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Abstract: Understanding greenhouse gas–climate processes and feedbacks is a fundamental step
in understanding climate variability and its links to greenhouse gas fluxes. Chemical transport
models are the primary tool for linking greenhouse gas fluxes to their atmospheric abundances.
Hence, accurate simulations of greenhouse gases are essential. Here, we present a new simulation
in the GEOS-Chem chemical transport model that couples the two main greenhouse gases—carbon
dioxide (CO2) and methane (CH4)—along with the indirect greenhouse gas carbon monoxide (CO)
based on their chemistry. Our updates include the online calculation of the chemical production
of CO from CH4 and the online production of CO2 from CO, both of which were handled offline
in the previous versions of these simulations. In the newly developed coupled (online) simulation,
we used consistent hydroxyl radical (OH) fields for all aspects of the simulation, resolving biases
introduced by inconsistent OH fields in the currently available uncoupled (offline) CH4, CO and CO2

simulations. We compare our coupled simulation with the existing v12.1.1 GEOS-Chem uncoupled
simulations run the way they are currently being used by the community. We discuss differences
between the uncoupled and coupled calculation of the chemical terms and compare our results
with surface measurements from the NOAA Global Greenhouse Gas Reference Network (NOAA
GGGRN), total column measurements from the Total Carbon Column Observing Network (TCCON)
and aircraft measurements from the Atmospheric Tomography Mission (ATom). Relative to the
standard uncoupled simulations, our coupled results suggest a stronger CO chemical production
from CH4, weaker production of CO2 from CO and biases in the OH fields. However, we found a
significantly stronger chemical production of CO2 in tropical land regions, especially in the Amazon.
The model–measurement differences point to underestimated biomass burning emissions and sec-
ondary production for CO. The new self-consistent coupled simulation opens new possibilities when
identifying biases in CH4, CO and CO2 source and sink fields, as well as a better understanding of
their interannual variability and co-variation.

Keywords: carbon dioxide; carbon monoxide; chemical production; modeling; GEOS-Chem; carbon cycle

1. Introduction

Accurate simulations of greenhouse gases are vital for climate predictions. Carbon
dioxide (CO2) and methane (CH4) are the two main anthropogenic greenhouse gases and
have a significant impact on our climate. Due to human activities, the atmospheric amounts
of CO2 and CH4 have increased globally by 40% and 150%, respectively, since the industrial
revolution [1]. Carbon monoxide (CO) is less abundant than CO2 and CH4; however,
through its indirect effects on CH4, ozone and CO2, it can also have a climate impact [2].
Changes in the atmospheric amounts of these gases, driven by changes in their sources and
sinks, largely control our future climate, but uncertainties about these processes and their
budgets still remain [3–5]. All three carbon greenhouse gases are chemically dependent,
and a change in one can affect the others.
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In the GEOS-Chem model, each of these gases have their own stand-alone simulation,
decoupled from one another. All three simulations are widely used for carbon gas flux
inversion and source attribution [6–12]. Previous studies have emphasized the importance
of the inclusion of the 3-D chemical production of CO2 from the collective oxidation of CO,
CH4 and non-methane volatile organic compounds (NMVOCs) [13,14], but this chemical
production, together with the secondary production of CO from CH4, is handled offline
in the stand-alone carbon gas simulations of the GEOS-Chem model [15–17]. Moreover,
the chemical production and hydroxyl radical (OH) fields used by each of these individual
simulations are calculated from different model versions (based on the model version in
use when the stand-alone simulation was developed), introducing inconsistencies between
the simulations. Here, we present a new simulation in GEOS-Chem that couples CH4,
CO and CO2 with an online calculation of their chemical production using consistent and
updated OH fields for a more accurate simulation of these gases.

The dominant loss process of CH4, the second most important anthropogenic green-
house gas, is through a reaction with OH:

CH4 + OH→ CH3 + H2O (1)

that eventually leads to the formation of CO after a series of intermediate steps [18]:

CHO + O2 → CO + HO2 (2)

Both CH4 and CO have a common sink in the atmosphere through the reaction with
OH. The role of CO in determining tropospheric OH indirectly affects the atmospheric
burden of CH4 [19]. Along with CH4, it is one of the principal sinks of OH. Through the
reaction with OH, CO can also lead to the chemical formation of CO2 [13,14]:

CO + OH→ CO2 + H (3)

The oxidation of both primary CO, from direct anthropogenic and biomass burning
emissions, and secondary CO, as an intermediate in the oxidation of CH4 and NMVOCs,
leads to the formation of CO2. CO2 can also be produced from the oxidation of carboxy–
peroxy radical (RCO3) and alkenoid ozonolysis (reaction of ethene with ozone; C2H4+O3) [20],
but this is thought to only be a minor contributor.

In regions that are not dominated by strong anthropogenic point emissions or biomass
burning emissions, the major source of CO is CH4 oxidation by OH through
Reactions (1) and (2) and the intermediate reactions. Studies have found the yield of
CO from CH4 oxidation to range from 0.70–1 [4,21–26]. The CO chemical production
from CH4 is estimated to be 760–1086 Tg CO yr−1, with CO also chemically produced
from NMVOCs, with estimates of 320–820 Tg CO yr−1 [4,17,25,27–30]. The combined CO
chemical production represents more than half of the total CO source.

The reaction of CO with OH radicals represents its largest sink, removing
2325–2630 Tg CO yr−1 [15,17,25,28,29,31]. The total chemical CO2 source is estimated
to be around 1.04–1.1 Pg C yr−1 [14,15], which is approximately 12% of the annual anthro-
pogenic CO2 source (9.4 Pg C yr−1, averaged for 2008–2017) [32]. Around 90–94% of the
CO2 chemical production is from CO oxidation [20,33]. In contrast to the majority of the
CO2 sources that are emitted at the surface, CO2 from the oxidation of CO is produced
throughout the atmosphere. Although significant efforts have been made to constrain the
total budgets of CO2, CH4 and CO, discrepancies in the chemical terms between studies
suggest that these terms are still subject to uncertainties that can impact our understanding
of the total budgets [4,14,15,17,30].

In this study, we introduced a new simulation in the GEOS-Chem model that couples
the chemistry of CH4, CO and CO2. The coupling of the carbon greenhouse gases represents
an important modeling improvement and capability when studying these gases [34,35].
With the new coupled GEOS-Chem carbon simulation, we eliminated the previous of-
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fline handling of the chemical production terms and OH inconsistency between the three
species [15–17], enabling us to have (i) better estimates of the chemical terms, (ii) consistent
OH fields between species, and (iii) simultaneous and consistent simulations of CH4, CO
and CO2 that can help when constraining their fluxes based on their covariation [10,36,37].
Moreover, the coupled simulation removes the need to run the individual simulations
separately if interested in all three gases, and it requires fewer computational resources
than running three independent simulations.

We first describe the method for the online calculation of the chemical production
and the difference between the existing (uncoupled) and new (coupled) versions of these
simulations (Section 2). We then compare the stand-alone simulations of all three gases,
each run the way they are currently being used by the community, with the coupled
simulation. For both versions, we analyze their annual budgets and the contribution of
chemical production to the total amount of each gas (Sections 3.1 and 3.2) as well as their
global spatial and vertical distribution (Sections 3.3 and 3.4). We validate the new coupled
simulations against global surface flask measurements at sites that are part of the NOAA
Global Greenhouse Gas Reference Network (NOAA GGGRN), column measurements from
the Total Carbon Column Observing Network (TCCON) and aircraft in situ measurements
from the Atmospheric Tomography Mission (ATom) (Section 3.5). Finally, we discuss a
sensitivity simulation designed to test the impact of using inconsistent OH fields between
the three uncoupled simulations, an issue that impacts the existing uncoupled simulations
but is resolved in our new coupled simulation (Section 3.6).

2. Methods
2.1. Uncoupled Geos-Chem Carbon Gas Simulations

The uncoupled CH4, CO and CO2 simulations used here are based on version 12.1.1 of
the GEOS-Chem 3-D global chemical transport model. The existing uncoupled simulations
are described in Nassar et al. [15] and Nassar et al. [38] for CO2, Wecht et al. [16] and
Maasakkers et al. [39] for CH4 and Fisher et al. [17] for CO. Each of these simulations are
used routinely and independently for evaluating new emission inventories, estimating
and resolving emissions, analyzing spatial and temporal changes of CH4, CO and CO2,
source/sink attribution and inversion studies [6–12].

These simulations are decoupled from other gases and from one another; hence, they
require input fields, including chemical production rates and OH losses. GEOS-Chem can
also perform a full chemistry simulation, known as coupled aerosol–oxidant chemistry in
the troposphere and stratosphere simulation. Of the three species, only CO is simulated
online in the full chemistry simulation. CO2 and CH4 are not modeled as active species
in the full chemistry, and their response to sources and sinks can only be modeled via
the currently uncoupled simulations. The full chemistry simulation is required for the
functionality of some of the stand-alone simulations because it provides input fields for
those simulations. Various versions of the full chemistry simulation were run previously by
the developers of each uncoupled simulation to archive the production rates and oxidant
fields that are currently used in the carbon gas simulations (Table 1). Both the production
and oxidant fields are computed using 3-D archives of monthly average values. All three
carbon gas simulations are linear, and each includes a suite of tracers tagged by source type
and/or region.

The equations below describe the changes in the emission, deposition, production
and loss terms that occur within each grid box for the stand-alone CH4, CO and CO2
simulations. Note that advective transport fluxes between grid boxes (including between
the troposphere and the stratosphere) are in addition to the terms described in each equation.
The GEOS-Chem model dynamically calculates the tropopause height at every timestep and
uses this information to assign each grid box to either the troposphere or the stratosphere.
The simulated CH4 in the troposphere is based on Equation (4):

d[CH4Trop]

dt
= ECH4 − SCH4 − kCH4,OH [OH][CH4]− kCH4,Cl [Cl][CH4] (4)
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where ECH4 represents the surface emissions (gas, oil, coal, livestock, landfills, wastewater,
biofuel, rice, biomass burning, wetlands, seeps, termites and other anthropogenic emis-
sions; see Table S1), SCH4 is the sink from soil absorption, [OH], [Cl] and [CH4] are the
atmospheric concentrations of OH, Cl and CH4, and kCH4,OH and kCH4,Cl are the pressure-
and temperature-dependent rate constants for oxidation of CH4 by OH and Cl, respectively.
While [CH4] is calculated at each model timestep, in the uncoupled simulation, [OH] and
[Cl] are provided as monthly mean values archived from a prior full chemistry simulation.

In the stratosphere, Equation (4) becomes:

d[CH4Strat]

dt
= ECH4 − L(CH4) (5)

where L(CH4) represents the stratospheric CH4 sink based on stratospheric CH4 loss
frequencies archived from the NASA Global Modeling Initiative model [40,41] as described
by Murray et al. [42].

Simulated CO in the troposphere is based on Equation (6):

d[COTrop]

dt
= ECO + P(CO)− kCO[OH][CO] (6)

where ECO represents the surface emissions (fossil fuel, biofuel and biomass burning),
P(CO) accounts for the chemical production of CO from CH4 and NMVOC oxidation and
kCO is the pressure- and temperature-dependent rate constant for oxidation of CO by OH
from the Jet Propulsion Laboratory (JPL) data evaluation [43]. As in the CH4 simulation,
[OH] is provided as a monthly mean value archived from a prior full chemistry simulation.

The chemical production of CO (P(CO)) can be further separated into the production
from CH4 (P(CO)CH4 ) and the production from NMVOCs (P(CO)NMVOC):

P(CO) = P(CO)CH4 + P(CO)NMVOC (7)

The P(CO)CH4 and P(CO)NMVOC terms are monthly averaged archived fields that
were obtained with the v9-01-03 GEOS-Chem 2◦ × 2.5◦ full chemistry simulation from the
simulated monthly CO chemical production rates (P(CO)) as described by Fisher et al. [17].
In brief, the simulated P(CO) is split offline to the P(CO)CH4 and P(CO)NMVOC terms based
on the CH4 loss rates (L(CH4)) that are also simulated and saved from a full chemistry
simulation. A 100% CO yield from CH4 is assumed; hence, the production of CO from CH4
is equal to the CH4 loss:

P(CO)CH4 = L(CH4) (8)

The remaining P(CO)NMVOC contribution is then calculated as the difference between
the total CO production and the production of CO from CH4:

P(CO)NMVOC = P(CO)− P(CO)CH4 (9)

Since the 100% yield may overestimate the production of CO from the oxidation
of CH4, the simulation caps the P(CO)CH4 to the total P(CO), where it is greater than
P(CO) [17]. Hence, this assumption will retain consistency in the P(CO) terms between the
full chemistry and uncoupled simulations.

In the v9-01-03 full chemistry simulation used to calculate the L(CH4) and P(CO)CH4
fields used by the uncoupled CO simulation [17], CH4 mixing ratios were prescribed
as fixed values. One annual value for each of four latitude bands (30–90◦ S, 0–30◦ S,
0–30◦ N, 30–90◦ N) was applied throughout the troposphere, defined as averages of surface
observations from NOAA carbon cycle surface flasks.
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Table 1. GEOS-Chem production (P) and loss (L) terms used for the uncoupled and coupled carbon
gas simulations, along with the full chemistry model versions used to create the chemical terms and
hydroxyl radical (OH) fields. The chemical terms are for the troposphere unless otherwise specified.
Other source and sink fields are shown in Table S1.

CH4 CO CO2

Fields used by both uncoupled and coupled simulations

Stratospheric L(CH4) Archived fields 1 - -
Stratospheric L(CO) - GMI 2 -
Stratospheric P(CO) - GMI 2 -
P(CO)NMVOC - P(CO)NMVOC = P(CO) − P(CO)CH4 -

- archived, full chemistry v9-01-03 3 -

Fields used by uncoupled simulations only

L(CH4) 4 online 5 archived, full chemistry v9-01-03 3 -
Time resolution Every model timestep, 20 min Monthly mean, 2009–2011 average -

P(CO)CH4 - archived, P(CO)CH4 = Trop. L(CH4) -
Time resolution - Monthly mean, 2009–2011 average -

L(CO) 4,6 - online, v9-01-03 [OH] 3 archived, full chemistry
v8-02-01 7

Time resolution - Every model timestep, 20 min Monthly mean, 2004–2010
P(CO2) 6 - - archived, P(CO2) = L(CO)

Time resolution - - Monthly mean, 2004–2010

Fields used by coupled simulation only

L(CH4) online, v9-01-03 [OH] 3,8 - -
Time resolution Every model timestep, 20 min - -

P(CO)CH4 - online, P(CO)CH4 = L(CH4) -
Time resolution - Every model timestep, 20 min -

L(CO) - online, v9-01-03 [OH] 3 -
Time resolution - Every model timestep, 20 min -

P(CO2) 9 - - online, P(CO2) = L(CO)
Time resolution - Every model timestep, 20 min

1 Murray et al. [42], 2 NASA Global Modeling Initiative model, 3 Fisher et al. [17], 4 Note that, in the uncoupled
simulations, there are two entities for L(CH4) and L(CO) because there is a different treatment based on whether
they are being used to calculate the concentration of the species itself or as a proxy for the production of another
species, 5 Note that the public uncoupled CH4 simulation uses v5-07-08 OH fields [44]; however, the uncoupled CH4

simulation is not used in our analysis, 6 Troposphere and stratosphere, 7 Nassar et al. [15], 8 Note that the sensitivity
simulation described in Section 3.6 instead uses v5-07-08 OH fields as described in the text, 9 The stratospheric
P(CO2) is calculated online (every model timestep, 20 min) from stratospheric L(CO) (P(CO2) = L(CO)).

In the stratosphere, Equation (6) becomes:

d[COStrat]

dt
= P(CO)− L(CO) (10)

where P(CO) represents the stratospheric production rates of CO and L(CO) represents the
stratospheric CO sink based on stratospheric CO loss frequencies. Both quantities are from
the NASA Global Modeling Initiative model.

The simulated CO2 throughout the atmosphere is based on Equation (11):

d[CO2]

dt
= ECO2 + P(CO2) + DCO2 (11)

where ECO2 represents the surface (fossil fuel, biomass burning, biofuel, shipping) and 3-D
(aviation) emissions, P(CO2) accounts for the 3-D chemical production from the oxidation
of CO, and DCO2 represents the net contribution from ocean exchange, balanced and net
annual terrestrial exchange. Note that DCO2 can be positive or negative since these processes
have negative values in regions where they act as a net sink and positive values where
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they act as a net source. Analogous to the CO simulation, the P(CO2) term is a monthly
averaged archived field that was obtained with the v8-02-01 GEOS-Chem 4◦ × 5◦ full
chemistry simulation from the simulated monthly CO loss rates (L(CO)) as described by
Nassar et al. [15], assuming that the CO2 production is equal to the CO loss:

P(CO2) = L(CO) (12)

Some of the emission inventories used in the CO2 simulation already include CO2
from CO oxidation (effectively assuming a prompt oxidation of precursors at the point
of emission), but these amounts are only in the form of surface emissions rather than
distributed throughout the atmosphere, leading to a bias in the model [14]. With the
inclusion of a 3-D chemical source in the CO2 simulation, this bias needs to be corrected
by subtracting the CO2 chemical production “emitted” at the surface (in the emission
inventories) from the total CO2. Nassar et al. [15] quantified a 0.825 Pg C yr−1 global
annual value for this surface correction based on emissions of all reactants that undergo
oxidation to CO2 and are included in emission inventories. This includes emissions from
fossil fuel, biospheric CH4 (wetlands, ruminants, rice, termites, landfill) and biospheric
NMVOC emissions (isoprene and monoterpene). The emission inventories used for biofuel
and biomass burning explicitly account for CO2, CO, CH4 and NMVOC separately; hence,
no surface correction is applied.

2.2. Coupled Geos-Chem Simulation

Our updates couple CH4, CO and CO2 based on the chemical loss and production
reactions between these species, providing a single, self-consistent simulation. A schematic
diagram of the coupling is shown in Figure 1.

Figure 1. Schematic diagram of the tropospheric uncoupled carbon monoxide (CO) and carbon
dioxide (CO2 simulations (top) versus the coupled CH4–CO–CO2 simulation (CH4 methane, bottom).
The diagram also shows the model version (i.e., full chemistry simulation) used for the creation of
the loss and production fields in the uncoupled simulation. Colors correspond to simulations shown
in subsequent sections (see text for details). Note that both simulations use the same CO production
from non-methane volatile organic compounds (P(CO)NMVOC) field described in Sections 2.1 and 2.2
(not shown on diagram).

The starting point of the coupled simulation is the calculation of CH4 based on
Equations (4) and (5). The tropospheric CH4 loss rates are calculated from the oxidation
of tropospheric CH4 by OH at every time step. As before, a 100% yield of CO from CH4
oxidation is assumed [4], and the tropospheric CH4 loss is passed to the CO part of the
simulation at every timestep as the chemical production of CO from CH4 (P(CO)CH4 ) in the
troposphere. The calculation of the CO production in the stratosphere and from NMVOCs
uses the same method as in the uncoupled CO-only simulation. In the troposphere, the
total chemical production of CO (P(CO)) is equal to the sum of the archived P(CO)NMVOC
field and the now-online calculated P(CO)CH4 . The global tropospheric P(CO)NMVOC term
is equal to 480 Tg CO yr−1 in both the coupled and uncoupled CO simulations for each
simulation year.

The chemical production of CO2 (P(CO2)) is then calculated from the simulated CO
loss from the oxidation of CO by OH in the troposphere and from the archived CO loss in
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the stratosphere. As in the uncoupled version, a 100% yield of CO2 from CO is assumed [15].
For the chemical surface correction, due to the inclusion of the chemically produced CO2 in
other emission inventories, we retained the same correction method and values as in the
uncoupled simulation [15].

We used consistent archived OH fields (from v9-01-03) for all aspects of the simulation.
We also note that our coupled simulation does not require running additional full chemistry
simulations to create the chemical production fields, and therefore allows users to easily
update the OH fields used for the oxidation of the three species (and online calculation of
the chemical production terms) as new model versions become available.

The new coupling now allows for time-specific changes in and tracking of the chem-
ical production terms. This is an improvement of the uncoupled simulations, where the
prescribed fields were based on simulations of specific prior years and therefore could not
capture the year-specific variations and dependencies between these gases. In the uncou-
pled simulations, all of the prescribed chemical production and loss fields are monthly
mean values, whereas, with the coupled simulation, these fields are calculated online at
every timestep (i.e., 20 min), allowing us to track the day-to-day and diurnal variability of
the simulated chemical production terms.

2.3. Experimental Design

Our aim in this work was to compare the newly coupled simulation to the default
(public) v12.1.1 uncoupled simulations currently used by the GEOS-Chem community.
All aspects of the coupled and uncoupled simulations not associated with the chemical
coupling were kept as consistent as possible with the public versions of the uncoupled
simulations. The only two exceptions were: (i) the inclusion of a diurnal scaling to the
OH field used for CH4 oxidation in the troposphere and (ii) the use of the Quick Fire
Emissions Dataset (QFEDv2, Darmenov and da Silva [45]) for CO2 emissions (further
details in Section S1). The former provided consistency between carbon gases in terms
of the treatment of diel OH variability (which was already included for CO but not for
CH4), and the latter ensured that we could use consistent biomass burning emissions for
all three species.

We ran both the uncoupled and coupled simulations from January 2005 through
December 2017. The meteorological inputs for GEOS-Chem come from the Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis
developed by the NASA Global Modelling and Assimilation Office (GMAO). The native
horizontal resolution of MERRA2 is 0.5◦ × 0.625◦. We ran the simulations at 2◦ × 2.5◦

horizontal resolution with 47 vertical levels. We used 10 min as the transport and convection
timestep and 20 min for the chemistry and emissions timestep. The production and loss
terms used by each simulation are shown in Table 1, with additional common emission
fields (i.e., source and sink processes) in Table S1. For simulation periods that are outside
of the specified inventory time range, the model re-used the data from the closest year.

Based on the recommendation from the GEOS-Chem carbon cycle working group,
both the uncoupled and coupled simulations were initialized with a 10-year spinup for
CO2 and CH4 using 2005 as a base spinup year, whereas, for CO, the model was spun up
for 6 months in 2005. The spinup was carried out with the uncoupled v11-01 simulations
described in Bukosa et al. [10]. The initial fields prior to the spinup were based on year 2005
for CO2 and 2010 for CH4. Due to the increasing trend of CO2 and CH4 in the atmosphere,
each spinup year (repeating year 2005) adds the yearly growth rate of 2005 to the modeled
CO2 and CH4 values, leading to globally higher simulated values relative to measurements.
The global modeled growth of CO2 and CH4 in 2005 at the surface is 1.41 ppm yr−1 and
0.96 ppb yr−1, respectively. We quantified the overall offset by calculating the difference
between the modeled CO2 and CH4 values at the end of the 10-year spin-up (calculated for
1 January 2005) and measurements at baseline NOAA GGGRN sites (Barrow, Mauna Loa,
American Samoa (Tutuila) and South Pole, average value for January 2005). The resulting
offset was 14 ppm for CO2 and 45.8 ppb for CH4, and we subtracted this offset from the
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CO2 and CH4 initial fields prior to the simulations. Due to differences between emission
inventories used in Bukosa et al. [10] and those used here, we used the first simulation year
(2005) as an additional spinup year for all three gases.

3. Results and Discussions
3.1. Chemical Production Budgets

The main terms impacted by the coupling of CH4, CO and CO2 are the production of
CO from CH4 (P(CO)CH4 ) in the troposphere and the production of CO2 from CO (P(CO2)).
Furthermore, the changes in these terms also impact the total source budgets for CO and
CO2 and the sink term for CO (loss of CO by OH (L(CO))). The global and hemispheric
budgets for the chemical production for both coupled and uncoupled versions of the model
along with known literature values are shown in Table 2. The annual global budgets of
the chemical production terms P(CO)CH4 and P(CO2) from the uncoupled and coupled
simulations are shown in Figure 2, with their regional distributions in Figures S5 and S6.

Table 2. Global and hemispheric budgets (SH—Southern Hemisphere, NH—Northern Hemisphere)
for CO production from CH4 (P(CO)CH4 in Tg CO yr−1) and CO2 production from CO (P(CO2) in
Pg C yr−1) from the uncoupled (U) and coupled (C) simulations, as well as literature values for the
global budgets. The budgets from the simulations are shown as a multi-year mean based on years
2006–2017. The range of values for individual years is shown in the parentheses.

Global NH SH

Chemical Terms Prior Work U C U C U C

P(CO)CH4 760–1086 1,2,3,4,5,6 902 7 937 521 7 536 381 7 401
(901–905) 7 (913–960) (520–522) 7 (522–549) (380–382) 7 (390–411)

P(CO2) 1.04–1.1 8,9 1.1 10 1.03 0.67 10 0.62 0.43 10 0.40
(1.08–1.11) 10 (1.01–1.05) (0.63–0.68) 10 (0.62–0.63) (0.43–0.46) 10 (0.39–0.42)

1 Holloway et al. [27], base year: not defined; 2 Bergamaschi et al. [25], base year: 1993–1995; 3 Duncan et al. [4],
base year: 1988–1997; 4 Arellano Jr. and Hess [28], base year: 2000–2001; 5 Stein et al. [29], base year: 2008;
6 Zeng et al. [30], base year: 2004; range based on different model simulations. 7 Fisher et al. [17], base year:
2009–2011 average; 8 Nassar et al. [15], base year: 2000–2009; 9 Suntharalingam et al. [14], base year: 1988–1997;
10 Nassar et al. [15], base year: 2006–2010.

The results from our coupled simulation remain consistent with the range of values
found in prior work. The coupled simulation shows stronger P(CO)CH4 than the fields
used by the uncoupled simulation. The stronger chemical production is mainly driven
by different CH4 levels between the coupled simulation and the full chemistry simulation
(used as the input in the uncoupled CO simulation). The P(CO)CH4 calculation in both
simulations is based on the same OH version (v9-01-03), although minor differences exist
due to the temporal resolution of the OH fields (monthly OH fields with diurnal scaling
for coupled, hourly for uncoupled). The coupled P(CO)CH4 values are stronger than the
uncoupled values for all years and for both hemispheres (11–55 Tg CO yr−1 difference). This
difference represents 0.5–2.3% of the total CO source in the coupled simulation. The CO2
chemical source shows weaker values in the coupled simulation relative to the uncoupled
one (0.04–0.09 Pg C yr−1 difference). This difference represents 0.3–0.7% of the total CO2
source in the coupled simulation. The stronger uncoupled P(CO2) values are a result
of different CO amounts used for the CO loss calculation between the coupled and full
chemistry (used as the input for the uncoupled) simulations, as well as more abundant OH
used to calculate L(CO) for the uncoupled simulation (v8-02-01, Figure S2) relative to the
OH field used in the coupled simulation (v9-01-03).
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Figure 2. Annual values of the global chemical production term budgets for CO production from
CH4 (a,c) and CO2 production from CO (b,d) from the uncoupled (a,b) and coupled (c,d) simulations.
Regional distributions are shown in Figures S5 and S6.

Figure 2a,b show that there is some very minor inter-annual variability in the chemical
production fields simulated by the uncoupled simulation despite the fact that the input
chemical production fields used in this simulation do not vary inter-annually for CO (based
on 2009–2011 average values) and do not vary inter-annually after year 2010 for CO2. This
small variability in the uncoupled simulation is exclusively driven by: (1) leap years in 2008,
2012 and 2016 that lead to a larger total annual production and (2) interannual variability in
the meteorological fields (e.g., pressure levels, tropopause height) affecting the calculation
of the total tropospheric budget.

The inter-annual variability of the chemical fields is one of the key benefits of the cou-
pled simulation. We found a consistent increasing trend in P(CO)CH4 over the 2006–2017
period in the coupled simulation (Figure 2c) due to increasing atmospheric CH4 concen-
trations leading to an increased CH4 loss and associated CO production. The P(CO)CH4
increase is the most pronounced in tropical regions (Figure S5). For P(CO2), we do not
observe a trend in the coupled results. The 2006–2010 P(CO2) results do not entirely match
the inter-annual variability shown in the uncoupled fields. The year-to-year change of the
chemical fields in the coupled simulation is driven by the inter-annual variability of the
emission fields used to simulate CH4 and CO (Tables 1 and S1). Some of the emission-driven
variability may potentially be linked to El Niño Southern Oscillation (ENSO). For example,
we observe the strongest growth in P(CO)CH4 during 2009/2010 and 2015/2016, which co-
incide with moderate and strong El Niño years, while we find no growth during 2010/2011,
a strong La Niña year, highlighting the potential impact of climate anomalies on the chem-
ical terms. However, we note that 2016 is also a leap year, which will also impact the
production increase. Different ENSO-triggered CH4 processes lead to opposite changes
in CH4: during El Niño events, wetland emissions are reduced, whereas biomass burning
emissions are enhanced [46–49]. Our coupled simulation shows that these changes can
have an imprint on the chemical production of CO that is not captured in the uncoupled
simulation. The availability of OH via CO also impacts the CH4 interannual variability;
however, we were unable to quantify the OH-driven changes here as none of our simula-
tions included OH inter-annual variability or OH-feedbacks. We recommend that future
updates to the coupled simulation prioritize the inclusion of a CO–OH–CH4 feedback in
the calculation [34,50].

Figure 3 shows the budgets throughout the year for each chemical term in different
latitudinal bands. Figure 3a shows that both the uncoupled (red) and coupled (indigo)
P(CO)CH4 have a similar annual cycle, with an overall stronger production in the coupled
simulation. The coupled simulation also shows more variability due to the year-specific
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CH4 loss, with the most variability in tropical regions. Although covering a shorter time
period with year-specific fields, from 2006 to 2010, the uncoupled P(CO2) values show more
variability than in the coupled version (Figure 3b). The uncoupled simulation also shows
stronger P(CO2) values in all latitudinal bands. The largest difference between simulations
is during December–March, mostly in Northern Hemisphere (NH) tropical and Southern
Hemisphere (SH) mid-latitude regions.

Figure 3. Monthly total atmospheric column CO production from CH4 (a) and CO2 production from
CO (b), with 1 standard deviation (shaded region), from the uncoupled (red) and coupled (indigo)
simulation averaged for 2006–2017 and summed globally (left) and over different regions (right).

3.2. Chemical Source Contributions

Due to the linearity of the GEOS-Chem carbon greenhouse gas simulations, in addition
to simulating the total amount of each gas, we can also quantify the mole fractions of
individual processes (referred to as tracers). These include the CO2 mole fraction from CO2
chemical production (CO2CO) and the CO mole fraction from CO production from CH4
(COCH4 ). Figure 4 shows these chemical production tracers (Figure 4a,b), as well as the total
CO and CO2 mole fractions (Figure 4c,d) at the surface for different latitudinal bands. Note
that, in contrast to the CO source tracers, where the atmospheric sink terms (e.g., OH) are
applied to each tracer, for CO2, there is no sink applied to the different source tracers. This
leads to a trend in CO2CO and its accumulation in the atmosphere. To highlight differences
in the seasonal cycle, we detrended the CO2CO data shown in Figure 4b,d and added the
mean 2006–2017 yearly growth rates.

Implementing the online calculation of the chemical terms results in higher COCH4
values in the coupled simulation relative to the uncoupled simulation, along with a stronger
variability (Figure 4a), similar to the production rates (Table 2, Figure 3a). An average
0.8 ± 0.5 ppb difference is present across the NH between the coupled and uncoupled
results, whereas, in the SH, we find a larger difference of 1.4 ± 0.5 ppb. Both the coupled
and uncoupled simulations show similar seasonal cycles. The difference in COCH4 is also
reflected in the total amounts of CO (Figure 4c), leading to slightly higher global surface
CO values in the coupled simulation. P(CO)CH4 and COCH4 show a seasonal cycle, with
the maximum production during NH summer and minimum during winter, which is the
opposite of the seasonal cycle of the total CO mole fractions.

The CO2CO mole fractions also show a similar seasonal cycle between the two sim-
ulations in both hemispheres (Figure 4b). The uncoupled simulation shows a stronger
yearly global surface growth rate of 0.52 ppm yr−1 due to the stronger chemical production,
whereas the coupled simulation shows a weaker growth rate of 0.48 ppm yr−1 due to
weaker production. Overall, the coupling does not significantly impact the resulting CO2
mole fractions between simulations. The differences between the coupled and uncoupled
simulations are too small to be reflected in the total CO2 surface values (Figure 4d). As al-
ready highlighted, P(CO2) is a 3-D source; hence, the signal of this source in the surface
mole fractions is small relative to the other more dominant CO2 surface fluxes.



Atmosphere 2023, 14, 764 11 of 30

Figure 4. Surface mole fractions from chemical production of COCH4 (a) and CO2CO (b) and total
CO (c) and CO2 (d) mole fractions from the uncoupled (red) and coupled (indigo) simulations with
1 standard deviation (based on 2006–2017 average values). Note that the CO2 values are detrended
and added to the mean 2006–2017 yearly growth rates.

3.3. Global Distribution

Figure 5 shows the total column chemical production of CO from CH4 with corre-
sponding COCH4 mole fractions at the surface and a 500 hPa altitude from the coupled
simulation, as well as the difference between the coupled and uncoupled simulations.
Figure 6 is the same as Figure 5 but for the chemical production of CO2 and the CO2CO
mole fractions. For CO2, we additionally removed the long-term trend from the CO2CO
mole fractions. The seasonal changes of both the production terms and mole fractions are
shown in Figures S7–S10 for CO and Figures S11–S14 for CO2.

The online calculation of P(CO)CH4 has a small impact on its global spatial distribution;
both the coupled and uncoupled simulations show similar distributions (Figure 5a,d).
The simulations used the same OH fields; hence, the differences in P(CO)CH4 are driven by
the different handling of the CH4 values before the OH loss is applied. The main difference
between the two simulations is the stronger P(CO)CH4 over tropical ocean regions and
weaker P(CO)CH4 over NH land regions in the coupled version. On a yearly scale, the
surface COCH4 mole fractions from the coupled simulation show higher values above both
ocean and land regions (Figure 5e), as a result of the stronger P(CO)CH4 over tropical ocean
regions. A similar behavior is observed at 500 hPa; however, the differences are smaller
and more diffuse. We find the same differences throughout the seasons (Figures S7–S10).
We further discuss the simulated mole fractions and the impact of the coupling on total CO
in Section 3.5.
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Figure 5. Average 2006–2017 total column CO chemical production from CH4 (a) and corresponding
mole fractions (i.e., COCH4 ) at the surface (b) and at 500 hPa (c) from the coupled simulation, along
with the difference in each field between the coupled and uncoupled simulation (d–f).

Figure 6. Average 2006–2017 total column CO2 chemical production from CO (a) and corresponding
mole fractions (i.e., CO2CO) at the surface (b) and at 500 hPa (c) from the coupled simulation, along
with the difference in each field between the coupled and uncoupled simulation (d–f).

The coupled simulation shows stronger P(CO2) (Figure 6d) in certain land regions
(South America, Central Africa, Indonesia, parts of East Asia and Australia) despite the
annual global chemical source being weaker than in the uncoupled simulation. Moreover,
in the uncoupled simulation, there is almost no P(CO2) observed above the Amazon [15];
however, our results suggest substantial P(CO2) in this region. The difference patterns
appear to be mostly independent of season (Figures S11–S14). The chemical production
is overall weaker above the ocean in the coupled simulation for all seasons; however, the
coupled simulation does show stronger P(CO2) during certain periods in tropical and NH
mid-latitude regions. The stronger P(CO2) in the coupled simulation above South America,
Central Africa, Indonesia, parts of East Asia and Australia is present in all seasons, but
with the strongest contribution during September–November. South America, Central
Africa and northern Australia are characterized by strong biomass burning, especially
during the SH dry season, when frequent fires are observed (September–November),
emitting large amounts of CO into the atmosphere [51]. Our coupled model simulates
the P(CO2) in these regions during the fire season to be stronger than the previous fields
used in the uncoupled simulation. The stronger P(CO2) from the coupled simulation in
other regions such as East Asia and North America points to enhanced anthropogenic CO
emissions that lead to a stronger chemical production of CO2. In addition to the primary
CO emissions, the secondary production of CO from NMVOC could also have a significant
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impact on the P(CO2) in regions where we observe differences. Different model versions
were used to save the P(CO)NMVOC and P(CO2) in the uncoupled simulations, as discussed
in Section 2. The updated chemistry between model versions would additionally impact the
P(CO2) through the CO production from NMVOC in regions where we expect a significant
contribution from this production term (e.g., the Amazon). The spatial distribution of the
surface mole fractions is similar between simulations, with lower values overall in the
coupled simulation, especially in the NH, due to the globally stronger P(CO2). However,
the coupled simulation does show more abundant CO2CO over tropical land regions, with
stronger P(CO2), and over the SH during June-November (Figures S13 and S14). The higher
coupled simulation CO2CO values over tropical land regions are more pronounced at
500 hPa.

3.4. Vertical Latitudinal Distribution

Figure 7 shows the vertical latitudinal distribution of P(CO)CH4 and P(CO2) for differ-
ent months, averaged for 2006–2017, as well as the difference between the uncoupled and
coupled simulations. The strongest P(CO)CH4 in the coupled simulation occurs between
the surface and 3 km altitude. For most months, this chemical production is stronger in the
NH than in the SH; however, around November we observe stronger production in the SH,
potentially due to biomass burning and wetland activity, that leads to enhanced CH4 levels
and its subsequent loss driving CO production. Although the strongest production occurs
between 50◦ S–50◦ N, we also observe production in Antarctic regions in December–January
and in Arctic regions in May–July, corresponding to their summer periods. Production is
stronger in the Arctic than in the Antarctic due to higher CH4 levels and the stronger loss in
the NH. As for the global spatial distribution results, the coupling has a small impact on the
vertical distribution (Figure 7c, stronger production in the coupled than in the uncoupled).

Figure 7. Vertical latitudinal distribution of the coupled CO chemical production from CH4 (a) and
CO2 chemical production from CO (b) and the coupled–uncoupled differences (c,d) over different
months, averaged over 2006–2017.

The strongest CO2 chemical production in the coupled simulation occurs between the
surface and 4 km altitude, and CO2 is produced chemically up to 15 km (Figure 7b). From
January–July, we observe stronger production in the NH, with the strongest production
in tropical regions at the beginning of the year, moving toward higher latitudes by July.
Based on the distribution of this source in the NH (Figure 6), strong production occurs over
China and India from anthropogenic CO, with mixed biomass burning influence from other
regions. For the remaining months, both hemispheres show strong P(CO2), with the SH
showing stronger production in September, presumably due to additional biomass burning
in the tropics (e.g., Indonesia, Australia, Africa, S America). Using an uncoupled version
of the CO2 simulation, Nassar et al. [15] did not find a biomass burning contribution over
the Amazon; however, our coupled simulation, as already discussed, suggests a significant
contribution from this region. Relative to the uncoupled simulation, the coupled simulation
shows weaker production in mid-latitude and polar regions, with a stronger contribution
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in the tropics at surface levels and above 5 km. The Arctic and Antarctic regions show
weaker production in the coupled simulation.

3.5. Model Evaluation with Column, Surface and Aircraft Measurements

We validated the new coupled simulation against global column retrievals and cali-
brated surface flask and aircraft in situ measurements (Figure 8, Table A1 in Appendix A).
Long-term time series of column-averaged dry-air mole fractions of CO and CO2 were
measured by TCCON [52]. In addition, long-term time series of surface mole fractions exist
at different sites across the globe as part of NOAA GGGRN (Dlugokencky et al. [53,54]).
For a vertical profile comparison, we used aircraft measurements from the ATom cam-
paigns [55]; for both CO2 and CO, we used the merged ATom data product collected from
the NOAA-Picarro and Harvard Quantum Cascade Laser System instrument.

Figure 8. Locations of the flask surface sites from the NOAA Global Greenhouse Gas Reference
Network (NOAA GGGRN, turquoise, Dlugokencky et al. [53,54]) along with sites that measure
column-averaged dry-air mole fractions as part of the Total Carbon Column Observing Network:
(TCCON, red, https://tccondata.org/, accessed on 10 march 2023) and sites that are both part of
TCCON and NOAA GGGRN (orange). For site details, see Table A1 in Appendix A.

We used column measurements from TCCON as the main data product to highlight
the differences between the coupled and uncoupled simulations. Both the CO and CO2
chemical sources are produced throughout the column; hence, relative to surface measure-
ments, these measurements are more representative of the impact of chemical production
on the total amounts of the gases. In order to compare the total CO and CO2 model output
with the column-averaged measurements, we converted the modeled mole fractions to column-
averaged dry-air mole fractions (Xgas) by dividing the vertical column of the gas of interest
(Ωgas) with the total dry-air column (ΩO2) based on the method described by Wunch et al. [56]:

Xgas = 0.2095
Ωgas

ΩO2

(13)

and smoothed according to Equation (14) [57]:

cs = ca + hTaT(xm − xa) (14)

where cs represents the smoothed column model dry-air mole fraction, ca is the TCCON
a priori column dry-air mole fraction, hT represents the vertical column summation, aT

is the TCCON averaging kernel and xm and xa are the model and a priori dry-air mole
fraction profiles.

The modeled vertical profiles were saved at a daily temporal resolution and extracted
for the closest grid box to each TCCON station. For the comparison with surface measure-

https://tccondata.org/
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ments, we extracted the grid points at the lowest level in the model. For the comparison
with aircraft measurements, model outputs were saved for grid boxes corresponding to the
measured time, latitude, longitude and level along the plane flight track. Both the aircraft
measurements and modeled output were averaged to the model temporal (20 min) and spa-
tial (2◦ × 2.5◦) resolution to calculate one average value for each unique grid-box–time-step
combination.

Both the column and surface measurements are impacted by data gaps. In order
to minimize the impact of the non-continuous measurements and inconsistent measurement
time periods on the analysis, we used a consistent time period (2010–2017) when analyzing
the measurement–model differences. We found the fewest data gaps during this time
period; however, a few sites are still subject to missing measurements (column: Ny Alesund,
Rikubetsu, Edwards, Anmyeondo, Saga, Ascension Island, Reunion; surface: Trinidad,
Easter Island, Christmas Island). Due to short timeseries at the Manaus and Burgos TCCON
sites, we excluded them from the plots representing the measurement–model differences
in the next section (Section 3.5.1); however, the full timeseries at all sites can be found in
Figures S15–S18.

3.5.1. Comparison with Column Measurements

Figure 9 shows the differences between the modeled values (uncoupled and coupled)
and measurements at different TCCON sites for CO (Figure 9a–e) and CO2 (Figure 9f–j)
plotted against the latitude of each site. We also show the normalized mean bias between
the modeled and measured values on each plot. Mid-latitude European sites (Białystok,
Bremen, Karlsruhe, Orléans and Garmisch, grouped into Other EU sites) show similar
results; hence, we only present their mean value. The timeseries comparison of the total CO,
COCH4 , CO2 and CO2CO mole fractions for each site can be found in Figures S15 and S16.

Figure 9. Column-averaged mole fraction model–measurement differences (uncoupled (red) and
coupled (indigo)) for CO (a–e) and CO2 (f–j) as a function of latitude, averaged for 2010–2017, with
annual values (a,f) and for different seasons: December–January–February (DJF,: (b,g)) , March–
April–May (MAM, (c,h)), June–July–August (JJA, (d,i)), September–October–November (SON, (e,j)).
The numbers inset represent the normalized mean bias (NMB). For CO, we also show the NMB based
on the unscaled CO values (shown in the parentheses).
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The coupled CO results lead to a smaller bias between the modeled and measured
values in both hemispheres and all seasons (except at SH mid-latitude sites, Lauder and
Wollongong in June–July–August). Differences in the CO values are driven by differences in
the CH4 loss calculation, and we find that the stronger CH4 loss in the coupled simulation
leads to a smaller model–measurement bias, suggesting that this term was potentially
underestimated in the uncoupled simulation. The distribution of the model–measurement
differences between sites is consistent between the coupled and uncoupled simulation but
with larger differences for sites in the SH. Previous studies showed that CO values in the
SH are dominated by CH4 and NMVOC oxidation [17,30,58]; hence, the larger SH offset
between the coupled and uncoupled simulation is driven by the dominance of chemical
production relative to other CO sources.

On a yearly scale and for all seasons, the smallest CO model–measurement bias is
present at sites closest to the South Pole, with an increasing negative bias (i.e., underestima-
tion of the modeled values compared to measurements) toward the NH. In the NH, the
biases show a smaller latitudinal dependence than in the SH, presumably due to the larger
differences in the CO sources between regions/sites. Differences in the modeled–measured
values throughout the seasons highlight potential contributors to the observed biases. In the
SH, we find a stronger negative bias during austral spring (September–October–November),
while the seasonal dependence in the NH is more variable. The larger SH bias during
austral spring suggests an underestimated biomass burning source, since this period aligns
with the burning season in the SH. Due to uncertainty in the TCCON bias-correction to in
situ scales for CO, we also compared our modeled CO with the unscaled TCCON CO values
that are higher by approximately 7%. For all sites, we obtained the unscaled values by
multiplying the column CO by 1.0672. The potential TCCON bias is apparent in comparison
to MOPITT (Measurements of Pollution in the Troposphere) [59] and to NDACC (Network
for Detection of Atmospheric Composition Change) [60]. The resultant Normalized Mean
Bias (NMB) relative to the unscaled values is also shown in Figure 9a–e. A comparison
with the unscaled values further increases the negative model–measurement bias.

Relative to CO, where we observe a consistent negative bias, the CO2 biases are
more variable between both sites and seasons. On a yearly scale and for most sites, the
coupled CO2 results show a smaller model–measurement bias than the uncoupled results.
The main difference between the uncoupled and coupled CO2 values is the weaker CO2
chemical production in the coupled simulation, suggesting that this source term might
have been overestimated in the uncoupled simulation (although there could be other
compensating biases). For most sites and seasons, the simulated CO2 values are higher
than the measurements (Figure 9f–j). An exception in the NH is Eureka, where there is a
consistent negative bias, and NH mid-latitude sites that show either a negative and positive
bias depending on the season. We find the largest model–measurement bias for the NH
mid-latitude sites (30–45◦ N). This bias is potentially driven by a combination of biases in
the terrestrial and anthropogenic emissions that dominate CO2 variability in these regions.
The sites in the 30–45◦ N band also show the largest biases in the CO comparisons; hence,
common CO and CO2 anthropogenic emissions might be the dominant driver of this bias.
Whether or not this bias extends to NH tropical regions cannot be determined due to a lack
of TCCON sites in tropical regions. Relative to the NH, the SH biases are smaller and less
variable, presumably due to less variable CO2 sources/sinks.

Overall, our coupled simulation led to a smaller model–measurement bias than the
original uncoupled simulations. However, we note that the reduced bias could potentially
be compensating for biases in other emissions fields and that some of the differences
in the biases are small when compared to other uncertainties in the system. Further
bias reductions would come from reducing uncertainties in other fluxes and transport.
The inclusion of an OH feedback between species would additionally impact the model–
measurement bias, especially during enhanced localized emission events (i.e., fires). As an
example, strong CO emissions would lead to depleted OH values, resulting in a weaker
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oxidation of CH4 and the production of P(CO)CH4 . This feedback is not captured in either
of the simulations since the OH fields are fixed.

3.5.2. Comparison with Surface Measurements

We complemented the column measurements with surface measurements. Figure 10 shows
the differences between the uncoupled and coupled simulations versus the measurements at
surface sites for CO (Figure 10a–e) and CO2 (Figure 10f–j) plotted against the latitude of each site.
The timeseries comparison for each site can be found in Figures S17 and S18. Note that, relative
to the column results, the surface comparison is more strongly impacted by the coarse model
resolution (2◦ × 2.5◦). The measured and modeled column values are more representative of
regional and larger-scale processes so the impact of the model resolution is weaker.

Figure 10. Surface mole fraction model–measurement differences (uncoupled (red) and coupled
(indigo)) CO (a–e) and CO2 (f–j) as a function of latitude, averaged for 2010–2017, with annual
values (a,f) and for different seasons: December–January–Febuary (DJF, (b,g)) , March–April–May
(MAM, (c,h)), June–July–August (JJA, (d,i)), September–October–November (SON, (e,j)).

For CO, the model–measurement biases in the surface data are similar to the column
results. However, in the column data, we lacked measurements in NH tropical regions
and 45–90◦ S, limiting us from identifying the biases. With available measurements in each
latitudinal band, the surface comparison further amplifies the latitudinal dependence of the
bias, increasing from the SH polar regions toward the North Pole. Relative to the column
comparison, at the surface, the large bias at NH mid-latitude sites is less pronounced.
The column CO values were consistently lower than the measurements; however, at the
surface, we see an overestimation of the CO values for some SH sites (although a number
of these sites are in regions where we lack column measurements). The overestimated
values in the SH might be partially due to transport errors [61], such as the weaker vertical
mixing [62,63] in the model leading to the buildup of CO in the planetary boundary layer.
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Having column measurements in these regions would be beneficial when identifying the
processes responsible for the observed model–measurement biases.

Differences between the surface and column comparison are more pronounced in the
CO2 data. We still find, on average, a smaller model–measurement bias in the coupled
results; however, the latitudinal distribution of the biases is different relative to the column
results. In the SH, we observe a consistent negative bias in the coupled results, whereas the
column data pointed to a positive bias (i.e., overestimated modeled values compared to
measurements). The negative bias tends to be larger for sites between 45–90◦ S, a region
where we lack column measurements. The differences in the polar regions are potentially
impacted by additional CO2 exchange from air–sea ice interaction [64], a process that is
not included in the simulation, and are still subject to large uncertainties [65]. The surface
measurements in the NH tropics (where column measurements are lacking) show a positive
bias during boreal winter/spring and negative bias during boreal summer/autumn.

3.5.3. Comparison with Aircraft Measurements

We further compared the simulations with aircraft measurements collected as part of
ATom (campaign 1: July–August 2016, 2: January–February 2017, 3: September–October
2017 and 4: April–May 2018). Figure 11 shows the differences between the modeled and
measured CO and CO2 values during the four campaigns as a function of latitude and
pressure. The spatial distributions of the differences between the modeled and measured
values and COCH4 and CO2CO cross-sections (Section S3) are shown in Figures S19 and S20.

The latitudinal change of the aircraft model–measurement differences for CO follows
the pattern seen in both the column and surface data (a smaller model–measurement bias
in the coupled simulation and, on average, underestimated modeled values compared to
measurements). The negative CO bias is present during all seasons and latitudinal bands
except during ATom 2 (austral summer) and ATom 4 (austral fall) south of 50–60◦ S. This
negative bias is also present in the surface data, whereas, in the column data, we do not
have sites south of 45◦ S. The model also underestimated the CO values compared to
measurements at all vertical levels during all four campaigns/seasons (Figure 11c,g,k,o).
Differences between the two simulations decrease with increasing altitudes in the model.
Differences between the two simulations also decrease at higher latitudes during all ATom
campaigns except ATom 2, where the difference between simulations is lowest in the
SH mid-latitudes.

For CO2, we find a consistent negative bias in all latitudinal bands except 65–70◦ N
during ATom 2 (boreal winter). This is different from both the surface and column compar-
ison, where we had a mixture of both negative and positive biases. Different biases in the
surface, column and aircraft comparisons suggest that potential biases in vertical transport
should also be explored. The coupled simulation shows a smaller model–measurement
bias for both the surface and column comparison; however, for the aircraft comparison, we
find a smaller bias in the uncoupled results. The model underestimated the CO2 values
compared to measurements in the uncoupled simulation, and the weaker chemical produc-
tion in the coupled simulation further increased this bias. For CO2 (in contrast to CO), the
offset between the coupled and uncoupled simulations is consistent across all latitudinal
bands and vertical levels.
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Figure 11. Aircraft model–measurement (uncoupled (red) and coupled (indigo)) CO and CO2

differences, shown as their latitudinal (CO: (a,e,i,m) CO2: (b,f,j,n)) and altitudinal distribution (CO:
(c,g,k,o), CO2: (d,h,l,p)) during the four Atmospheric Tomography Mission (ATom) campaigns in
June–July 2016 (a–d), December–January 2017 (e–h), August–September 2017 (i–l) and March–April
2018 (m–p). Horizontal lines show standard deviation within each bin. The data are averaged into
10◦ latitudinal and 50 mb pressure bins.

3.6. The Importance of Consistent OH Fields

In this section, we explore the impact of inconsistent OH fields on the chemical produc-
tion terms. In our coupled simulation, we used consistent OH fields (from v9-01-03) for all
aspects of the simulation. However, as discussed in Section 2.1, the uncoupled simulations
also rely on production and loss fields derived from the full chemistry simulation that was
available at the time each capability was developed or updated, leading to differences in the
resulting chemical fields. For the uncoupled simulations in the default v12.1.1 GEOS-Chem
model, these fields were derived from GEOS-Chem v5-07-08 for the CH4 simulation [44], v9-
01-03 for the CO simulation [17] and v8-02-01 for the CO2 simulation [15]. The global annual
mean OH is largest in the v8-02-01 full chemistry simulation (11.8 × 105 molecules cm−3)
followed by v9-01-03 (11.4× 105 molecules cm−3) and v5-07-08 (10.8× 105 molecules cm−3)
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(http://wiki.seas.harvard.edu/geos-chem/index.php/Mean_OH_concentration, accessed
on 10 March 2023). The yearly change and annual/seasonal global spatial patterns of the
OH fields are shown in Figures S2–S4.

The OH disconnect inherent in the existing uncoupled simulations can introduce
biases and inconsistencies in the simulated CH4, CO and CO2. Of most importance are
inconsistencies in the archived OH fields used to calculate chemical loss rates for CH4 and
CO. Note that the uncoupled CO2 simulation does not directly use OH (i.e., there is no
CO2 OH sink), so, for the CO2 simulation, there is only a small and indirect influence from
OH through OH-driven CO loss in the full chemistry simulation used to calculate the CO2
chemical production fields. Here, we used the coupled model to perform an additional
sensitivity simulation, retaining the default version of the OH used in the v12.1.1 uncoupled
CH4 simulation (i.e., v5-07-08 OH for the calculation of L(CH4)) to highlight the impact
of inconsistent OH fields currently in use in GEOS-Chem. We will refer to this sensitivity
simulation as the coupled-origOH simulation.

We performed a 1 year simulation (2006) to analyze the impact of the OH disconnect.
Both the coupled and coupled-origOH simulations were initialized with the same CH4,
CO and CO2 initial conditions and both simulations used the same OH fields (v9-01-03)
to calculate L(CO) and P(CO2). The differences in the modeled values between the two
simulations are exclusively driven by differences between the v5-07-08 and v9-01-03 OH
fields used to calculate L(CH4) and, by extension, P(CO)CH4 . Differences between the OH
fields are shown in Figures S2–S4. Briefly, the v9-01-03 OH shows higher values, with a
peak during boreal summer (July); however, at the surface, the v5-07-08 OH has an earlier
peak in June and also shows a second peak in October, when the v9-01-03 OH shows a
decline. The seasonal cycles at higher altitudes are more consistent between the two OH
versions. On both annual and seasonal scales, the v5-07-08 fields show lower surface OH
above most land regions and NH ocean regions. A similar pattern is observed at higher
altitudes (500 hPa), but with smaller and more diffuse differences.

Figure 12a shows the monthly global total column P(CO)CH4 from the coupled and
coupled-origOH simulation. Using the default v5-07-08 OH fields for the L(CH4Trop) and
P(CO)CH4 calculations results in a 43 Tg CO yr−1 global decrease (≈5% change) relative to
the coupled simulation (coupled 913 Tg CO yr−1, coupled-origOH 870 Tg CO yr−1), with
weaker P(CO)CH4 in the coupled-origOH simulation due to lower OH values (Figure S2).
The coupled-origOH P(CO)CH4 shows weaker production globally between May–September.
The weaker P(CO)CH4 is present over land, whereas stronger production is observed
over tropical and SH ocean regions (Figure 12b), following the differences in the spatial
distribution of the OH fields (Figures S3 and S4).

The same OH field (v9-01-03) was used to calculate L(CO) and P(CO2) in the coupled
and coupled-origOH simulation; hence, the P(CO2) is only impacted by differences in the
component of the total CO loss that comes from COCH4 , which itself is only affected by
P(CO)CH4 through L(CH4). As a result, using the v5-07-08 OH fields for the L(CH4Trop)
calculation has a smaller impact on P(CO2). Both the coupled-origOH and coupled simula-
tions show similar P(CO2) budgets but with stronger production in the coupled simulation
between June–October (Figure 12e, 1.03 Pg C yr−1 coupled and 1.02 Pg C yr−1 in the
coupled-origOH, ≈1% change). Similar to P(CO)CH4 , the coupled-origOH shows weaker
P(CO2) everywhere except for tropical and SH ocean regions; however, the differences are
more diffuse due to the indirect impact of the OH differences on P(CO2).

Figure 12c shows the surface mole fractions of the chemical production of CO from
CH4. Using inconsistent OH fields between simulations leads to significant differences in
the COCH4 seasonal cycle. In the coupled-origOH simulation, the mole fractions have an
inverted seasonal cycle relative to the coupled results, showing a maximum in boreal winter
and minimum in boreal summer. The inverted and incorrect seasonal cycle in the coupled-
origOH simulation is driven by biases in the v5-07-08 OH fields. A detailed discussion
of the seasonal cycle difference can be found in Section S2. For CO2CO (Figure 12g), both
simulations show a similar seasonal cycle, with slightly higher values in the coupled

http://wiki.seas.harvard.edu/geos-chem/index.php/Mean_OH_concentration
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simulation due to stronger production. Similar to the total column production, the COCH4
mole fractions at the surface are highest in the tropical and SH ocean regions in the coupled-
origOH simulation due to the stronger chemical production. The CO2CO differences are
more hemispheric, with lower mole fractions in the NH and higher mole fractions in the
SH in the coupled-origOH simulation.

Figure 12. Monthly total atmospheric column CO production from CH4 (a) and CO2 production
from CO (e), as well as surface mole fractions of COCH4 (c) and CO2CO (g) from the coupled (indigo)
and coupled-origOH (turquoise) simulation. Subplots (b,f) show the annual total column production
difference between the coupled-origOH and coupled simulation, and (d,h) show the same but for the
surface mole fractions of the chemical productions. All of the data are based on year 2006. Note that
the CO2 values are detrended and added to the 2006 growth rate.

We find that inconsistencies in the OH fields in the individual uncoupled simulations
can have a significant impact on the production and loss terms, as well as the resulting
mole fractions. Using the v5-07-08 OH fields that are currently the default in the v12.1.1
uncoupled CH4 simulation showed an incorrect seasonal cycle of the COCH4 mole frac-
tions, and, without the new coupling capability, this bias would not have been identified.
By coupling CH4, CO and CO2, we therefore increase the consistency between GEOS-Chem
simulations of these gases, not only by coupling their chemical production and loss terms
but also by removing “hidden” inconsistencies between the individual simulations that
arise through the use of different default OH fields.

4. Conclusions

We developed a coupled carbon greenhouse gas simulation in the GEOS-Chem
chemical transport model that combines CH4, CO and CO2 through their chemical inter-
dependence. The coupling between the three gases comes from the chemical production of
CO from CH4 loss (P(CO)CH4) and the chemical production of CO2 from the oxidation of
CO (P(CO2)). In the uncoupled versions of these simulations that are currently widely used
by the GEOS-Chem community, the chemical production calculations were handled offline
based on monthly archived fields for specific years from older model versions. Moreover,
the uncoupled simulations used inconsistent OH fields between the three gases. The new
coupled simulation uses updated and consistent OH fields for all aspects of the simulation.
We calculated P(CO)CH4 and P(CO2) at every model timestep, enabling us to simulate the
inter-annual variability of the chemical production fields and their follow-on effects.

Our budget estimates from the coupled simulation agree with known literature values.
For the 2006–2017 time period, our coupled results show an increase in P(CO)CH4 with time
and a dependence on climate anomalies (such as El Niño Southern Oscillation). We found
differences between the coupled and uncoupled simulations ranging from 11–55 Tg CO yr−1,
with stronger production in the coupled simulation. Our P(CO2) from the coupled simulation
is weaker than in the uncoupled simulation, with a difference of 0.04–0.09 Pg C yr−1.
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Comparing the modeled values with three measurement products (TCCON total
column measurements, NOAA GGGRN surface measurements and ATom aircraft data) led
to (on average) a smaller model–measurement bias using the coupled simulation than using
the original uncoupled simulations (except for CO2 aircraft data); however, the reduced bias
from the coupling could potentially be compensating for biases in other emissions fields.
For CO, the remaining model–measurement biases in the SH can partially be explained by
underestimated biomass burning emissions [10,58,66], especially during the dry season, and
underestimated secondary CO production (CH4 and NMVOC oxidation) [30]. Our coupled
simulation suggests stronger P(CO2) above tropical land regions than simulated previously
and that the chemical production of CO2 in the Amazon was significantly underestimated
in previous P(CO2) studies [15]. South America, Central Africa and northern Australia are
characterized by strong biomass burning [67], and our coupled model simulates the P(CO2)
in these regions during the fire season to be stronger than in previous model versions,
while the stronger P(CO2) in regions such as East Asia [68] and North America points to
enhanced anthropogenic CO emissions. For CO2, the inclusion of the missing exchange
from air–sea ice interaction could potentially contribute to better modeled values in the
polar regions [64]. Our coupled model still excludes the OH feedback [34,50], which may
be responsible for persistent biases in the modeled values, especially in regions where
chemical production/loss is enhanced.

Our coupled simulation includes two major improvements relative to the default
individual carbon gas simulations currently in use by the community: (i) the chemical
coupling between species described above and (ii) consistent OH fields used for calculating
CH4 and CO loss. Using a sensitivity simulation, where we use the coupled simulation but
retain the original (inconsistent) OH fields, we highlight the importance of using consistent
and updated OH fields. We show that the default v5-07-08 OH fields currently used in the
uncoupled v12.1.1 CH4 simulation result in incorrect L(CH4) and, by extension, P(CO)CH4
values, with an inverted seasonal cycle. In the coupled model, this has flow-on effects for
CO and, to a lesser extent, CO2.

The newly developed coupled simulation enables future investigations of the co-variations
of CH4, CO and CO2, as well as their interannual variability, that will provide a better under-
standing of their interactions. We have shown that coupling the three gases improves model
consistency, along with our ability to identify source and sink fields that are over- or under-
estimated in the model. The model–measurement differences are heavily influenced by the
existing uncertainties in a variety of carbon gas sources and sinks [10,46,69]. The new coupled
simulation paves the way for future improvements, including the inclusion of a CH4–OH–CO
feedback, additional source/sink fields, improvements to the CO yield estimates from CH4
oxidation and implementation into the GEOS-Chem Adjoint used for inverse modeling, that
will further improve our ability to constrain the fluxes of the carbon gases. With updates such
as this simulation, we will be able to better highlight and identify the origin of the model–
measurement differences and constrain the sources, sinks and budgets of CO2, CH4 and CO,
crucial for future climate projections and mitigation policies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14050764/s1, Figure S1: Global production of CO from
CH4 (a, d), its loss via OH (b, e) and their difference (c, f) in the coupled (indigo) and coupled-origOH
(turquoise) simulations at the surface (a–c) and 500 hPa altitude (d–f) for year 2006.; Table S1: GEOS-
Chem emission inventories used for both the uncoupled and coupled carbon gas simulations.;
Figure S2: Globally averaged OH fields at the surface (a) and at 500 hPa (b) from the v9-01-03
(indigo, used by uncoupled CO and coupled simulation), v8-02-01 (red, uncoupled CO2) and v5-07-
08 (turquoise, uncoupled CH4 and coupled-origOH) full chemistry simulations.; Figure S3: Surface
(a–c) and 500 hPa (d–f) yearly averaged global spatial distribution of the OH fields based on the
v9-01-03 (a, d) full chemistry simulation and the difference between v5-07-08–v9-01-03 (b, e) and
v8-02-01–v9-01-03 (c, f); Figure S4: Surface yearly averaged global spatial distribution of the OH
fields based on the v9-01-03 (a, d, g, j) full chemistry simulation and the difference between v5-07-08–
v9-01-03 (b, e, h, k) and v8-02-01–v9-01-03 (c, f, i, l) for each season: December–January–February

https://www.mdpi.com/article/10.3390/atmos14050764/s1
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(DJF, a–c), March–April–May (MAM, d–f), June–July–August (JJA, g–i), September–October–November
(SON, j–l).; Figure S5: Annual budgets of the global and regional CO production from CH4 from
the uncoupled (a) and coupled (b) simulation.; Figure S6: Annual budgets of the global and re-
gional CO2 production from the uncoupled (a) and coupled (b) simulations.; Figure S7: Average
December–January–February (DJF) 2006–2017 total column CO chemical production from CH4 (a),
corresponding mole fractions (i.e., COCH4 ) at the surface (b) and at 500 hPa (c) from the coupled
simulation along with the difference in each field between the coupled and uncoupled simulation (d–f).;
Figure S8: Average March–April–May (MAM) 2006–2017 total column CO chemical production from
CH4 (a), corresponding mole fractions (i.e., COCH4 ) at the surface (b) and at 500 hPa (c) from the
coupled simulation along with the difference in each field between the coupled and uncoupled
simulation (d–f).; Figure S9: Average June–July–August (JJA) 2006–2017 total column CO chemi-
cal production from CH4 (a), corresponding mole fractions (i.e., COCH4 ) at the surface (b) and at
500 hPa (c) from the coupled simulation along with the difference in each field between the coupled
and uncoupled simulation (d–f).; Figure S10: Average September–October–November (SON) 2006–
2017 total column CO chemical production from CH4 (a), corresponding mole fractions (i.e., COCH4 )
at the surface (b) and at 500 hPa (c) from the coupled simulation along with the difference in each
field between the coupled and uncoupled simulation (d–f).; Figure S11: Average December–January–
February (DJF) 2006–2017 total column CO2 chemical production from CO (a) and corresponding
mole fractions (i.e., CO2CO) at the surface (b) and at 500 hPa (c) from the coupled simulation along
with the difference in each field between the coupled and uncoupled simulation (d–f).; Figure S12: Av-
erage March–April–May (MAM) 2006–2017 total column CO2 chemical production from CO (a) and
corresponding mole fractions (i.e., CO2CO) at the surface (b) and at 500 hPa (c) from the coupled
simulation along with the difference in each field between the coupled and uncoupled simulation (d–f).;
Figure S13: Average June–July–August (JJA) 2006–2017 total column CO2 chemical production from
CO (a) and corresponding mole fractions (i.e., CO2CO) at the surface (b) and at 500 hPa (c) from
the coupled simulation along with the difference in each field between the coupled and uncoupled
simulation (d–f).; Figure S14: Average September–October–November (SON) 2006–2017 total col-
umn CO2 chemical production from CO (a) and corresponding mole fractions (i.e., CO2CO) at the
surface (b) and at 500 hPa (c) from the coupled simulation along with the difference in each field
between the coupled and uncoupled simulation (d–f).; Figure S15: Modelled CO (red-uncoupled,
indigo-coupled) comparison with column measurements (black) at different TCCON sites (top plots),
based on monthly average values. Note, the plots show the scaled CO TCCON values (see main
text for details). The bottom plots represent the mixing ratios of the CO production from CH4 from
the different simulations. Note, Equation (14) (main text) cannot be directly used when calculating
the column-averaged dry-air mole fractions of the chemical terms (i.e., CO2CO and COCH4 ) since
the a priori (xa) represents the profile of the total amount of each gas and has no information about
the individual source contributions. The contribution of the a priori profiles is excluded for the
calculation of COCH4 , which is converted to column-averaged dry-air mole fractions according to
cs = hT aT xm.; Figure S16: Modelled CO2 (red-uncoupled, indigo-coupled) comparison with column
measurements (black) at different TCCON sites (top plots), based on monthly average values. The
detrended values are shown in the middle plots. The bottom plots represent the detrended mixing
ratios of the CO2 production from CO from the different simulations. Note, Equation (14) (main text)
cannot be directly used when calculating the column-averaged dry-air mole fractions of the chemical
terms (i.e., CO2CO and COCH4 ) since the a priori (xa) represents the profile of the total amount of each
gas and has no information about the individual source contributions. The contribution of the a priori
profiles is excluded for the calculation of CO2CO, which is converted to column-averaged dry-air
mole fractions according to cs = hT aT xm.; Figure S17: Modelled CO (red-uncoupled, indigo-coupled)
comparison with surface measurements (black, top plots), based on monthly average values. The bot-
tom plots represent the mixing ratios of the CO production from CH4 from the different simulations.;
Figure S18: Modelled CO2 (red-uncoupled, indigo-coupled) comparison with surface measurements
(black, top plots), based on monthly average values. The detrended values are shown in the middle
plots. The bottom plots represent the detrended mixing ratios of the CO2 production from CO from
the different simulations.; Figure S19: Model-measurement differences for CO (a, b) and CO2 (c, d)
based on simulated values from the uncoupled (a,c) and coupled (b,d) simulations during the four
ATom campaigns.; Figure S20: Altitude versus latitude cross-sections of chemically produced CO
from CH4 (COCH4 , a, b, e, f, i, j, m, n) and CO2 (CO2CO, c, d, g, h, k, l, o, p) mole fractions from the
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coupled simulation along with the uncoupled differences relative to the coupled simulation during
the four ATom campaigns. References [70–82] are cited in the supplementary materials.
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Appendix A

Table A1. Column and surface stations used for the coupled simulation validation. Sites are ordered
based on latitude, from highest to lowest.

Station Latitude Longitude Elevation (m)

TCCON sites

Eureka 1 80.05◦ N 86.42◦ W 610
Ny Alesund 2 78.90◦ N 11.89◦ E 20
Sodankyla 3 67.37◦ N 26.63◦ E 188
Białystok 4 53.23◦ N 23.02◦ E 180
Bremen 5 53.10◦ N 8.85◦ E 27
Karlsruhe 6 49.10◦ N 8.43◦ E 116
Orléans 7 47.97◦ N 2.11◦ E 130
Garmisch 8 47.48◦ N 11.06◦ E 740
Rikubetsu 9 43.46◦ N 143.77◦ E 380
Lamont 10 36.60◦ N 97.49◦ W 320
Anmyeondo 11 36.54◦ N 126.33◦ E 30
Tsukuba 12 36.05◦ N 140.12◦ E 30
Edwards 13 34.96◦ N 117.88◦ W 699
Saga 14 33.24◦ N 130.29◦ E 7
Burgos 15 18.53◦ N 120.62◦ E 35

https://doi.org/10.5281/zenodo.2249246
https://tccondata.org/
https://www.esrl.noaa.gov/gmd/dv/data/
https://doi.org/10.3334/ORNLDAAC/1581
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Table A1. Cont.

Station Latitude Longitude Elevation (m)

Manaus 16 3.21◦ S 60.60◦ W 50
Darwin 17 12.43◦ S 130.89◦ E 30
Reunion Island 18 20.90◦ S 55.48◦ E 87
Wollongong 19 34.41◦ S 150.88◦ E 30
Lauder 20 45.04◦ S 169.68◦ E 370

Both TCCON sites and surface 24,25,26

Park Falls 21 45.94◦ N 90.27◦ W 440
Izana 22 28.30◦ N 16.50◦ W 2370
Ascension Island 23 7.91◦ S 14.33◦ W 10

Surface sites 24,25,26

Alert 82.45◦ N 62.51◦ W 185
Summit 72.50◦ N 38.42◦ W 3209
Barrow 71.32◦ N 156.61◦ W 11

Pallas Sammaltunturi 67.97◦ N 24.12◦ E 565
Mace Head 53.33◦ N 9.89◦ W 5
Trinidad Head 41.06◦ N 124.15◦ W 107
Mt. Waliguan 36.29◦ N 100.89◦ E 3810
Assekrem 23.26◦ N 5.63◦ E 2710
Mauna Loa 19.53◦ N 155.58◦ W 3397
Christmas Island 1.70◦ N 157.15◦ W 0
Tutuila 14.25◦ S 170.56◦ W 42
Easter Island 27.16◦ S 109.43◦ W 47
Cape Grim 40.67◦ S 144.69◦ E 94
Baring Head 41.41◦ S 174.87◦ E 85
Crozet 46.43◦ S 51.84◦ E 197
Palmer Station 64.77◦ S 64.05◦ W 10
South Pole 89.98◦ S 24.80◦ W 2810

1 Stronget al. [83] 2 Notholt et al. [84] 3 Kivi et al. [85] 4 Deutscher et al. [86] 5 Notholt et al. [87] 6 Hase et al. [88]
7 Warneke et al. [89] 8 Sussmann and Rettinger [90] 9 Morino et al. [91] 10 Wennberg et al. [92] 11 Goo et al. [93]
12 Morino et al. [94] 13 Iraci et al. [95] 14 Kawakami et al. [96] 15 Morino et al. [97] 16 Dubey et al. [98] 17 Grif-
fith et al. [99] 18 De Mazière et al. [100] 19 Griffith et al. [101] 20 Sherlock et al. [102] 21 Wennberg et al. [103]
22 Blumenstock et al. [104] 23 Feistet al. [105] 24 CO2: Dlugokencky et al. [53] 25 CH4: Dlugokencky et al. [53]
26 CO: Petron et al. [54].
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