Recent Urban Issues Related to Particulate Matter in Ploiesti City, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate and Meteorological Data
2.3. Monitoring Systems and Instrumentation
2.4. Timeline of COVID-19 Lockdown and Associated Periods
2.5. Analysis and Statistics
3. Results
Particulate Matter Load
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vallero, D. (Ed.) Air Pollution’s Impact on Ecosystems. In Fundamentals of Air Pollution, 5th ed.; Academic Press: Cambridge, MA, USA, 2014; Chapter 14; pp. 341–368. [Google Scholar]
- Lamnabhi-Lagarrigue, F.; Annaswamy, A.; Engell, S.; Isaksson, A.; Khargonekar, P.; Murray, R.M.; Nijmeijer, H.; Samad, T.; Tilbury, D.; Van den Hof, P. Systems & control for the future of humanity, research agenda: Current and future roles, impact and grand challenges. Annu. Rev. Control 2017, 43, 1–64. [Google Scholar]
- Claxton, L.D. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 3: Diesel and gasoline. Mutat. Res. Mol. Mech. Mutagen. 2015, 763, 30–85. [Google Scholar] [CrossRef] [PubMed]
- Siriopoulos, C.; Samitas, A.; Dimitropoulos, V.; Boura, A.; AlBlooshi, D.M. Health economics of air pollution. In Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering, Butterworth-Heinemann; Mohamed, A.O., Paleologos, E.K., Howari, F.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 12; pp. 639–679. [Google Scholar] [CrossRef]
- Dunea, D.; Iordache, Ş.; Ianache, C. Relationship between airborne particulate matter and weather conditions in Targoviste urban area during cold months. Rev. Roum. Chim. 2015, 60, 595–601. [Google Scholar]
- Velasco, E.; Retama, A.; Zavala, M.; Guevara, M.; Rappenglück, B.; Molina, L.T. Intensive field campaigns as a means for improving scientific knowledge to address urban air pollution. Atmos. Environ. 2021, 246, 118094. [Google Scholar] [CrossRef]
- Romanian Parliament. Law No. 104 of 15 June 2011 on Ambient Air Quality; Part I, no. 452 of June 28; Official Monitor of Romania: Bucharest, Romania, 2011.
- Oprea, M.; Dunea, D.; Liu, H.-Y. Development of a Knowledge Based System for analyzing particulate matter air pollution effects on human health. Environ. Eng. Manag. J. 2017, 16, 669–676. [Google Scholar] [CrossRef]
- Borghi, F.; Fanti, G.; Cattaneo, A.; Campagnolo, D.; Rovelli, S.; Keller, M.; Spinazzè, A.; Cavallo, D.M. Estimation of the Inhaled Dose of Airborne Pollutants during Commuting: Case Study and Application for the General Population. Int. J. Environ. Res. Public Health 2020, 17, 6066. [Google Scholar] [CrossRef]
- Dunea, D.; Iordache, S.; Radulescu, C.; Pohoata, A.; Dulama, I.D. A multidimensional approach to the influence of wind on the variations of particulate matter and associated heavy metals in Ploiesti city, Romania. Rom. J. Phys. 2016, 61, 1354–1368. [Google Scholar]
- IQAir’s 2021 World Air Quality Report. Available online: https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2021-en.pdf (accessed on 5 April 2022).
- Rodrigues, V.; Gama, C.; Ascenso, A.; Oliveira, K.; Coelho, S.; Monteiro, A.; Hayes, E.; Lopes, M. Assessing air pollution in european cities to support a citizen centered approach to air quality management. Sci. Total Environ. 2021, 799, 149311. [Google Scholar] [CrossRef]
- Basagaña, X.; Jacquemin, B.; Karanasiou, A.; Ostro, B.; Querol, X.; Agis, D.; Alessandrini, E.; Alguacil, J.; Artiñano, B.; Catrambone, M.; et al. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 2015, 75, 151–158. [Google Scholar] [CrossRef]
- Mücke, H.G.; Wagener, S.; Werchan, M.; Bergmann, K.C. Measurements of particulate matter and pollen in the city of Berlin. Urban Clim. 2014, 10, 621–629. [Google Scholar] [CrossRef]
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Volná, V.; Blažek, Z.; Krejčí, B. Assessment of air pollution by PM10 suspended particles in the urban agglomeration of Central Europe in the period from 2001 to 2018. Urban Clim. 2021, 39, 100959. [Google Scholar] [CrossRef]
- Tuygun, G.T.; Gündoğdu, S.; Elbir, T. Estimation of ground-level particulate matter concentrations based on synergistic use of MODIS, MERRA-2 and AERONET AODs over a coastal site in the Eastern Mediterranean. Atmos. Environ. 2021, 261, 118562. [Google Scholar] [CrossRef]
- Martins, V.; Faria, T.; Diapouli, E.; Manousakas, M.I.; Eleftheriadis, K.; Viana, M.; Almeida, S.M. Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: Levels, chemical composition and sources. Environ. Res. 2020, 183, 109203. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wong, M.S.; Wang, J.; Zhao, Y. Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS. Sensors 2012, 12, 6825–6836. [Google Scholar] [CrossRef]
- Iorga, G.; Balaceanu Raicu, C.; Stefan, S. Annual air pollution level of major primary pollutants in Greater Area of Bucharest. Atmos. Pollut. Res. 2015, 6, 824–834. [Google Scholar]
- Proorocu, M.; Odagiu, A.; Oroian, I.G.; Ciuiu, G.; Dan, V. Particulate matter status in Romanian urban areas: PM10 pollution levels in Bucharest. Environ. Eng. Manag. J. 2014, 13, 3115–3122. [Google Scholar] [CrossRef]
- Olaru, E.A.; Offer, Z.Y.; Ruta, F.; Udrea, I. Chemical and micromorphological properties of TSP and PM10 particles: Case study in Bucharest urban area. Environ. Monit. Assess. 2012, 184, 4737–4745. [Google Scholar] [CrossRef]
- Bodor, K.; Szép, R.; Bodor, Z. The human health risk assessment of particulate air pollution (PM2.5 and PM10) in Romania. Toxicol. Rep. 2022, 9, 556–562. [Google Scholar] [CrossRef]
- Roba, C.; Ştefănie, H.; Török, Z.; Kovacs, M.; Roşu, C.; Ozunu, A. Determination of volatile organic compounds and particulate matter levels in an urban area from Romania. Environ. Eng. Manag. J. 2014, 13, 2261–2268. [Google Scholar] [CrossRef]
- Iordache, S.; Dunea, D.; Radulescu, C.; Dulama, I.D.; Ianache, R.; Predescu, M. Investigation of heavy metals content in Airborne Particles from Ploiesti, Romania. Rev. Chim. 2017, 68, 879–885. [Google Scholar] [CrossRef]
- Michael, S.; Montag, M.; Dotta, W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ. Pollut. 2013, 183, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Dunea, D.; Iordache, S.; Pohoata, A. A Review of Airborne Particulate Matter Effects on Young Children’s Respiratory Symptoms and Diseases. Atmosphere 2018, 9, 150. [Google Scholar] [CrossRef]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Dunea, D.; Liu, H.-Y.; Iordache, S.; Buruleanu, L.; Pohoata, A. Liaison between exposure to sub-micrometric particulate matter and allergic response in children from a petrochemical industry city. Sci. Total Environ. 2020, 745, 141170. [Google Scholar] [CrossRef] [PubMed]
- INSP–National Institute of Public Health, Romania–National Report of Population’s Health Status. 2020. Available online: https://insp.gov.ro/2021/12/29/raportul-national-al-starii-de-sanatate-a-populatiei-2020/ (accessed on 2 April 2022).
- WHO, Maintaining Essential Health Services: Operational Guidance for the COVID-19 Context, Interim Guidance. 1 June 2020. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-essential_health_services-2020.2 (accessed on 5 April 2020).
- Lee, A.; Morling, J. COVID19: The need for public health in a time of emergency. Public Health 2020, 182, 188–189. [Google Scholar] [CrossRef]
- Lighthouse. Available online: https://www.golighthouse.com/en/airborne-particle-counters/handheld-3016-iaq (accessed on 2 April 2022).
- Iovanovici, A.; Avramoni, D.; Prodan, L. A dataset of urban traffic flow for 13 Romanian cities amid lockdown and after ease of COVID19 related restrictions. Data Brief 2020, 32, 106318. [Google Scholar] [CrossRef]
- Predescu, L.; Dunea, D. Performance Evaluation of Particulate Matter and Indoor Microclimate Monitors in University Classrooms under COVID-19 Restrictions. Int. J. Environ. Res. Public Health 2021, 18, 7363. [Google Scholar] [CrossRef]
- Adam, M.G.; Tran, P.T.M.; Balasubramanian, R. Air quality changes in cities during the COVID-19 lockdown: A critical review. Atmos. Res. 2021, 264, 105823. [Google Scholar] [CrossRef]
- Slezakova, K.; Pereira, M.C.; Morais, S. Ultrafine particles: Levels in ambient air during outdoor sport activities. Environ. Pollut. 2020, 258, 113648. [Google Scholar] [CrossRef] [PubMed]
- Utell, M.J.; Frampton, M.W. Acute health effects of ambient air pollution: The ultrafine particle hypothesis. J. Aerosol Med. 2000, 13, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Seaton, A.; Cherrie, J.; Dennekamp, M.; Donaldson, K.; Hurley, J.F.; Tran, C.L. The London Underground: Dust and Hazards to Health. Occup. Environ. Med. 2005, 62, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Al-Jallad, F.; Rodrigues, C.; Al-Thani, H. Ambient Levels of TSP, PM10, PM2.5 and Particle Number Concentration in Al Samha, UAE. J. Environ. Prot. 2017, 8, 1002–1017. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their Relation to Meteorological Factors. Atmosphere 2015, 6, 150–163. [Google Scholar] [CrossRef]
- Grana, M.; Toschi, N.; Vicentini, L.; Pietroiusti, A.; Magrini, A. Exposure to ultrafine particles in different transport modes in the city of Rome. Environ. Pollut. 2017, 228, 201–210. [Google Scholar] [CrossRef]
- Amaral, S.S.; De Carvalho, J.A., Jr.; Costa, M.A.M.; Pinheiro, C. An Overview of Particulate Matter Measurement Instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D. Seasonal Variation, Chemical Composition, and PMF-Derived Sources Identification of Traffic-Related PM1, PM2.5, and PM2.5–10 in the Air Quality Management Region of Žilina, Slovakia. Int. J. Environ. Res. Public Health 2021, 18, 10191. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, S.K.; Mandal, T.K.; Saxena, M. Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 2018, 37, 107–118. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Jandacka, D.; Durcanska, D. Differentiation of Particulate Matter Sources Based on the Chemical Composition of PM10 in Functional Urban Areas. Atmosphere 2019, 10, 583. [Google Scholar] [CrossRef]
- Soleimani, M.; Amini, N.; Sadeghian, B.; Wang, D.; Fang, L. Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City. Iran. J. Environ. Sci. 2018, 72, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Sanda, M.; Onutu, I. Air pollution with compounds from refineries. Case study Petroleum-Gas University of Ploieşti, Romania. In Proceedings of the 4th International Colloquium Energy and Environmental Protection, Ploiesti, Romania, 4–6 November 2020. [Google Scholar]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature mortality due to air pollution in European cities: A health impact assessment. Lancet Planet. Health 2021, 5, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Bodor, K.; Szép, R.; Bodor, Z. Time series analysis of the air pollution around Ploiesti oil refining complex, one of the most polluted regions in Romania. Sci. Rep. 2022, 12, 11817. [Google Scholar] [CrossRef] [PubMed]
- Ceccato, P.; Ramirez, B.; Manyangadze, T.; Gwakisa, P.; Thomson, M.C. Data and tools to integrate climate and environmental information into public health. Infect. Dis. Poverty 2018, 7, 126. [Google Scholar] [CrossRef]
- Oprea, M.; Ianache, C.; Mihalache, S.F.; Dragomir, E.G.; Dunea, D.; Iordache, S.; Savu, T. On the development of an intelligent system for particulate matter air pollution monitoring, analysis and forecasting in urban regions. In Proceedings of the 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, Romania, 14–16 October 2015; pp. 711–716. [Google Scholar]
- Oprea, M.; Dunea, D. SBC-MEDIU: A multi-expert system for environmental diagnosis. Environ. Eng. Manag. J. 2010, 9, 205–213. [Google Scholar] [CrossRef]
Date | Event | 0.3 Microns * | 0.5 Microns | 1.0 Microns | 2.5 Microns | 5.0 Microns | 10.0 Microns | Average Temperature (°C) | Precipitations—Average of Day (mm) |
---|---|---|---|---|---|---|---|---|---|
11 March 2020 | Schools were closed | 492,491.6 | 39,258.2 | 6300.4 | 1886.6 | 979.0 | 135.2 | 9.6 | 0.5 |
16 March 2020 | State of emergency was declared | 321,550.9 | 25,631.9 | 4113.6 | 1231.7 | 639.2 | 88.3 | 3.9 | 0 |
21 March 2020 | M.O.2 restricts mobility | 798,169.5 | 63,624.9 | 10,210.9 | 3057.5 | 1586.6 | 219.1 | 12.6 | 0 |
22 March 2020 | First day after M.O.2 | 244,498.5 | 19,489.8 | 3127.8 | 936.6 | 486.0 | 67.1 | 14.1 | 1.3 |
24 March 2020 | M.O.3—restriction of citizens’ movement | 217,043.3 | 17,301.3 | 2776.6 | 831.4 | 431.4 | 59.6 | 1.6 | 2.8 |
25 March 2020 | First day after M.O.3 | 335,847.8 | 26,771.6 | 4296.5 | 1286.5 | 667.6 | 92.2 | 1.9 | 0.5 |
12 April 2020 | Catholic Easter | 407,654.2 | 32,495.5 | 5215.1 | 1561.6 | 810.3 | 111.9 | 12.5 | 0 |
19 April 2020 | Orthodox Easter | 292,766.7 | 23,337.4 | 3745.3 | 1121.5 | 581.9 | 80.4 | 15.9 | 2.4 |
15 May 2020 | State of Alert replaces the State of Emergency | 473,894.9 | 37,775.8 | 6062.5 | 1815.3 | 942.0 | 130.1 | 20.6 | 0 |
16 May 2020 | First day after the State of Alert | 520,882.7 | 41,521.4 | 6663.6 | 1995.3 | 1035.4 | 143.0 | 18.8 | 0.4 |
15 June 2020 | Two weeks after the lifting of transportation restrictions | 582,058.2 | 46,397.9 | 7446.2 | 2229.7 | 1157.0 | 159.8 | 21.7 | 4.9 |
27 November 2020 | Day with common concentrations (<15 μg m−3 PM2.5 24 h average) | 1,255,087.1 | 100,047.3 | 16,056.2 | 4807.8 | 2494.8 | 344.6 | 0.5 | 0 |
14 February 2022 | Day with high PM concentrations (>30 μg m−3 PM2.5 24 h average) | 4,661,690 | 364,031 | 54,191 | 12,053 | 3928 | 337 | 6.3 | 0 |
Station | Position | % Valid obs. | Mean | Geometric | Median | Minimum | Maximum | Std. Dev. | Coef. Var. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|---|
1 March 2020–30 June 2020 | |||||||||||
PH-1 | West | 100 | 16.78 | 15.52 | 15.39 | 5.00 | 69.41 | 6.97 | 41.53 | 1.48 | 4.18 |
PH-2 | Center | 94.8 | 17.03 | 15.46 | 16.29 | 3.24 | 82.33 | 7.35 | 43.14 | 0.97 | 3.28 |
PH-5 | Southeast | 97.0 | 16.90 | 15.64 | 15.67 | 5.32 | 73.63 | 7.02 | 41.55 | 1.53 | 4.56 |
PH-6 | East | 73.4 | 16.09 | 13.98 | 15.52 | 1.00 | 44.61 | 7.54 | 46.88 | 0.34 | −0.20 |
Aggregated | - | 91.3 | 16.70 | 15.15 | 15.72 | 3.64 | 67.50 | 7.22 | 43.28 | 1.08 | 2.95 |
24 March 2020–15 May 2020 (lockdown) | |||||||||||
PH-1 | West | 100 | 16.31 | 15.29 | 15.14 | 6.27 | 69.41 | 6.23 | 38.18 | 1.56 | 6.21 |
PH-2 | Center | 95.6 | 15.97 | 14.39 | 14.64 | 4.14 | 82.33 | 7.50 | 46.99 | 1.57 | 7.09 |
PH-5 | Southeast | 100 | 16.42 | 15.45 | 15.38 | 5.63 | 59.50 | 6.01 | 36.58 | 1.32 | 3.71 |
PH-6 | East | 83.9 | 11.39 | 9.75 | 10.71 | 1.00 | 36.04 | 6.00 | 52.70 | 0.85 | 0.91 |
Aggregated | - | 94.9 | 15.02 | 13.72 | 13.97 | 4.26 | 61.82 | 6.44 | 43.61 | 1.33 | 4.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanda, M.; Dunea, D.; Iordache, S.; Predescu, L.; Predescu, M.; Pohoata, A.; Onutu, I. Recent Urban Issues Related to Particulate Matter in Ploiesti City, Romania. Atmosphere 2023, 14, 746. https://doi.org/10.3390/atmos14040746
Sanda M, Dunea D, Iordache S, Predescu L, Predescu M, Pohoata A, Onutu I. Recent Urban Issues Related to Particulate Matter in Ploiesti City, Romania. Atmosphere. 2023; 14(4):746. https://doi.org/10.3390/atmos14040746
Chicago/Turabian StyleSanda, Mia, Daniel Dunea, Stefania Iordache, Laurentiu Predescu, Mirela Predescu, Alin Pohoata, and Ion Onutu. 2023. "Recent Urban Issues Related to Particulate Matter in Ploiesti City, Romania" Atmosphere 14, no. 4: 746. https://doi.org/10.3390/atmos14040746
APA StyleSanda, M., Dunea, D., Iordache, S., Predescu, L., Predescu, M., Pohoata, A., & Onutu, I. (2023). Recent Urban Issues Related to Particulate Matter in Ploiesti City, Romania. Atmosphere, 14(4), 746. https://doi.org/10.3390/atmos14040746