Ground-Based MAX-DOAS Observation of Trace Gases from 2019 to 2021 in Huaibei, China
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Instruments and Observation Positions
2.2. Spectral Inversion and Tropospheric Column Density Measurement
2.3. Ancillary Data
3. Results
3.1. MAX-DOAS Observation Results
3.2. Weekly Circles and Diurnal Variations
3.3. Wind Dependence of the Pollutants
3.4. In Situ Measurements
3.5. HCHO/NO2 and Source of HCHO
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlemmix, T.; Hendrick, F.; Pinardi, G.; De Smedt, I.; Fayt, C.; Hermans, C.; Piters, A.; Wang, P.; Levelt, P.; Van Roozendael, M. MAX-DOAS observations of aerosols, formaldehyde and nitrogen dioxide in the Beijing area: Comparison of two profile retrieval approaches. Atmos. Meas. Tech. 2015, 8, 941–963. [Google Scholar] [CrossRef]
- Tian, X.; Xie, P.; Xu, J.; Li, A.; Wang, Y.; Qin, M.; Hu, Z. Long-term observations of tropospheric NO2, SO2 and HCHO by MAX-DOAS in Yangtze River Delta area, China. J. Environ. Sci. 2018, 71, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Puķīte, J.; Wagner, T.; Donner, S.; Beirle, S.; Hilboll, A.; Vrekoussis, M.; Richter, A.; Apituley, A.; Piters, A.; et al. Vertical Profiles of Tropospheric Ozone From MAX-DOAS Measurements During the CINDI-2 Campaign: Part 1—Development of a New Retrieval Algorithm. J. Geophys. Res. Atmos. 2018, 123, 10–637. [Google Scholar] [CrossRef]
- Chen, W.T.; Shao, M.; Lu, S.H.; Wang, M.; Zeng, L.M.; Yuan, B.; Liu, Y. Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model. Atmos. Chem. Phys. 2014, 14, 3047–3062. [Google Scholar] [CrossRef]
- Guo, Y.; Li, S.; Mou, F.; Qi, H.; Zhang, Q. Research of NO2 vertical profiles with look-up table method based on MAX-DOAS. Chin. Phys. B 2022, 31, 014212. [Google Scholar] [CrossRef]
- Mo, J.; Gong, S.; He, J.; Zhang, L.; Ke, H.; An, X. Quantification of SO2 Emission Variations and the Corresponding Prediction Improvements Made by Assimilating Ground-Based Observations. Atmosphere 2022, 13, 470. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Ng, D.C.Y. Spatial and socio-classifification of traffic pollutant emissions and associated mortality rates in high-density Hong Kong via improved data analytic approaches. Int. J. Environ. Res. Public Health 2021, 18, 6532. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Wang, J.; Li, C.; Gupta, P.; Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless mapping and spatiotemporal variations. Atmos. Chem. Phys. 2023, 23, 1511–1532. [Google Scholar] [CrossRef]
- Chan, K.L.; Hartl, A.; Lam, Y.F.; Xie, P.H.; Liu, W.Q.; Cheung, H.M.; Lampel, J.; Pöhler, D.; Li, A.; Xu, J.; et al. Observations of tropospheric NO2 using ground based MAX-DOAS and OMI measurements during the Shanghai World Expo 2010. Atmos. Environ. 2015, 119, 45–58. [Google Scholar] [CrossRef]
- Tian, X.; Xie, P.; Xu, J.; Wang, Y.; Li, A.; Wu, F.; Hu, Z.; Liu, C.; Zhang, Q. Ground-based MAX-DOAS observations of tropospheric formaldehyde VCDs and comparisons with the CAMS model at a rural site near Beijing during APEC. Atmos. Chem. Phys. 2014, 19, 3375–3393. [Google Scholar] [CrossRef]
- Ni, Z.-Z.; Luo, K.; Gao, Y.; Gao, X.; Jiang, F.; Huang, C.; Fan, J.-R.; Fu, J.S.; Chen, C.-H. Spatial–temporal variations and process analysis of O3 pollution in Hangzhou during the G20 summit. Atmos. Chem. Phys. 2020, 20, 5963–5976. [Google Scholar] [CrossRef]
- Javed, Z.; Wang, Y.; Xie, M.; Tanvir, A.; Rehman, A.; Ji, X.; Xing, C.; Shakoor, A.; Liu, C. Investigating the Impacts of the COVID-19 Lockdown on Trace Gases Using Ground-Based MAX-DOAS Observations in Nanjing, China. Remote Sens. 2020, 12, 3939. [Google Scholar] [CrossRef]
- Tanvir, A.; Javed, Z.; Jian, Z.; Zhang, S.; Bilal, M.; Xue, R.; Wang, S.; Bin, Z. Ground-Based MAX-DOAS Observations of Tropospheric NO2 and HCHO During COVID-19 Lockdown and Spring Festival Over Shanghai, China. Remote Sens. 2021, 13, 488. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total. Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Roșu, A.; Constantin, D.-E.; Voiculescu, M.; Arseni, M.; Roșu, B.; Merlaud, A.; Van Roozendael, M.; Georgescu, P.L. Assessment of NO2 Pollution Level during the COVID-19 Lockdown in a Romanian City. Int. J. Environ. Res. Public Health 2021, 18, 544. [Google Scholar] [CrossRef]
- Choi, Y.; Kanaya, Y.; Takashima, H.; Park, K.; Lee, H.; Chong, J.; Kim, J.H.; Park, J.-S. Changes in tropospheric nitrogen dioxide vertical column densities over Japan and Korea during the COVID-19 using Pandora and MAX-DOAS. Aerosol Air Qual. Res. 2021, 23, 220145. [Google Scholar] [CrossRef]
- Fan, C.; Li, Y.; Guang, J.; Li, Z.; Elnashar, A.; Allam, M.; De Leeuw, G. The Impact of the Control Measures during the COVID-19 Outbreak on Air Pollution in China. Remote Sens. 2020, 12, 1613. [Google Scholar] [CrossRef]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total. Environ. 2020, 730, 139086. [Google Scholar] [CrossRef]
- Mou, F.; Luo, J.; Li, S.; Shan, W.; Hu, L. Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS. Chin. Phys. B 2019, 28, 084212. [Google Scholar] [CrossRef]
- Zhang, Q.; Mou, F.; Li, S.; Li, A.; Wang, X.; Sun, Y. Quantifying emission fluxes of atmospheric pollutants from mobile differential optical absorption spectroscopic (DOAS) observations. Spectrochim. Acta A 2023, 286, 121959. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, S.; Xia, M.; Lin, H.; Xing, C.; Ji, X.; Su, W.; Tan, W.; Liu, C.; Hu, Q. Observations by Ground-Based MAX-DOAS of the Vertical Characters of Winter Pollution and the Influencing Factors of HONO Generation in Shanghai, China. Remote Sens. 2021, 13, 3518. [Google Scholar] [CrossRef]
- Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sens. 2018, 10, 1789. [Google Scholar] [CrossRef]
- Javed, Z.; Liu, C.; Ullah, K.; Tan, W.; Xing, C.; Liu, H. Investigating the Effect of Different Meteorological Conditions on MAX-DOAS Observations of NO2 and CHOCHO in Hefei, China. Atmosphere 2019, 10, 353. [Google Scholar] [CrossRef]
- Javed, Z.; Liu, C.; Khokhar, M.F.; Xing, C.; Tan, W.; Subhani, M.A.; Rehman, A.; Tanvir, A. Investigating the impact of Glyoxal retrieval from MAX-DOAS observations during haze and non-haze conditions in Beijing. J. Environ. Sci. 2019, 80, 296–305. [Google Scholar] [CrossRef]
- Danckaert, T.; Van Roozendael, M.; Letocart, V.; Merlaud, A.; Pinardi, G. QDOAS Software User Manual; Belgian Institute for Space Aeronomy: Brussels, Belgium, 2017. [Google Scholar]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy—Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Mérienne, M.F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 absorption cross-section from 42,000 cm−1 to 10,000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High spectral resolution ozone absorption cross-sections—Part 2: Temperature dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef]
- Thalman, R.; Volkamer, R. Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. Phys. Chem. Chem. Phys. 2013, 15, 15371–15381. [Google Scholar] [CrossRef] [PubMed]
- Meller, R.; Moortgat, G.K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm. J. Geophys. Res. Space Phys. 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Fleischmann, O.C.; Hartmann, M.; Burrows, J.P.; Orphal, J. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. J. Photochem. Photobiol. A Chem. 2004, 168, 117–132. [Google Scholar] [CrossRef]
- Zhang, Q.; Mou, F.; Wei, S.; Luo, J.; Wang, X.; Li, S. Vertical profiles of aerosol and NO2 based on mobile multi-axis differential absorption spectroscopy. Atmos. Pollut. Res. 2023, 2023, 101732. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Xie, P.H.; Chen, H.; Mou, F.S.; Xu, J.; Wu, F.-C.; Zeng, Y.; Liu, J.-G.; Liu, W.-Q. Measuring tropospheric vertical distribution and vertical column density of NO2 by multi-axis differential optical absorption spectroscopy. Acta Phys. Sin. 2013, 16, 200705. [Google Scholar] [CrossRef]
- Wang, Y.; Lampel, J.; Xie, P.; Beirle, S.; Li, A.; Wu, D.; Wagner, T. Ground-based MAX-DOAS observations of tropospheric aerosols, NO2, SO2 and HCHO in Wuxi, China, from 2011 to 2014. Atmos. Chem. Phys. 2017, 17, 2189–2215. [Google Scholar] [CrossRef]
Parameters | Sources | Species | ||
---|---|---|---|---|
NO2 | HCHO | SO2 | ||
Fitting interval | 338–370 | 324.6–359 | 307.5–330 | |
NO2 | 294 K, [28] | x | x | x |
O3 | 223 K, [29] | x | x | x |
O3 | 243 K, [29] | x | x | x |
O4 | 293 K, [30] | x | x | |
SO2 | 293 K, [31] | x | ||
HCHO | 293 K, [31] | x | x | x |
BrO | 223 K, [32] | x | x | |
Ring | Calculated with QDOAS | x | x | x |
Polynomial degree | 5 | 5 | 5 | |
Intensity offset | constant | constant | constant |
Winter | Spring | |||||
---|---|---|---|---|---|---|
Mon. 12 | Mon. 1 | Mon. 2 | Mon. 3 | Mon. 4 | ||
NO2 | 2019.12.1–2020.5.10 | 1.32 | 1.23 | 0.62 | 0.99 | 0.97 |
HCHO | 2.79 | 1.85 | 1.67 | 1.24 | 1.10 | |
SO2 | 6.56 | 3.85 | 3.64 | 2.65 | 2.15 | |
NO2 | 2020.12.1–2021.5.10 | 1.57 | 1.29 | 0.84 | 0.98 | 0.91 |
HCHO | 2.82 | 2.69 | 1.98 | 1.24 | 1.02 | |
SO2 | 6.69 | 6.54 | 4.65 | 2.40 | 1.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, F.; Luo, J.; Zhang, Q.; Zhou, C.; Wang, S.; Ye, F.; Li, S.; Sun, Y. Ground-Based MAX-DOAS Observation of Trace Gases from 2019 to 2021 in Huaibei, China. Atmosphere 2023, 14, 739. https://doi.org/10.3390/atmos14040739
Mou F, Luo J, Zhang Q, Zhou C, Wang S, Ye F, Li S, Sun Y. Ground-Based MAX-DOAS Observation of Trace Gases from 2019 to 2021 in Huaibei, China. Atmosphere. 2023; 14(4):739. https://doi.org/10.3390/atmos14040739
Chicago/Turabian StyleMou, Fusheng, Jing Luo, Qijin Zhang, Chuang Zhou, Song Wang, Fan Ye, Suwen Li, and Youwen Sun. 2023. "Ground-Based MAX-DOAS Observation of Trace Gases from 2019 to 2021 in Huaibei, China" Atmosphere 14, no. 4: 739. https://doi.org/10.3390/atmos14040739
APA StyleMou, F., Luo, J., Zhang, Q., Zhou, C., Wang, S., Ye, F., Li, S., & Sun, Y. (2023). Ground-Based MAX-DOAS Observation of Trace Gases from 2019 to 2021 in Huaibei, China. Atmosphere, 14(4), 739. https://doi.org/10.3390/atmos14040739