
Citation: Mansourmoghaddam, M.;

Rousta, I.; Cabral, P.; Ali, A.A.;

Olafsson, H.; Zhang, H.; Krzyszczak,

J. Investigation and Prediction of the

Land Use/Land Cover (LU/LC) and

Land Surface Temperature (LST)

Changes for Mashhad City in Iran

during 1990–2030. Atmosphere 2023,

14, 741. https://doi.org/10.3390/

atmos14040741

Academic Editor: Peter Hoffmann

Received: 12 March 2023

Revised: 11 April 2023

Accepted: 18 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Investigation and Prediction of the Land Use/Land Cover
(LU/LC) and Land Surface Temperature (LST) Changes for
Mashhad City in Iran during 1990–2030
Mohammad Mansourmoghaddam 1 , Iman Rousta 2,3,* , Pedro Cabral 4 , Ashehad A. Ali 5,*,
Haraldur Olafsson 6, Hao Zhang 7 and Jaromir Krzyszczak 8

1 Center for Remote Sensing and GIS Studies, Shahid Beheshti University, Tehran 1983969411, Iran;
m_mansourmoghaddam@sbu.ac.ir

2 Department of Geography, Yazd University, Yazd 8915818411, Iran
3 Institute for Atmospheric Sciences-Weather and Climate, University of Iceland and Icelandic Meteorological

Office (IMO), IS-108 Reykjavik, Iceland
4 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa,

1070-312 Lisboa, Portugal
5 Department of Bioclimatology, University of Göttingen, 37077 Göttingen, Germany
6 Institute for Atmospheric Sciences-Weather and Climate, Department of Physics,

University of Iceland and Icelandic Meteorological Office (IMO), IS-108 Reykjavik, Iceland
7 Department of Environmental Science and Engineering, Jiangwan Campus, Fudan University,

Shanghai 200438, China
8 Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
* Correspondence: irousta@yazd.ac.ir (I.R.); ashehad.ali@uni-goettingen.de (A.A.A.)

Abstract: Studies on how cities are affected by urban heat islands (UHI) are critical nowadays for
a better understanding of the connected effects and for providing helpful insights for sustainable
city development planning. In this study, Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced
Thematic Mapper+ (ETM+), and Landsat-8 Operational Land Imager (OLI) images were used to
assess the dynamics of the spatiotemporal pattern of land use/land cover (LU/LC) and land surface
temperature (LST) in the metropolitan city of Mashhad, Iran in the period between 1990 and 2019. The
Markov chain model (MCM) was used to predict LU/LC and LST for 2030. In the analyzed LU/LC
maps, three LU/LC classes were distinguished, including built-up land (BUL), vegetated land (VL),
and bare land (BL) using the maximum likelihood (ML) classification method. The collected data
showed different variations in the geographical pattern of Mashhad LST during the research period
that impacted the LST in this metropolis. The study evaluated the variations in LU/LC classes and
evaluated their impact on the LST. The value of the LST was positively correlated with the occurrence
of the built-up land (BUL), and with the bare land areas, while it was negatively correlated with
the occurrence of the VL areas. The analysis of changes observed over three decades with 10-year
intervals and the prediction of the LU/LC and LST for 2030 constitute an important contribution to
the delineation of the dynamics of long LU/LC and LST records. These innovative results may have
an important impact on policymaking fostering environmental sustainability, such as the control and
management of urban expansion of Mashhad in connection with UHI.

Keywords: maximum likelihood classification; Markov chain; land-cover change forecast; land
surface temperature change forecast; population shift; Mashhad City

1. Introduction

The land-use pattern is subject to processes of continuous temporal evolution, mainly
due to human activities [1]. To make the best use of land resources, obtaining information
on land-use potential seems to be necessary [2]. Recently, multispectral imagery and remote
sensing technology, which provide a better understanding of the Earth environment’s
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different dimensions [3–7], have emerged as important tools to study land use/land change
(LU/LC) and to assess its potential [3,8,9]. Amid various changes in land use, urbanization
has changed the natural appearance of the Earth’s surface by introducing new land uses
and coverings. Roads, buildings, and other types of impervious surfaces are essential
parts of the modern urban landscape [10–13]. The rapid growth of impervious landscapes
changed the direct/indirect LU/LC and their relation to meteorological variables and
economic prospects of the land [14–17]. Changes in those relations are responsible for the
creation of urban heat islands (UHI) in cities, i.e., areas with a temperature 2–5 ◦C higher
than the average temperature of the surrounding areas or villages [18], which results from
heat accumulation [19]. The impact of thermal islands on nature and urban hydrology
is detrimental [20–22], subsequently endangering the welfare of city dwellers, as well as
the adaptation of biota to the climate of urban areas [23–26]. Thus, spatial and temporal
features of surface heat islands must be taken into account in urban planning, policymaking,
and development strategies [27–29]. The effect of heat accumulation in urban areas was
first discussed by Rao in 1972 [30].

On the other hand, urban areas are the main centers of education, employment, and
healthcare, attracting more people to cities, which results in the rapid expansion of cities
and, consequently, even bigger changes in LU/LC [27]. The rapid expansion of cities
leads to the phenomenon of urban sprawl, which is often connected to low-density res-
idential housing and single-use zoning. To prevent this, urban renewal is used [31–33].
Urban renewal constitutes the rebuilding and redesign of commercial, industrial, resi-
dential, or suburban areas for the improvement of area liveliness and its connection with
the surroundings [34,35]. For instance, certain suburban areas, stale manufactories, and
polluting amenities can be replaced by commercial, residential, and office areas or even
recreational complexes. Abandoned houses and slums can be demolished to replace them
with public places, such as green parks, shops, and parking, or modernized to become
residential areas of a much higher standard. Because city restoration can be useful in
increasing the efficiency of urban land use and improvement of the urban environment,
it is gradually becoming the main point of focus in urban planning and management of
sustainable urban expansion [36]. However, studies on the effects of urban renewal on
surface temperature are still very scarce [36,37]. For example, the connection between
urban renewal and surface temperature changes at different time intervals was investigated
using Worldview high-resolution imagery data from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) [25,38,39].

In recent years, various studies related to the application of thermal sensing in cities
have been undertaken. Among several explored topics connected to the surface tempera-
ture, it is worth mentioning the studies on the relationship between the spatial structure of
the thermal pattern of cities and the components of the Earth’s surface, flux, and energy
balance [40–42], or the relationship between atmospheric temperature and the temperature
of the Earth’s surface [43]. The relationship between vegetation abundance and LST has also
been estimated [44–48]. The findings showed a negative relationship between the cooling
influence of green areas and land surface temperature [49]. A strong correlation was also
discovered between LST and the normalized difference built-up index (NDBI) [14]. Several
other studies have examined the effect of changes in land use/land cover (LU/LC) on
land surface temperature (LST) [43,50–52], and it occurred that these features are positively
correlated, leading to the creation of urban heat islands (UHIs) [49]. UHI intensity can be
measured by monitoring the spatial and temporal differentiation of LST across various
areas of cities [53]. For this purpose, at-sensor brightness temperature (ASBT) data from
Landsat thermal bands can be converted to LST, which, if corrected and changed to actual
land surface emissivity [27,54,55], is correlated with surrounding air temperature [56–58].
As the changes in land use/land cover connected with urbanization processes are expected
to continue, the scale and intensity of urban heat island occurrence will increase [25]. Thus,
it is important to study how cities are and will be affected by heat islands in the future. As a
result, investigating the interaction between urban LU/LC and LST trends is a worthwhile
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endeavor. For this purpose, modeling plays an important role and helps to carry out effec-
tive planning [59]. Many researchers have previously studied cities affected or prone to be
affected by the heat island, such as Iranian cities Tehran [14,60] and Yazd [61], United States
cities [62], Indian cities [63], the Colombo area, Sri Lanka [64,65], Suzhou Bay, China [66],
and Reykjavik, Iceland [67], both spatially and temporally from different dimensions.

Some cities grow rapidly, irregularly, and without a multiannual development plan or
control, which frequently causes environmental and dangerous socioeconomic impacts on
individual wellbeing [68], urban ecology [20], urban warming [69], agricultural lands [70],
hydrological parameters, and surface microclimate [50,71,72]. Mashhad in Iran is an
example of such a metropolitan city, which has been struggling with environmental and
anthropogenic heat emitted in the last decade, resulting from considerable LU/LC changes
associated with the rapid growth of the population [73]. The purpose of this study is
to (i) present the LU/LC changes occurring in Mashhad city in the last three decades,
(ii) quantitatively assess the main factors impacting the increase in the LST, (iii) using
landscape metrics, investigate the interaction between urban LU/LC and LST trends, and
(iv) predict whether the city is going to be warmer or cooler using remote sensing data
and statistical methods. Results of the study can provide very useful information to help
manage and plan the expansion of residential land fostering environmental sustainability
or the share of vegetation in urban areas resulting in the mitigation of negative effects of
the UHI.

2. Materials
2.1. Study Area

Mashhad city, the capital of the Mashhad County, is located in the center of Khorasan
Razavi province in northeastern Iran, between 36◦11′ N and 36◦24′ N, and between 59◦27′ E
and 59◦42′ E (Figure 1). The city of Mashhad has an area of 351 km2, being the second-
largest city in Iran. The average height of the city, extracted from the digital elevation
map, is about 1080 m, with a maximum height equal to 1150 m and a minimum of 950 m.
Mashhad city lies in an area that can be characterized as a cold, dry, and semi-arid climate
(steppe climate, Köppen BSk). In Mashhad, summers are hot, arid, and clear, while the
winters are very cold, dry, and partly cloudy. The mean annual rainfall is about 250 mm,
and the average annual temperature is 14.3 ◦C [74]. The closest towns are Ghoochan in
the north, Torbat-e Heydarieh in the south, Sabzevar in the west, and Sarakhs in the east.
According to statistics published by the Iran National Statistics Portal ′′www.amar.org.ir′′

(accessed on 30 July 2020), in the last three decades, Mashhad experienced rapid population
growth. According to the latest census published by the Statistical Center of Iran (2016), its
population is now equal to 3,372,660.

2.2. Data Collection

To obtain the LU/LC and LST maps of the metropolitan city of Mashhad, satellite
images from Landsat downloaded from the United States Geological Survey (USGS) por-
tal [75] were used. To capture changes in the LU/LC and LST, the images were collected
at four points in time differing by about a decade. The data came from Landsat 5 The-
matic Mapper (TM) (images for 1990 and 2011), Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) (image for 2000), and Landsat 8 Operational Land Imager/Thermal Infrared
Sensor (OLI/TRIS) (image for 2019). More detailed information regarding the date of image
acquisition is provided in Table 1. The LST maps were obtained using Landsat thermal
bands (TM and ETM+ 6th band, as well as Landsat 8 10th band).

www.amar.org.ir
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Sensor  Scene ID  AQ. Date 
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Figure 1. Presentation of study area; location of Khorasan Razavi province in Iran (top left), loca-
tion of Mashhad country (top right), location of Mashhad city, together with its elevation image
(bottom right), and false-color composite image of Mashhad City (bottom left) from Landsat 8 bands
(3, 4, and 5) on 14 September 2019 (www.earthexplorer.usgs.gov, accessed on 30 July 2020).

Table 1. The information about the Landsat datasets used to obtain Mashhad LU/LC and LST maps.

Sensor Scene ID AQ. Date AQ. Time (GMT)

Landsat-5 TM LT05_L1TP_159035_19900930_20171207_01_T1 30 September 1990 05:56:51
Landsat-7 ETM+ LE07_L1TP_159035_20000917_20170210_01_T1 17 September 2000 06:27:44

Landsat-5 TM LT05_L1TP_159035_20110807_20161009_01_T1 7 August 2011 06:26:06
Landsat-8 OLI/TIRS LC08_L1TP_159035_20190914_20190917_01_T1 14 September 2019 07:07:15

3. Methods
3.1. Flowchart of the Data Processing

The flowchart of the data processing is presented in Figure 2. After the data were
collected from Landsat 5, 7, and 8 (TM, ETM+, OLI, and TIRS), and after radiometric
and atmospheric corrections were made using ENVI software, the maximum likelihood
classification and single-change methods were used to obtain LU/LC and land surface
temperature maps, respectively, for Mashhad City, Iran. Obtained LU/LC and LST maps
were designed and analyzed in the ArcMap environment and correlated with each other to
assess their relationship. To study the changes in those quantities that will most probably
occur over the next decade (around 2030), the forecast of LU/LC and LST maps was
performed using Markov and Ca-Markov models in IDRISI Selva. To ensure that the
forecast for 2030 is acceptable, the model was validated by comparing the forecast of the

www.earthexplorer.usgs.gov
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LU/LC and LST maps made for 2011 and 2019 to the actual maps for these years. The
developed model included the impact of the population as one of the factors influencing
the changes in LU/LC and LST maps. The prediction of population change over the next
decade was performed by incorporating demographic data for the study period (Figure 2).
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Figure 2. Flowchart of the procedure used to predict Mashhad LU/LC and LST maps for 2030 and
the population of Mashhad in 2030.

3.2. Methodology
3.2.1. Calculation of Population Growth Rate
Historical Population Growth Rates

To calculate the influence of the changes in population on LU/LC changes in Mashhad,
the population statistics for the closest years available in the National Statistical Center of
Iran were obtained (Table 2), which allowed us to determine the annual growth rates for
the each of the studied periods.

Table 2. Population of Mashhad city (National Statistical Center of Iran, 2020).

Year 1986 1996 2006 2011 2016

Population 2,022,966 2,247,996 2,868,350 3,069,941 3,372,660

The annual growth rates were calculated as

r =

(
n

√
Pt

P0
− 1

)
·100%, (1)
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where r is the population annual growth rate (as a percentage), n is the length of the period
(in years), and P0 is the population at the beginning while Pt is the population at the end of
the period. The annual growth rate for 1990 was calculated from the population changes
occurring between 1986 and 1996, for 2000 from the data for 1996 and 2006, and for 2011
from the data for 2000 and 2011.

Prediction of Population

Calculation of the population annual growth rates allowed for the implementation of
a population forecasting model [76],

Pt = P0 × (1 + r)n, (2)

which was used to predict the Mashhad population for 2019 and 2030.

3.2.2. LU/LC Classification

The maximum likelihood supervised classifier was used to distinguish classes on
LU/LC maps. It was decided that three distinct classes would be used, namely, built-up
land (BUL), vegetated land (VL), and bare land (BL) [77], which were revealed in previous
LULC and LST analyses [78–80] as the main and most effective classes to study LULC in
relation to LST. The maximum likelihood supervised classifier was selected because it was
previously evaluated to have good accuracy [73].

Maximum Likelihood Method

The maximum likelihood estimation is a method of evaluation of the parameters of the
Gaussian probability density function (PDF). It works in such a way that the observed data
are given by the chosen statistical model as having the highest probability. The essential
diacritic function for each LU/LC class can be described as follows [81]:

gi(X) = p(W|wi)p(wi)

= p(ωi)

(2π)n/2|Σi |1/2 × e−(
1
2 )(X−Ui)

TΣ−1
i (X−Ui),

(3)

where n is the number of bands, X is the data vector, Ui is the mean vector of the i-th class,
and Σi is the covariance matrix of class I, defined as follows:

X =


xi
xi
...

xn

Ui =


µi1
µi2
...

µin

Σi =


σi11 σi12 · · · σi1n
σi21 σi22 · · · σi2n

...
... . . .

...
σin1 σin2 · · · σinn

. (4)

The unbiased estimators approximate the values in the mean vector Ui and the covari-
ance matrix Σi, from the results of the training:

µij =
1
P ∑Pi

l=1 xjl j = 1, 2, . . . , n, (5)

σijk =
1
P ∑Pi

l=1

(
xjl − µij

)
(xkl − uik) j = 1, 2, . . . , n; k = 1, 2, . . . , n, (6)

where Pi represents the number of training patterns in the i-th class.
Equation (1) can be reduced by taking the natural logarithm and removing the constant

π term:
gi(X) = loge p(ωi)−

1
2

loge|Σi|−
1
2
(X−Ui)

T . ∑−1
i (X−Ui). (7)

The equation can be further reduced if it is assumed that the probabilities of the
past realizations in the first term are equal. Furthermore, the second term has a constant
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value for each class, which results in only the third term needing to be calculated for
each pixel during classification. The class representative for each pixel is assigned by
calculating the diacritic gi(X) distinctly for each class, and then by choosing the one having
the highest value.

LU/LC Classification Accuracy Assessment

To determine the classification accuracy for each LU/LC class, a stratified random
sampling approach was used. A total of 1000 pixels were chosen randomly from Landsat
datasets for each class for all four different points in time [60]. To evaluate the precision
of classification, quantities such as the user, producer, and overall accuracy, as well as the
Kappa coefficient, were determined [82,83]. The Kappa test is a nonparametric measure
used to determine how well user-assigned and predefined values correspond to each
other [84]. The Kappa coefficient is usually used as an index of the quality of measurement
for binary characteristics. The value of the Kappa coefficient varies in the range from
−1.0 to 1.0, with 1.0 interpreted as the perfect agreement of the data (user-assigned and
predefined values match each other), 0.0 interpreted as an agreement no better than that
expected by chance, and negative values interpreted as an agreement worse than that
expected by chance. The Kappa coefficient is determined by the true prevalence of the
characters in the sampled population, as well as their susceptibility and specificity for each
of the two classifications [85].

3.2.3. Calculation of LST

LST was calculated from the brightness temperature using emissivity correction [60,82,86]:

LST =

 τ

1 + w
(

τ
p

)
ln(e)

, (8)

where τ is the at-sensor brightness temperature, w is the wavelength of emitted radiance
(11.5 µm for TM and ETM+ 6th band, and 10.8 µm Landsat 8 TIRS 10th band), and
p = h× c/s

(
1.438× 10−2 m·K

)
, with h being the Plank’s constant (6.626× 10−34 J·s), s being

the Boltzmann Constant (1.38× 10−23 J/K), c being the velocity of light (2.988× 108 m/s),
and e being the land surface emissivity.

The temperature value at the sensor (brightness) was extracted as follows [60,82,86]:

τ =

 K2

ln
(

K1
Lϕ

+ 1
)
, (9)

where K1 and K2 are the thermal conversion constants taken from Thematic Mapper (TM)
and Enhanced Thematic Mapper+ (ETM+) metadata of the 6th band, and from Landsat 8
Thermal Infrared Sensor (TIRS) metadata of the 10th band (Table 3).

Table 3. Landsat thermal band conversion constants.

Sensor Band K1 [W/(m2·sr·µm)] K2 [K]

TM 6 607.76 1260.56
ETM+ 6 666.09 1282.71
TIRS 10 774.8 1321.0

To calculate at-sensor brightness temperature τ from the thermal bands (TM and ETM+
6th band, Landsat 8 10th band), raw data were transformed into spectral radiance values as
follows [87]:

Lϕ = ML ×QCal + AL, (10)
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where Lϕ is top of atmosphere (TOA) spectral radiance [W/(m2·sr·µm)], ML is a multiplica-
tive rescaling factor dependent on the metadata for a particular band, QCal is the quantized
and calibrated standard product’s pixel values (digital number), and AL is the additive
rescaling factor dependent on the metadata for a particular band.

The land surface emissivity e was calculated as follows [60,82,86]:

e = n Pv + m, (11)

where n = 0.004 [4] and m = 0.986 [4], and Pv denotes the vegetation proportion, also
referred to as fractional vegetation cover.

The vegetation proportion (Pv) was calculated as follows [60,82,86]:

Pv =

[
NDVI − NDVImin

NDVImax − NDVImin

]2
, (12)

where NDVI is the normalized difference vegetation index, and NDVImin and NDVImax
are the minimum and maximum values of the NDVI.

3.2.4. Calculation of NDVI

The NDVI is one of the most important metrics used for the determination of the urban
climate [64]. The NDVI value varies from −1 to +1, with high positive values indicating
trees, small positive values indicating built-up or bare soils, and negative values indicating
water bodies [65]. It delivers information on the abundance, phenology, and wellbeing of
vegetation [88]. To measure the NDVI, the reflectance values from red (R) and near-infrared
(NIR) bands are used [86,89]:

NDVI =
NIR− R
NIR + R

, (13)

where NIR band corresponds to Band 4 in Landsat TM and ETM+ (0.76–0.90 µm) and Band
5 in Landsat 8 OLI (0.85–0.88 µm), while the red (R) band is represented by Band 3 in
Landsat TM and ETM+ (0.63–0.69 m) and Band 4 in Landsat 8 OLI (0.64–0.67 m).

Before calculating the NDVI, the reflectance values from the red (R) and near-infrared
(NIR) bands were derived as follows [87]:

ρϕ = MρQCal + AQ, (14)

where ρϕ is the TOA reflectance without solar angle correction, Mρ is the multiplicative
rescaling component depending on the metadata for a given band, QCal is the quantized
and calibrated standard product’s pixel values (digital number), and AQ is an additive
rescaling component dependent on a metadata band.

3.2.5. LU/LC and LST Prediction
Markov Model for Forecasting of LU/LC and LST Changes

The Markov model is the most commonly used technique for simulating LU/LC
changes [90]. In the Markov approach, the future state of a system is predicted on the basis
of the knowledge of the states preceding the predicted one. To predict changes in LU/LC
for the future period [90], a transition matrix with changes in LU/LC over past periods
is developed [91]. The Markov model provides a simple methodology for analyzing and
studying complex dynamical systems [90,92–95]. Several studies have acknowledged the
accuracy of the Markov approach [90,95,96]. In the paper, the Markov model was also used
to predict the LST changes for Mashhad in 2030.

Markov Model Accuracy Assessment

To assess the accuracy of the developed Markov models for LU/LC and LST prediction,
the LU/LC and LST were predicted for 2011 and 2019 and compared with the actual maps
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derived from the satellite images. To ensure the model’s suitability, the findings were
compared to real values using the χ2 test [90]:

χ2 =
∑(O− E)2

E
, (15)

where E is the map coming from the prediction, and O is the map derived from the
satellite image.

4. Results
4.1. Population Changes

In Figure 3, the changes in the population of Mashhad city and corresponding growth
rates are presented. The biggest change in the Mashhad population occurred between 1996
and 2006 (by about 600,000 citizens), which was accompanied by the largest value of the
annual population growth rate (2.46%). At the same time, a positive change in the annual
population growth rate between 1990 and 2000 by 1.4% (from 1.06 to 2.46%) was the largest
in the study period. After 2000, the annual population growth rate decreased to 1.63% (by
0.83%) in 2011, and was forecasted to steadily decrease to 0.97% in 2019 (by 0.66%) and
0.62% (by 0.34%) in 2030, but remain positive. The forecast of the Mashhad population
showed that, in the period 1986–2030, it would almost double, from ~2 million in 1986 to
more than ~3.7 million citizens in 2030.
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Figure 3. Changes in the population of Mashhad city in the period 1986–2030 (a), the available
statistics are in blue and the predicted ones are in orange) and Mashhad city population annual
growth rate (in percent) (b) for the same period (values for 2019 and 2030 were predicted, as marked
in orange).

4.2. LU/LC Classification
4.2.1. Spatiotemporal Pattern of LU/LC

In the study, four points in time separated by approximately a decade (1990, 2000,
2011, and 2019) were used to visualize the spatial dynamics of the LU/LC. In Figure 4,
the maps of the LU/LC classification of Mashhad are shown for mentioned years, while,
in Figure 5, the area and the share of the area occupied by each of the analyzed LU/LC
classes are presented for the same years. Over 30 years, the built-up land (BUL) had an
uptrend of about 30 km2 per decade, and its area changed from 195 km2 in 1990 to 284 km2

in 2019. Vegetated land (VL) decreased from 60 km2 in 1990 to 44 km2 in 2000, while, in the
period from 2000 to 2011, its area almost did not change (decreased by less than 1 km2).
The downtrend appeared again between 2011 and 2019, and the VL area had decreased
by 7 km2 to 36 km2. BL had a steady downward trend, with the BL area declining from
96 km2 in 1990 to 32 km2 in 2019. In almost all periods, the share of BL was higher than that
of VL. The more severe decline in VL area in the period 1990–2000 than for the other periods
led to the highest difference between the share of VL and BL (12%) in 2000. However, the
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development of Mashhad city in the period 2000–2019 consisting of building mostly on
bare land, while replacing the vegetated areas with built-up land in rare cases, only led to a
narrowing of the difference between BL and VL. In 2019, the share of BL was even lower
than that of VL (Figure 5), while BUL had the highest share of the area in the whole studied
period (1990–2019), reaching over 80%.
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Figure 5. The area of the city of Mashhad occupied by built-up land (BUL), vegetated land (VL), and
bare land (BL) calculated for the four points in time, namely, 1990, 2000, 2011, and 2019 (a), and the
share of the area of each LU/LC class for Mashhad for the same years (b).
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4.2.2. LU/LC Classification Accuracy Assessment

LU/LC classification accuracy was performed separately for the four selected points
in time (1990, 2000, 2011, and 2019). In Table 4, the accuracy assessment of Mashhad city
LU/LC classification for these years is presented. The user and producer accuracies were
larger than 82% in all LU/LC classes in all years, while achieving values greater than 95%
in most cases. An overall accuracy higher than 97% and a Kappa coefficient higher than
0.93 were obtained in all years (Table 4).

Table 4. Accuracy of Mashhad city LU/LC classification for the period of 1990–2019 for built-Up
land (BUL), vegetation land (VL), and bare land (BL) classes.

Year

LU/LC Class 1990 2000 2011 2019

User accuracy
BUL 95.1 96.7 90.4 99.5
VL 83.3 82.1 97.3 95.9
BL 99.3 99.2 99.7 99.2

Producer accuracy
BUL 97.4 97.8 98.6 99.7
VL 99.4 98.8 99.3 99.9
BL 97.3 97.4 97.1 99.4

Overall accuracy 97.4 99.5 97.5 97.6

Kappa coefficient 0.93 0.99 0.94 0.95

The obtained results strongly suggest that the maximum likelihood model developed
for LU/LC classification in Mashhad city had very high accuracy and could be successfully
used for this purpose. Obtained maps passed the minimum accuracy requirements to be
used for the subsequent post-classification forecasting operations. To predict the Mashhad
city LU/LC, the probability of transition between classes, which determines the likelihood
that, in the future, a specific LU/LC class will be replaced by another class, was calculated.
In Table 5, the transition matrix for each LU/LC is presented.

Table 5. LU/LC transition matrix between 2011 and 2019 (as a percentage) for built-Up land (BUL),
vegetation land (VL), and bare land (BL) classes.

2011
2019

BUL VL BL

BUL 13.6 0.1 1.4
VL 0.08 0.08 0.1
BL 1.1 0.008 0.05

4.3. Spatiotemporal Pattern of LST

In Figure 6,the spatial patterns of the LST for the city of Mashhad during the selected
timepoints from a period of 30 years (1990–2019) are presented, while, in Figure 7, the
mean value of the LST for Mashhad city for the same years are shown. In the year 2000,
the highest increase in LST was observed, with an average LST of 34.5 ◦C (change by more
than 5 ◦C from 29.2 ◦C in the period 1990–2000). The upward trend was then reversed
with a steep slope from 34.5 ◦C in 2000 to 30.6 ◦C in 2011 and almost no change in the
mean LST in the period 2011–2019 (from 30.6 ◦C to 30.5 ◦C). The highest mean LST in
2000 was probably connected to the highest growth in the population of the Mashhad city
and the highest population annual growth rate in the corresponding period (1996–2006).
This led to the uncontrolled development of the city, during which a most severe decrease
occurred in VL (by 16 km2, representing 4.8% of the total city area) in the preceding period
(1990–2000), along with an increase in the share of BUL by 7.7% of the total area and a less
noticeable decrease in BL (by 2.9%), which led to the highest difference between the shares
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of VL and BL (12%), as shown in Figure 5. By comparing the spatial patterns shown in
Figures 4 and 6, it can be deduced that, in the study area, the highest values of LST were
observed for BL, whereas the lowest were observed for VL. Therefore, the high reduction
in VL in the period 1990–2000 led to a higher LST in 2000. In 2011, despite a 9.6% increase
in BUL, a 9.5% decrease in BL, and a very minor change in VL (0.1%) compared to the
previous period (2000), a decrease in the mean LST could be observed. Similarly for 2019,
despite an 8% increase in BUL, a 2% decrease in VL, and a 5.9% decrease in BL, compared
to the previous period (2011), the mean LST almost did not change and was equal to 30.5 ◦C
(Figure 7). The observed reduction in LST was probably connected to the more controlled
and planned development of the Mashhad city in the period 2000–2019, consisting of
building mostly on bare land, while replacing the vegetated areas with built-up land in rare
cases only, which resulted in the VL, unlike previous years, occupying a larger area than
BL2019. A high reduction in the hottest LU/LC type (BL), along with an almost unchanged
or minor decrease in the share of VL, probably caused the effect of LST stabilization at the
30.5 ◦C level.
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4.4. Prediction of LU/LC and LST
4.4.1. Assessment of the Accuracy of the Markov Model for LU/LC and LST Prediction

To validate the developed model and ensure its suitability, the simulated LU/LC and
LST should be firstly compared to the real data. To do so, the data obtained from the
satellite images for 2011 and 2019 were compared to the Markov model prediction of the
LU/LC and LST for 2011 and 2019. In the paper, only the results of the LU/LC comparison
obtained for 2011 (Figure 8 and Table 6) and LST comparison for 2019 (Figure 9 and Table 7)
are presented. The results were compared to real values using the χ2 test [90].
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Table 6. Validation statistics of Markov model LU/LC prediction for 2011 for built-up land (BUL),
vegetation land (VL), and bare land (BL) classes.

LU/LC Class Simulated Value (E) 2011 (km2) Actual Value (O) 2011 (km2) O−E (O−E)2 (O−E)2/E

BUL 280.41 283.43 −3.02 9.13 0.03
VL 38.65 36.09 2.56 6.56 0.17
BL 31.94 31.48 0.46 0.21 0.01

Note: χ2 = ∑(O−E)2

E = 0.106; degree of freedom = 2; χ2 0.05 (2) = 5.99 [90].
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Table 7. Validation statistics of Markov model LST map prediction for 2019.

LST Class Simulated Value (E) 2019 (km2) Actual Value (O) 2019 (km2) O−E (O−E)2 (O−E)2/E

26–32 47.41 44.95 2.46 6.06 0.13
32–34 127.86 127.42 0.45 0.20 0.00
34–36 95.33 95.43 −0.09 0.01 0.00
36–38 51.95 53.37 −1.42 2.01 0.04
38–44 28.43 29.83 −1.40 1.96 0.07

Note: χ2 = ∑(O−E)2

E = 0.237; degree of freedom = 4; χ2 0.05 (4) = 9.49 [90].

Obtained results (Tables 6 and 7) indicate that the disparity between simulated and
actual values of the LU/LC and LST was negligible. The χ2 test value for the comparison
between the simulated and actual Mashhad city LU/LC maps for 2011 was equal to 0.106,
whereas that for the comparison between the simulated and actual Mashhad city LST maps
for 2019 was equal to 0.237. In conclusion, the developed Markov model was suitable and
could be successfully used to predict the LU/LC and LST of Mashhad.

4.4.2. Markov Model Forecast of the Changes in the LU/LC and LST for 2030

Figure 10 shows the forecast of LU/LC and LST maps of Mashhad city for 2030 (panels
a and b, respectively), along with the comparison of the changes in LU/LC and LST that
occurred compared to 2019 (panels c, d, and e). Regarding LU/LC compared to 2019, the
forecast for 2030 indicated further declines in VL (by 25% in relation to the area occupied
by VL in 2019) and BL (by 77%) in favor of an increase in BUL (by 12%) (Figure 10e). In
2030, BL was projected to decrease from 32 to 7.5 km2 (by 24 km2), VL was projected to
decrease from 36 to 27 km2 (by 9 km2), and BUL was projected to increase from 284 to
317.5 km2 (by 33.5 km2) (Figure 10a,b). The trend of LU/LC changes, together with an
effect of population growth suggested by the forecast of Mashhad city population, showed
that, in 2030, around 350,000 more citizens will live in Mashhad compared to 2016 (rise
from 3,372,660 to 3,716,991 people), which could cause a serious crisis connected with
LST rise (Figure 10c,d). As shown in Figure 10d, the area of land having a value of
LST <36 ◦C will significantly decrease compared to 2019. On the other hand, the area of
land having LST≥36 ◦C will significantly increase. In 2019, the largest area (153.4 km2) had
LST values ranging from 32 to 34 ◦C, whereas, for 2030, it was predicted that the largest area
(169.2 km2) will have LST values ranging from 36 ◦C to 38 ◦C. Further development of the
city and a reduction in VL areas forecasted for 2030 would result in cooler areas no longer
fulfilling their cooling function. The VL areas with LST ranging from 26 ◦C to 32 ◦C in 2019
were predicted to increase LST to the range of 34–38 ◦C in 2030. The obtained results show
that one should expect not only that the temperature of most of the city will increase in
2030 by about 4 ◦C, but also that a shift in temperature distribution toward higher values
will occur. The mean value of LST for 2030 was predicted to have a value of 36.5 ◦C.



Atmosphere 2023, 14, 741 15 of 21Atmosphere 2023, 14, x FOR PEER REVIEW  16  of  22 
 

 

   
(a)  (b) 

   
(c)  (d) 

 
(e) 

Figure 10. Forecast of LU/LC and LST maps of Mashhad city for 2030 (panels (a, b), respectively) 

and the comparison of changes in LU/LC and LST that occurred between 2019 and 2030 (panels (c–

e), respectively). In (c), a comparison of the area of analyzed LU/LC is presented, whereas (d) shows 

the changes in LST ranges. In (e), the percentage change in relation to the area occupied by specific 

LU/LC classes in 2019 is presented. 

5. Discussion 

From the results, it seems that, in the period from 1990 to 2019, the impervious sur-

face area (BUL) in Mashhad city expanded from 195 km2 (55.5% of the total area of the 

Figure 10. Forecast of LU/LC and LST maps of Mashhad city for 2030 (panels (a,b), respectively) and
the comparison of changes in LU/LC and LST that occurred between 2019 and 2030 (panels (c–e),
respectively). In (c), a comparison of the area of analyzed LU/LC is presented, whereas (d) shows
the changes in LST ranges. In (e), the percentage change in relation to the area occupied by specific
LU/LC classes in 2019 is presented.

5. Discussion

From the results, it seems that, in the period from 1990 to 2019, the impervious surface
area (BUL) in Mashhad city expanded from 195 km2 (55.5% of the total area of the city) to
284 km2 (80.8% of the total area), while areas with vegetation (VL) shrank from 60 km2

(17.2% of total area) to 36 km2 (10.3% of total area). This increase in class BUL and the
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decrease in class VL in their favor can be justified by the population growth in the statistical
period (discussed later). The average LST increased slightly, from 29.2 ◦C to 30.5 ◦C, in
the period from 1990 to 2019, by reducing VL classes and replacing them with BUL. VL
had a relatively lower mean LST than the other LU/LC classes, equal to 26.6 ◦C in 1990,
32.6 ◦C in 2000, 33.3 ◦C in 2011, and 28.2 ◦C in 2019, indicating a class VL cooling effect,
possibly due to factors such as shade, water, and transpiration. On the other hand, the
highest mean LST was observed for bare land (BL), equal to 33.4 ◦C in 1990, 39.2 ◦C in 2000,
39.2 ◦C in 2011, and 33.2 ◦C in 2019, potentially due to the lack of human cooling activities
(such as tree planting and irrigation or the use of cooling equipment), as well as the lack of
vegetation and the absorption of direct energy by the bare soil.

Between 1990 and 2000, a 7.7% increase in BUL (to 222 km2), a 4.8% decrease in VL
(to 44 km2), and a nearly 3% decrease in BL (to 86 km2) probably resulted in the highest
mean LST being observed in 2000 across the whole study period (34.5 ◦C). Furthermore, a
decrease in the share of BLs to 14.9% of the total city area (52 km2) in a subsequent period
(2000 to 2011), a change in VL < 1% (to 43 km2), and a decrease by 0.83% in population
annual growth rate caused the mean value of the LST to decrease by about 4 ◦C. The trend
of changes in Mashhad city LU/LC persisted in the next period (2011–2019). BUL increased
by 8% (to 284 km2), while VL and BL decreased by 2% (to 36 km2) and 5.9% (to 32 km2),
respectively. The comparison of the Mashhad LU/LC and LST maps for the studied period
(1990–2019) indicates that the share of the BL and BUL area had a significant effect on LST,
as the increase in the share of these two classes, along with a simultaneous decrease in VL,
increased the mean LST of the city. The obtained results indicate that the effect of changes
in BL on the LST was more significant than for changes in BUL, which may be connected to
the fact that, in BUL, a small share of the plants and water cover may be present. In the
period between 1990 and 2000, the highest value of the population annual growth rate was
obtained for the whole study period.

The fluctuations in population annual growth rate are consistent with the fluctuations
in LST (R = 0.94, p-value = 0.01), i.e., a period with an increase in population annual growth
rate was also the period with an increase in mean LST, while the decrease in population
annual growth rate coincided with a decrease in mean LST. This is because a positive
population annual growth rate is somehow connected to and forces changes in LU/LC
(a higher population annual growth rate usually implies a greater increase in BUL and
reductions in BL and VL) The negative relationship between the cooling influence of green
areas and LST [44–49] and the high thermal energy storage capacity of urban areas [97]
shown in previous studies can support this claim. This correlation is probably due to
the reduction in VL areas, which are having a cooling effect on the LST in the cities and
build-up on BL (due to the effect of their ventilation compared to the BUL). Furthermore,
the expansion of UIL and the expansion of VL, both of which are areas prone to high
thermal absorption, result in a rise in the thermal absorption associated with heat islands
in cities [98–100]. The above findings are in line with the findings of Alavipanah et al. [74].
Other studies assessing the impact of the spatial pattern of the urban LU/LC on LST in
Mashhad, e.g., Soltanifard and Aliabadi (2019), claimed that Mashhad’s integrated urban
cover had a cooler temperature than other forms of cover [101].

The LU/LU forecast for 2030 in this study, which has very rarely been performed
in studies dealing with this subject [67,101,102], showed that the area of BUL increased
by 12% (to 317.5 km2), while VL and BL decreased by 25% (to 27 km2) and 77% (to
7.5 km2), respectively, compared to 2019. This increasing trend of class BUL along with the
decrease in class VL and BL is justifiable according to the trend observed in the statistical
period and the growth of the urban population in Mashhad. Noteworthily, the rate at
which metropolitan regions are growing can surpass all expectations. such that it may
continue outside the city limits, as examined in specialized studies [103,104]. However, the
classification made for 2019 LULC indicated that BUL areas consisted of 80% of all areas,
with there still being room for the expansion of BUL areas; furthermore, due to the technical
constraints of the used model and the fact that the present study’s forecasts are based on
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earlier land use/land cover maps, as well as the specificity of model development, this case
cannot be considered for areas outside of the borders. Although these results of forecasting
are in line with the increase in built-up (BUL) and the decrease in vegetation area (VL) in
Rahnama’s (2020) study on LU/LC forecasting in Mashhad for 2030, in terms of increasing
bare lands (BL), their research forecast of a 5.5% increase is not compatible [105]. The
population forecast for 2030 also showed an increase of about 240,000 citizens compared to
2019, and of about 350,000 citizens compared to the year with the last census available, 2016.
A significant increase in the share of BUL for the forecasted period (2019–2030) compared
to the previous period (2011–2019), with a simultaneous reduction in VL area by 25%, can
be a warning signal to urban planners for the coming years. Raigani et al. (2018) predicted
the changes in LU/LC in Mashhad City for the period from 2014 to 2030 and indicated that
that BUL is expected to increase by about 10.6%, while the areas of VL and agricultural
lands would decrease by 19.3% and 20.5%, respectively. This result is in line with the results
presented herein [102]. They also predicted that, in Mashhad in the period 2014–2030, a 3%
increase in BL is expected, which is completely different from the 77% decrease in barren
land forecasted by our model.

6. Conclusions

In this study, the relationship between the LST and LU/LC for Mashhad city in
the period 1990–2030 was evaluated. Using remote sensing data and spatial simulation
techniques, the spatiotemporal changes in specific LU/LC classes (BUL, VL, and BL) in the
period from 1990 to 2030 were assessed. The obtained results also present how the spatial
pattern of Mashhad LST fluctuated over the studied period. The results suggest that the
BL areas had a greater impact on the mean LST than other land uses. On the other hand,
the lowest values of LST were observed for the VL. The increase in BUL area, along with a
reduction in VL area, which plays a major role in the cooling of the city, and a simultaneous
reduction in BL area, which provides more ventilation than BUL areas, caused an increase
in LST in Mashhad city during the analyzed period of 1990–2019. The fluctuations observed
in the Mashhad population annual growth rate are consistent with the fluctuations in mean
values of the LST. The forecast of the LST for 2030 indicates that an increase in the mean
LST should be expected. Our results suggest that an increase in green areas such as parks,
trees, lawns, etc. in the cities can be an effective action leading to a reduction in surface
temperature and preventing the creation and expansion of thermal islands in the cities. The
conducted research complements and extends the results obtained in the literature [102].
The factor distinguishing our calculations from other studies is the consideration of the
population in the assessment of the variability of LST. Secondly, in addition to the prediction
of LU/LC only, the LST and population were forecasted in our study. Additionally, the
study included the assessment of the effective parameters influencing LST changes and
their relationship with LU/LC variations by means of remote sensing, statistical methods,
and demographic data, which were rarely applied in other studies on urban analysis. This
research advises policymakers and urban planners of Mashhad city to plan carefully in
order to prevent the city’s excessive growth, as well as manage urban green spaces with
regard to their cooling effect and reintroduce vegetation into the city by building larger park
areas that can help release moisture into the atmosphere, planting trees to shade building
surfaces and asphalt, and converting rooftops into “green” roofs to deflect radiation from
the sun.
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78. Karakuş, C.B. The impact of land use/land cover (LULC) changes on land surface temperature in Sivas City Center and its

surroundings and assessment of Urban Heat Island. Asia-Pac. J. Atmos. Sci. 2019, 55, 669–684. [CrossRef]
79. Bonafoni, S.; Keeratikasikorn, C. Land surface temperature and urban density: Multiyear modeling and relationship analysis

using MODIS and Landsat data. Remote Sens. 2018, 10, 1471. [CrossRef]
80. Ullah, S.; Ahmad, K.; Sajjad, R.U.; Abbasi, A.M.; Nazeer, A.; Tahir, A.A. Analysis and simulation of land cover changes and their

impacts on land surface temperature in a lower Himalayan region. J. Environ. Manag. 2019, 245, 348–357. [CrossRef]

https://doi.org/10.1016/j.rse.2005.11.016
https://doi.org/10.1016/j.jclepro.2022.130804
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.14358/PERS.69.9.1053
https://doi.org/10.3390/rs8080629
https://doi.org/10.1175/1520-0450(1996)035&lt;0135:HRSTPR&gt;2.0.CO;2
https://doi.org/10.1016/j.scs.2016.03.009
https://doi.org/10.1016/j.scitotenv.2017.06.229
https://doi.org/10.1080/01431161.2018.1466072
https://doi.org/10.3390/ijgi6070189
https://doi.org/10.3390/su10051367
https://doi.org/10.3390/su11030787
https://doi.org/10.1007/s11252-023-01337-9
https://doi.org/10.1078/1438-4639-00223
https://www.ncbi.nlm.nih.gov/pubmed/12971682
https://doi.org/10.1111/j.1475-4959.2007.232_3.x
https://doi.org/10.1007/s10661-007-9684-4
https://doi.org/10.1007/s10346-021-01674-w
https://doi.org/10.1016/j.coldregions.2021.103335
https://doi.org/10.3390/ijerph16030313
https://earthexplorer.usgs.gov/
https://doi.org/10.1007/s00500-018-03678-6
https://doi.org/10.1007/s13143-019-00109-w
https://doi.org/10.3390/rs10091471
https://doi.org/10.1016/j.jenvman.2019.05.063


Atmosphere 2023, 14, 741 21 of 21

81. Paola, J.D.; Schowengerdt, R.A. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers
for urban land use classification. IEEE Trans. Geosci. Remote Sens. 1995, 33, 981–996. [CrossRef]

82. Ziaul, S.; Pal, S. Image based surface temperature extraction and trend detection in an urban area of West Bengal, India. J. Environ.
Geogr. 2016, 9, 13–25. [CrossRef]

83. Sexton, J.O.; Urban, D.L.; Donohue, M.J.; Song, C. Long-term land cover dynamics by multi-temporal classification across the
Landsat-5 record. Remote Sens. Environ. 2013, 128, 246–258. [CrossRef]

84. Ishtiaque, A.; Shrestha, M.; Chhetri, N. Rapid urban growth in the Kathmandu Valley, Nepal: Monitoring land use land cover
dynamics of a himalayan city with landsat imageries. Environments 2017, 4, 72. [CrossRef]

85. Thompson, W.D.; Walter, S.D. A reappraisal of the kappa coefficient. J. Clin. Epidemiol. 1988, 41, 949–958. [CrossRef]
86. Avdan, U.; Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data.

J. Sens. 2016, 2016, 1480307. [CrossRef]
87. LANDSAT 8 Data Users Handbook; Department of the Interior US Geological Survey: Washington, DC, USA, 2015.
88. Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt.

J. Remote Sens. Space Sci. 2017, 20, 125–145. [CrossRef]
89. Rousta, I.; Mansourmoghaddam, M.; Olafsson, H.; Krzyszczak, J.; Baranowski, P.; Zhang, H.; Tkaczyk, P. Analysis of the

recent trends in vegetation dynamics and its relationship with climatological factors using remote sensing data for Caspian Sea
watersheds in Iran. Int. Agrophys 2022, 36, 139–153. [CrossRef]

90. Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat.
Hazards Risk 2014, 5, 145–156. [CrossRef]

91. Logsdon, M.G.; Bell, E.J.; Westerlund, F.V. Probability mapping of land use change: A GIS interface for visualizing transition
probabilities. Comput. Environ. Urban Syst. 1996, 20, 389–398. [CrossRef]

92. Muller, M.R.; Middleton, J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landsc. Ecol.
1994, 9, 151–157.

93. Guan, D.; Gao, W.; Watari, K.; Fukahori, H. Land use change of Kitakyushu based on landscape ecology and Markov model.
J. Geogr. Sci. 2008, 18, 455–468. [CrossRef]

94. Dadhich, P.N.; Hanaoka, S. Remote sensing, GIS and Markov’s method for land use change detection and prediction of Jaipur
district. J. Geomat. 2010, 4, 9–15.

95. Zhang, R.; Tang, C.; Ma, S.; Yuan, H.; Gao, L.; Fan, W. Using Markov chains to analyze changes in wetland trends in arid Yinchuan
Plain, China. Math. Comput. Model. 2011, 54, 924–930. [CrossRef]

96. Jianping, L.; Bai, Z.; Feng, G. RS-and-GIS-supported forecast of grassland degradation in southwest Songnen plain by Markov
model. Geo-Spat. Inf. Sci. 2005, 8, 104–109. [CrossRef]

97. Cheng, X.; Duan, W.; Chen, W.; Ye, W.; Mao, F.; Ye, F.; Zhang, Q. Infrared radiation coatings fabricated by plasma spray. J. Therm.
Spray Technol. 2009, 18, 448–450. [CrossRef]

98. Nichol, J. An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis.
Photogramm. Eng. Remote Sens. 2009, 75, 547–556. [CrossRef]

99. Kikon, N.; Singh, P.; Singh, S.K.; Vyas, A. Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal
satellite data. Sustain. Cities Soc. 2016, 22, 19–28. [CrossRef]

100. Mansourmoghaddam, M.; Rousta, I.; Zamani, M.S.; Mokhtari, M.H.; Karimi Firozjaei, M.; Alavipanah, S.K. Investigating And
Modeling the Effect of The Composition and Arrangement of The Landscapes of Yazd City on The Land Surface Temperature
Using Machine Learning and Landsat-8 and Sentinel-2 Data. Iran. J. Remote Sens. GIS 2022, 15, 1–28.

101. Soltanifard, H.; Aliabadi, K. Impact of urban spatial configuration on land surface temperature and urban heat islands: A case
study of Mashhad, Iran. Theor. Appl. Climatol. 2019, 137, 2889–2903. [CrossRef]

102. Rayegani, B.; Jahani, A.; Sattari rad, A.; Shoghi, N. Predicting Land Use Change for 2030 Using Remote Sensing and Landsat
Multi-Time Images (Case Study: Mashhad). J. Land Manag. 2018, 10, 249–269. [CrossRef]

103. Savini, F. Who makes the (new) metropolis? Cross-border coalition and urban development in Paris. Environ. Plan. A 2012, 44,
1875–1895. [CrossRef]

104. Paris, C. From barricades to back gardens: Cross-border urban expansion from the City of Derry into Co. Donegal. In Renewing
Urban Communities; Routledge: London, UK, 2017; pp. 114–131.

105. Rahnama, M.R. Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model
for 2016–2030. Sustain. Cities Soc. 2020, 64, 102548. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/36.406684
https://doi.org/10.1515/jengeo-2016-0008
https://doi.org/10.1016/j.rse.2012.10.010
https://doi.org/10.3390/environments4040072
https://doi.org/10.1016/0895-4356(88)90031-5
https://doi.org/10.1155/2016/1480307
https://doi.org/10.1016/j.ejrs.2016.11.003
https://doi.org/10.31545/intagr/150020
https://doi.org/10.1080/19475705.2013.795502
https://doi.org/10.1016/S0198-9715(97)00004-5
https://doi.org/10.1007/s11442-008-0455-0
https://doi.org/10.1016/j.mcm.2010.11.017
https://doi.org/10.1007/BF02826848
https://doi.org/10.1007/s11666-009-9321-6
https://doi.org/10.14358/PERS.75.5.547
https://doi.org/10.1016/j.scs.2016.01.005
https://doi.org/10.1007/s00704-018-2738-4
https://doi.org/10.22059/JTCP.2019.262107.669876
https://doi.org/10.1068/a44632
https://doi.org/10.1016/j.scs.2020.102548

	Introduction 
	Materials 
	Study Area 
	Data Collection 

	Methods 
	Flowchart of the Data Processing 
	Methodology 
	Calculation of Population Growth Rate 
	LU/LC Classification 
	Calculation of LST 
	Calculation of NDVI 
	LU/LC and LST Prediction 


	Results 
	Population Changes 
	LU/LC Classification 
	Spatiotemporal Pattern of LU/LC 
	LU/LC Classification Accuracy Assessment 

	Spatiotemporal Pattern of LST 
	Prediction of LU/LC and LST 
	Assessment of the Accuracy of the Markov Model for LU/LC and LST Prediction 
	Markov Model Forecast of the Changes in the LU/LC and LST for 2030 


	Discussion 
	Conclusions 
	References

