scholar] [CrossRef]
- Liu, F.; Lu, L.P.; Bos, W.J.T.; Fang, L. Assessing the nonequilibrium of decaying turbulence with reversed initial fields. Phys. Rev. Fluids 2019, 4, 084603. [Google Scholar] [CrossRef]
- Stein, V.P.; Kaltenbach, H.-J. Non-equilibrium scaling applied to the wake evolution of a model scale wind turbine. Energies 2019, 12, 2763. [Google Scholar] [CrossRef]
- Thiesset, F.; Danaila, L. The illusion of a Kolmogorov cascade. J. Fluid Mech. 2020, 902, F1. [Google Scholar] [CrossRef]
- Chongsiripinyo, K.; Sarkar, S. Decay of turbulent wakes behind a disk in homogeneous and stratified fluids. J. Fluid Mech. 2020, 885, A31. [Google Scholar] [CrossRef]
- Ortiz-Tarin, J.L.; Nidhan, S.; Sarkar, S. High-Reynolds-number wake of a slender body. J. Fluid Mech. 2021, 918, A30. [Google Scholar] [CrossRef]
- Saunders, D.C.; Britt, J.A.; Wunsch, S. Decay of the drag wake of a sphere at Reynolds number 105. Exp. Fluids 2022, 63, 71. [Google Scholar] [CrossRef]
- Steiros, K. Balanced nonstationary turbulence. Phys. Rev. E 2022, 105, 035109. [Google Scholar] [CrossRef] [PubMed]
- Steiros, K. Turbulence near initial conditions. Phys. Rev. Fluids 2022, 7, 104607. [Google Scholar] [CrossRef]
- Waclawczyk, M.; Nowak, J.L.; Malinowski, S. Nonequilibrium dissipation scaling in atmospheric turbulence. J. Phys. Conf. Series 2022, 2367, 012032. [Google Scholar] [CrossRef]
- Waclawczyk, M.; Nowak, J.L.; Siebert, H.; Malinowski, S. Detecting nonequilibrium states in atmospheric turbulence. J. Atmos. Sci. 2022, 79, 2757–2772. [Google Scholar] [CrossRef]
- Xiong, X.-L.; Laima, S.; Lui, H. Novel scaling laws in the nonequilibrium turbulent wake of a rotor and a fractal plate. Phys. Fluids 2022, 34, 065130. [Google Scholar] [CrossRef]
- Batchelor, G.K.; Proudman, I. The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Math. 1954, 7, 83–103. [Google Scholar] [CrossRef]
- Tennekes, H.; Lumley, J.L. A First Course in Turbulence; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Hunt, J.C.R.; Philips, O.M.; Williams, D. Turbulence and Stochastic Processes: Kolmogorov’s Ideas 50 Years on; The Royal Society: London, UK, 1991. [Google Scholar]
- Mathieu, J.; Scott, J. An Introduction to Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Lesieur, M. Turbulence in Fluids; Kluwer: Alphen aan den Rijn, The Netherlands, 1997. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Leschziner, M.A. Statistical Turbulence Modelling for Fluid Dynamics—Demystified: An Introductory Text for Graduate Engineering Students; Imperial College Press: London, UK, 2016. [Google Scholar]
- Townsend, A.A. The Structure of Turbulent Shear Flow; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- George, W.K. The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in turbulence; Cambridge University Press: Cambridge, UK, 1989; pp. 39–73. [Google Scholar]
- Vassilicos, J.C. From Tennekes & Lumley to Townsend and to George: A slow march to freedom. In Whither Turbulence and Big Data in the 21st Century; Pollard, A., Castillo, L., Danaila, L., Glauser, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Cafiero, G.; Vassilicos, J.C. Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets. Proc. R. Soc. Lond. A 2019, 475, 20190038. [Google Scholar] [CrossRef]
- Cafiero, G.; Vassilicos, J.C. Non-equilibrium scalings of the turbulent/non-turbulent interface speed in planar jets. Phys. Rev. Lett. 2020, 125, 174501. [Google Scholar] [CrossRef]
- Chen, J.; Vassilicos, J.C. Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence. J. Fluid Mech. 2022, 938, A7. [Google Scholar] [CrossRef]
- Beaumard, P.; Braganca, P.; Cuvier, C.; Steiros, K.; Vassilicos, J.C. Scale-by-scale non-equilibrium with Kolmogorov-like scalings in non-homogeneous stationary turbulence. Preprint 2023.
- Valente, P.; Vassilicos, J.C. The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys. Fluids 2015, 27, 045103. [Google Scholar] [CrossRef]
- Taylor, G.I. Statistical theory of turbulence. Proc. R. Soc. Lond. A 1935, 151, 421–444. [Google Scholar] [CrossRef]
- Goto, S.; Vassilicos, J.C. Energy dissipation and flux laws for unsteady turbulence. Phys. Lett. A 2015, 379, 1144–1148. [Google Scholar] [CrossRef]
- Apostolidis, A.; Laval, J.-P.; Vassilicos, J.C. Scalings of turbulence dissipation in space and time for turbulent channel flow. J. Fluid Mech. 2022, 946, A41. [Google Scholar] [CrossRef]
- Bos, W.J.T.; Rubinstein, R. Dissipation in unsteady turbulence. Phys. Rev. Fluids 2017, 2, 022601. [Google Scholar] [CrossRef]
- Alves-Portela, F.; Papadakis, G.; Vassilicos, J.C. Turbulence dissipation and the role of coherent structures in the near wake of a square prism. Phys. Rev. Fluids 2018, 3, 124609. [Google Scholar] [CrossRef]
- Larssen, H.S.; Vassilicos, J.C. Spatio-temporal fluctuations of interscale and interspace energy transfer dynamics in homogeneous turbulence. J. Fluid Mech. 2023. [Google Scholar] [CrossRef]
- Lundgren, T.S. Kolmogorov two-thirds law by matched asymptotic expansion. Phys. Fluids 2002, 14, 638. [Google Scholar] [CrossRef]
- Obligado, M.; Vassilicos, J.C. The non-equilibrium part of the inertial range in decaying homogeneous turbulence. Europhys. Lett. 2019, 127, 64004. [Google Scholar] [CrossRef]
- Meldi, M.; Vassilicos, J.C. Analysis of Lundgren’s matched asymptotic expansion approach to the Karman-Howarth equation using the EDQNM turbulence closure. Phys. Rev. Fluids 2021, 6, 064602. [Google Scholar] [CrossRef]
- Apostolidis, A.; Laval, J.-P.; Vassilicos, J.C. Turbulent cascade in fully developed turbulent channel flow. J. Fluid Mech. 2023. [Google Scholar]
- Chen, J.; Cuvier, C.; Foucaut, J.-M.; Ostovan, Y.; Vassilicos, J.C. A turbulence dissipation inhomogeneity scaling in the wake of two side-by-side square prisms. J. Fluid Mech. 2021, 924, A4. [Google Scholar] [CrossRef]
- Watanabe, T.; da Silva, C.B.; Nagata, K. Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence. J. Fluid Mech. 2019, 875, 321–344. [Google Scholar] [CrossRef]
- Watanabe, T.; da Silva, C.B.; Nagata, K. Scale-by-scale kinetic energy budget near the turbulent/non-turbulent interface. Phys. Rev. Fluids 2020, 5, 124610. [Google Scholar] [CrossRef]
- Zhou, Y.; Vassilicos, J.C. The energy cascade at the turbulent/non-turbulent interface. Phys. Rev. Fluids 2020, 5, 064604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassilicos, J.C. Beyond Scale-by-Scale Equilibrium. Atmosphere 2023, 14, 736. https://doi.org/10.3390/atmos14040736
Vassilicos JC. Beyond Scale-by-Scale Equilibrium. Atmosphere. 2023; 14(4):736. https://doi.org/10.3390/atmos14040736
Chicago/Turabian StyleVassilicos, John C. 2023. "Beyond Scale-by-Scale Equilibrium" Atmosphere 14, no. 4: 736. https://doi.org/10.3390/atmos14040736
APA StyleVassilicos, J. C. (2023). Beyond Scale-by-Scale Equilibrium. Atmosphere, 14(4), 736. https://doi.org/10.3390/atmos14040736