Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review
Abstract
:1. Introduction
2. Thermodynamics and Reaction Mechanism of DRM Reaction
2.1. Thermodynamics of DRM Reaction
2.2. Reaction Mechanism of DRM
3. Deactivation of Metal Catalyst
3.1. Generation of Carbon Deposition in the Reaction Process
3.2. Sintering of Active Components in the Reaction Process
3.3. Sulfur Poisoning
4. Study on Restraining of Deactivation of Metal Catalysts in DRM Reaction
4.1. Changing the Type and Size of Active Components
4.2. Modulation of Support’s Physical and Chemical Properties
4.2.1. Modulation of Metal–Support Interactions
4.2.2. Adjusting the Acidity and Basicity of the Support
4.2.3. Constructing the Oxygen Vacancy of the Support
4.2.4. Constructing Special Structured Support
4.3. Adding Promoter
5. Other Methods to Prevent Deactivation of Metal Catalysts in DRM Reaction
5.1. Photothermal Catalysis
5.2. Plasma Catalysis
6. Real Applications
7. Summary
- According to the thermodynamic research into the DRM reaction, a high temperature and low pressure are beneficial for the reaction. The basic reaction mechanism of the DRM is generally divided into three steps: CH4 dissociation, CO2 dissociation, and intermediate product oxidation. The adsorption and cracking of CH4 are the rate control steps of the DRM reaction. CO2 activation plays a key role in restraining carbon deposition. The DRM reactions still have problems of catalyst deactivation due to high-temperature susceptibility to sintering, carbon deposition, and poisoning, which is an important factor currently restraining their development. How to prevent the sintering of metal active components under high temperatures and prevent carbon deposition during the reaction process are the main directions and technical difficulties for future research.
- Adjusting the size of the metal active component of the catalyst to increase the reactive sites and using the synergistic effect of bimetals can reduce the carbon deposition and accelerate the carbon removal rate of the catalyst. Adjusting the acidity and basicity of the catalyst support surface, enhancing the interaction between the support and the metal activity, increasing the specific surface area of the support, and changing the morphology of the catalyst can restrain the deactivation of the catalyst. In particular, constructing some special morphology of catalysts can enhance the interaction force between the active component and the support, and the domain-limiting effect can limit the migration and dispersion of the active component to prevent metal sintering. It can also reduce the size of metal particles to provide more active sites for the catalyst and reduce the formation of carbon in the reaction. The synergistic effect of the two mechanisms can achieve the purpose of restraining catalyst deactivation, which is the future development direction of developing highly stable catalysts. The addition of additives can improve the catalyst’s resistance to deactivation by modulating the catalyst surface acidity and basicity, the metal–support interaction, and the electron density of the active metal atoms.
- The photothermal catalytic DRM reaction couples to the advantages of thermal catalysis and photocatalysis, which can reduce the reaction temperature in the DRM process and prevent catalyst deactivation under a high temperature. A development in new high-efficiency photothermal catalyst materials is expected to make the DRM process greener and more environmentally friendly. The combination of plasma and metal catalysts improves CH4 and CO2 conversion, product selectivity, catalyst stability, sintering resistance, and carbon deposition resistance properties. The plasma–catalyst interface increases the lifetime and collision potential of the active species and enhances surface modification and electric fields. These factors contribute to improved gas handling in DBD plasma DRM.
- Despite significant success in adjusting the interactions between catalyst components to enhance catalyst performance, there has always been a trade-off between activity and stability. Therefore, in designing stable and efficient DRM catalysts in the future, the synergistic correlations among various parameters must be considered. The successful development in metal catalysts with good activity and long-term stability is the key to industrializing and commercializing synthesis gas production using DRM technology. More advanced characterization methods should be used to study the reaction mechanisms, coking mechanisms, sintering mechanisms, and sulfur poisoning mechanisms of metal catalysts, so as to deeply understand the catalytic reactions and anti-deactivation mechanisms of metal catalysts. In terms of reaction kinetics and mechanisms, the DFT modeling of catalysts should be prioritized to save time and resources in understanding these interactions and their corresponding effects on catalyst performance. High-performance dry reforming metal catalysts should be designed and developed in a theoretical and practical manner. Attempts can be made to provide more active sites for metal catalysts through the combination of bimetallic or multi-metallic synergistic effects with other strategies, such as strong metal–support interactions, confinement effects, surface acid–base properties, oxygen vacancies, etc., to inhibit metal sintering and coking and to improve the catalytic activity and anti-deactivation performance of the catalyst. In addition, various synthetic methods can be explored in combination with different reaction conditions, and advanced synthesis methods such as organic-assisted impregnation, plasma methods, and atomic layer deposition will play an increasingly important role in the preparation of metal catalysts. Different reaction driving methods during the reaction process will be the future direction of catalytic reactions, such as photothermal synergistic catalysis, and the impact of plasma on the structure and reaction process mechanisms of catalysts will become a future research direction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdullah, B.; Abd, G.N.A.; Vo, D.N. Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean. Prod. 2017, 162, 170–185. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Ghaemi, Z.; Smith, A.D. A review on the quantification of life cycle greenhouse gas emissions at urban scale. J. Clean. Prod. 2020, 252, 119634. [Google Scholar] [CrossRef]
- Pimm, A.J.; Palczewski, J.; Barbour, E.R.; Cockerill, T.T. Using electricity storage to reduce greenhouse gas emissions. Appl. Energy 2021, 282, 116199. [Google Scholar] [CrossRef]
- Khan, M.N.; Chiesa, P.; Cloete, S.; Amini, S. Integration of chemical looping combustion for cost-effective CO2 capture from state-of-the-art natural gas combined cycles. Energy Convers. Manag. X 2020, 7, 100044. [Google Scholar] [CrossRef]
- Akri, M.; Chafik, T.; Granger, P.; Ayrault, P.; Batiot-Dupeyrat, C. Novel nickel promoted illite clay based catalyst for autothermal dry reforming of methane. Fuel 2016, 178, 139–147. [Google Scholar] [CrossRef]
- Németh, M.; Sáfrán, G.; Horváth, A.; Somodi, F. Hindered methane decomposition on a coke-resistant Ni-In/SiO2 dry reforming catalyst. Catal. Commun. 2019, 118, 56–59. [Google Scholar] [CrossRef]
- Kaddeche, D.; Djaidja, A.; Barama, A. Partial oxidation of methane on co-precipitated Ni-Mg/Al catalysts modified with copper or iron. Int. J. Hydrogen Energy 2017, 42, 15002–15009. [Google Scholar] [CrossRef]
- Yentekakis, I.V.; Dong, F. Grand challenges for catalytic remediation in environmental and energy applications toward a cleaner and sustainable future. Front. Environ. Chem. 2020, 1, 5. [Google Scholar] [CrossRef]
- Yentekakis, I.V.; Goula, G. Biogas management: Advanced utilization for production of renewable energy and added-value chemicals. Chem. Front. Environ. Sci. 2017, 5, 7. [Google Scholar] [CrossRef]
- Jiang, C.; Loisel, E.; Cullen, D.A.; Dorman, J.A.; Dooley, K.M. On the enhanced sulfur and coking tolerance of Ni-Co-rare earth oxide catalysts for the dry reforming of methane. J. Catal. 2021, 393, 215–229. [Google Scholar] [CrossRef]
- Gao, N.; Cheng, M.; Quan, C.; Zheng, Y. Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst. Fuel 2020, 273, 117702. [Google Scholar] [CrossRef]
- Jang, W.; Shim, J.; Kim, H.; Yoo, S.; Roh, H. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2019, 324, 15–26. [Google Scholar] [CrossRef]
- Scarsella, M.; Caprariis, B.D.; Filippis, P.; Palma, V. Rh, Ru and Pt ternary perovskites type oxides BaZr(1−x)MexO3 for methane dry reforming. Appl. Catal. A 2016, 517, 47–55. [Google Scholar]
- Ma, Y.; Su, P.; Ge, Y.; Wang, F.; Xue, R.; Wang, Z.; Li, Y. A novel LaAlO3 perovskite with large surface area supported Ni-Based catalyst for methane dry reforming. Catal. Lett. 2022, 152, 2993–3003. [Google Scholar] [CrossRef]
- Gangadharan, P.; Kanchi, K.C.; Lou, H.H. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chem. Eng. Res. Des. 2012, 90, 1956–1968. [Google Scholar] [CrossRef]
- Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z.; Saw, E.T. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. Chemsuschem 2015, 8, 3556–3575. [Google Scholar] [CrossRef]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Shahul Hamid, M.Y. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Bian, Z.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A review on bimetallic Nickel-Based catalysts for CO2 reforming of methane. Chem. Phys. Chem. 2017, 18, 3117–3134. [Google Scholar] [CrossRef]
- Sharifianjazi, F.; Esmaeilkhanian, A.; Bazli, L.; Eskandarinezhad, S.; Khaksar, S.; Shafiee, P.; Yusuf, M.; Abdullah, B.; Salahshour, P.; Sadeghi, F. A review on recent advances in dry reforming of methane over Ni- and Co-based nanocatalysts. Int. J. Hydrogen Energy 2022, 47, 42213–42233. [Google Scholar] [CrossRef]
- Baharudin, L.; Rahmat, N.; Othman, N.H.; Shah, N.; Syed-Hassan, S.S.A. Formation, control, and elimination of carbon on Ni-based catalyst during CO2 and CH4 conversion via dry reforming process: A review. J. CO2 Util. 2022, 61, 102050. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lu, G.Q.M.; Millar, G.J. Carbon dioxide reforming of methane to produce synthesis gas over Metal-Supported catalysts: state of the art. Energy Fuels 1996, 10, 896–904. [Google Scholar] [CrossRef]
- Nikoo, M.K.; Amin, N.A.S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol. 2011, 92, 678–691. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, X.; Mi, Z. Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int. J. Hydrogen Energy 2008, 33, 2507–2514. [Google Scholar] [CrossRef]
- Shah, Y.T.; Gardner, T.H. Dry reforming of hydrocarbon feedstocks. Catal. Rev. 2014, 56, 476–536. [Google Scholar] [CrossRef]
- Palmer, C.; Upham, D.C.; Smartm, S.; Gordon, M.J.; Metiu, H.; Mcfarland, E.W. Dry reforming of methane catalysed by molten metal alloys. Nat. Catal. 2020, 3, 83–89. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y. Study on the effect of reaction conditions on carbon deposition in dry reforming of methane. Yunnan Chem. Technol. 2021, 48, 18–21. [Google Scholar]
- Anil, C.; Modak, J.M.; Madras, G. Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst. Mol. Catal. 2020, 484, 110805. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Zhou, B.; Sheng, J.; Fan, J.; Li, W. Anti-coking NiCe/HAP catalyst with well-balanced carbon formation and gasification in methane dry reforming. Fuel 2022, 329, 125477. [Google Scholar] [CrossRef]
- Sagar, V.T.; Pintar, A. Enhanced surface properties of CeO2 by MnOx doping and their role in mechanism of methane dry reforming deduced by means of in-situ DRIFTS. Appl. Catal. A 2020, 599, 117603. [Google Scholar] [CrossRef]
- Ramon, A.P.; Li, X.; Clark, A.H.; Safonova, O.V.; Marcos, F.C.; Assaf, E.M.; van Bokhoven, J.A.; Artiglia, L.; Assaf, J.M. In situ study of low-temperature dry reforming of methane over La2Ce2O7 and LaNiO3 mixed oxides. Appl. Catal. B 2022, 315, 121528. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Cao, M.; Li, S.; Wang, P.; He, J.; Li, R.; Yan, X. Effect of interstitial carbon atoms in core-shell Ni3ZnC0.7/Al2O3 catalyst for high-performance dry reforming of methane. Appl. Catal. B 2022, 317, 121806. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Zhao, J.; Bai, Y.; Du, H.; Wang, Q.; Jiang, B.; Li, H. CO2 conversion via dry reforming of methane on a core-shell Ru@SiO2 catalyst. J. CO2 Util. 2022, 57, 101893. [Google Scholar] [CrossRef]
- Ochoa, A.; Barbarias, I.; Artetxe, M.; Gayubo, A.G.; Olazar, M.; Bilbao, J.; Castaño, P. Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis. Appl. Catal. B 2017, 209, 554–565. [Google Scholar] [CrossRef]
- Fischer, F.; Tropsch, H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennst. Chem. 1923, 4, 276–285. [Google Scholar]
- Al-Fatesh, A.S.; Arafat, Y.; Kasim, S.O.; Ibrahim, A.A.; Abasaeed, A.E.; Fakeeha, A.H. In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B 2021, 280, 119445. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Yan, B. Ni/Ce0.9Eu0.1O1.95 with enhanced coke resistance for dry reforming of methane. J. Catal. 2022, 407, 77–89. [Google Scholar] [CrossRef]
- Wang, D.; Littlewood, P.; Marks, T.J.; Stair, P.C.; Weitz, E. Coking can enhance product yields in the dry reforming of methane. Acs Catal. 2022, 12, 8352–8362. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, X.M.; Zhu, J.; Hu, P. Activity and coke formation of nickel and nickel carbide in dry reforming: A deactivation scheme from density functional theory. J. Catal. 2014, 311, 469–480. [Google Scholar] [CrossRef]
- Donphai, W.; Faungnawakij, K.; Chareonpanich, M.; Limtrakul, J. Effect of Ni-CNTs/mesocellular silica composite catalysts on carbon dioxide reforming of methane. Appl. Catal. A 2014, 475, 16–26. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Z.; Deng, J.; Shen, K.; Yu, X.; Qian, W.; Chu, W.; Wei, F. One-pot synthesis of ordered mesoporous NiCeAl oxide catalysts and a study of their performance in methane dry reforming. ChemCatChem 2014, 6, 1470–1480. [Google Scholar] [CrossRef]
- Sengodan, S.; Lan, R.; Humphreys, J.; Du, D.; Xu, W.; Wang, H.; Tao, S. Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renew. Sustain. Energy Rev. 2018, 82, 761–780. [Google Scholar] [CrossRef]
- Muraza, O.; Galadima, A. A review on coke management during dry reforming of methane. Int. J. Energy Res. 2015, 39, 1196–1216. [Google Scholar] [CrossRef]
- Tsakoumis, N.E.; Rønning, M.; Borg, Ø.; Rytter, E.; Holmen, A. Deactivation of cobalt based Fischer-Tropsch catalysts: A review. Catal. Today 2010, 154, 162–182. [Google Scholar] [CrossRef]
- Ranjekar, A.M.; Yadav, G.D. Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. J. Indian Chem. Soc. 2021, 98, 100002. [Google Scholar] [CrossRef]
- Bartholomew, C.; Argyle, M. Advances in catalyst deactivation and regeneration. Catalysts 2015, 5, 949–954. [Google Scholar] [CrossRef]
- Argyle, M.; Bartholomew, C. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef]
- Barrett, D.H.; Forbes, R.P.; Rodella, C.B. In situ and operando X-ray diffraction and X-ray absorption studies of Co-TiO2 dry methane reforming catalysts. J. Phys. D Appl. Phys. 2020, 53, 44003. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, J.; Lan, T.; Shen, Y.; Qu, W.; Zhong, Q.; Zhang, D. Coking- and Sintering-Resistant Ni nanocatalysts confined by active BN edges for methane dry reforming. ACS Appl. Mater. Interfaces 2022, 14, 25439–25447. [Google Scholar] [CrossRef] [PubMed]
- Chatla, A.; Almanassra, I.W.; Kallem, P.; Atieh, M.A.; Alawadhi, H.; Akula, V.; Banat, F. Dry (CO2) reforming of methane over zirconium promoted Ni-MgO mixed oxide catalyst: Effect of Zr addition. J. CO2 Util. 2022, 62, 102082. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Gao, Z.; Zhang, X.; Zhang, L.; Wang, M.; Chen, B.; Diao, Y.; Li, Y.; Xiao, D.; et al. Embedding high loading and uniform Ni nanoparticles into silicalite-1 zeolite for dry reforming of methane. Appl. Catal. B 2022, 307, 121202. [Google Scholar] [CrossRef]
- Han, B.; Wang, F.; Zhang, L.; Wang, Y.; Fan, W.; Xu, L.; Yu, H.; Li, Z. Syngas production from methane steam reforming and dry reforming reactions over sintering-resistant Ni@SiO2 catalyst. Res. Chem. Intermed. 2020, 46, 1735–1748. [Google Scholar] [CrossRef]
- Audasso, E.; Kim, Y.; Cha, J.; Cigolotti, V.; Jeong, H.; Jo, Y.S.; Kim, Y.; Choi, S.H.; Yoon, S.P.; Nam, S.W.; et al. In situ exsolution of Rh nanoparticles on a perovskite oxide surface: Efficient Rh catalysts for Dry reforming. Korean J. Chem. Eng. 2020, 37, 1401–1410. [Google Scholar] [CrossRef]
- Cimino, S.; Lisi, L.; Mancino, G. Effect of phosphorous addition to Rh-supported catalysts for the dry reforming of methane. Int. J. Hydrogen Energy 2017, 42, 23587–23598. [Google Scholar] [CrossRef]
- Chein, R.; Yang, Z.W. H2S effect on dry reforming of biogas for syngas production. Int. J. Energy Res. 2019, 43, 3330–3345. [Google Scholar] [CrossRef]
- Chein, R.; Chen, Y.; Chen, W. Experimental study on sulfur deactivation and regeneration of Ni-Based catalyst in dry reforming of biogas. Catalysts 2021, 11, 777. [Google Scholar] [CrossRef]
- Misture, S.T.; Mcdevitt, K.M.; Glass, K.C.; Edwards, D.D.; Howe, J.Y.; Rector, K.D.; He, H.; Vogel, S.C. Sulfur-resistant and regenerable Ni/Co spinel-based catalysts for methane dry reforming. Catal. Sci. Technol. 2015, 5, 4565–4574. [Google Scholar] [CrossRef]
- Gaillard, M.; Virginie, M.; Khodakov, A.Y. New molybdenum-based catalysts for dry reforming of methane in presence of sulfur: A promising way for biogas valorization. Catal. Today 2017, 289, 143–150. [Google Scholar] [CrossRef]
- Nematollahi, B.; Rezaei, M.; Khajenoori, M. Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. Int. J. Hydrogen Energy 2011, 36, 2969–2978. [Google Scholar] [CrossRef]
- Yentekakis, I.V.; Goula, G.; Hatzisymeon, M.; Betsi-Argyropoulou, I.; Botzolaki, G.; Kousi, K.; Kondarides, D.I.; Taylor, M.J.; Parlett, C.M.A.; Osatiashtiani, A.; et al. Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane. Appl. Catal. B 2019, 243, 490–501. [Google Scholar] [CrossRef]
- Jiménez, J.D.; Betancourt, L.E.; Danielis, M.; Zhang, H.; Zhang, F.; Orozco, I.; Xu, W.; Llorca, J.; Liu, P.; Trovarelli, A.; et al. Identification of highly selective surface pathways for methane dry reforming using mechanochemical synthesis of Pd-CeO2. Acs Catal. 2022, 12, 12809–12822. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, S.; Li, H.; Deng, J.; Li, J. Preparation of novel mesoporous LaFeO3-SBA-15-CTA support for syngas formation of dry reforming. Nanomaterials 2022, 12, 1451. [Google Scholar] [CrossRef] [PubMed]
- Zambaldi, P.; Haug, L.; Penner, S.; Klötzer, B. Dry reforming of methane on NiCu and NiPd model systems: Optimization of carbon chemistry. Catalysts 2022, 12, 311. [Google Scholar] [CrossRef]
- Sokefun, Y.O.; Trottier, J.; Yung, M.M.; Joseph, B.; Kuhn, J.N. Low temperature dry reforming of methane using Ru-Ni-Mg/ceria-zirconia catalysts: Effect of Ru loading and reduction temperature. Appl. Catal. A 2022, 645, 118842. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Zhang, Q.; Vinokurov, V.A.; Huang, W. Enhanced carbon tolerance of hydrotalcite-derived Ni-Ir/Mg(Al)O catalysts in dry reforming of methane under elevated pressures. Fuel Process. Technol. 2022, 237, 107446. [Google Scholar] [CrossRef]
- Liu, H.; Yu, J. Catalytic performance of Cu-Ni/La0.75Sr0.25Cr0.5Mn0.5O3-δ for dry methane reforming. Int. J. Energy Res. 2022, 46, 10522–10534. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Deo, G. Influence of particle size and metal-support interaction on the catalytic performance of Ni-Al2O3 catalysts for the dry and oxidative-dry reforming of methane. Coll. Surf. A 2022, 646, 128973. [Google Scholar] [CrossRef]
- Sorcar, S.; Das, J.; Komarala, E.P.; Fadeev, L.; Rosen, B.A.; Gozin, M. Design of coke-free methane dry reforming catalysts by molecular tuning of nitrogen-rich combustion precursors. Mater. Today Chem. 2022, 24, 100765. [Google Scholar] [CrossRef]
- Tang, Y.; Wei, Y.; Wang, Z.; Zhang, S.; Li, Y.; Nguyen, L.; Li, Y.; Zhou, Y.; Shen, W.; Tao, F.F.; et al. Synergy of Single-Atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. J. Am. Chem. Soc. 2019, 141, 7283–7293. [Google Scholar] [CrossRef] [PubMed]
- Akri, M.; El Kasmi, A.; Batiot-Dupeyrat, C.; Qiao, B. Highly active and Carbon-Resistant nickel Single-Atom catalysts for methane dry reforming. Catalysts 2020, 10, 630. [Google Scholar] [CrossRef]
- Da Fonseca, R.O.; Rabelo-Neto, R.C.; Simões, R.C.C.; Mattos, L.V.; Noronha, F.B. Pt supported on doped CeO2/Al2O3 as catalyst for dry reforming of methane. Int. J. Hydrogen Energy 2020, 45, 5182–5191. [Google Scholar] [CrossRef]
- Jagódka, P.; Matus, K.; Sobota, M.; Bamacz, A. Dry reforming of methane over carbon Fibre-Supported CeZrO2, Ni-CeZrO2, Pt-CeZrO2 and Pt-Ni-CeZrO2 catalysts. Catalysts 2021, 11, 563. [Google Scholar] [CrossRef]
- Al-Doghachi, F.A.J.; Islam, A.; Zainal, Z.; Saiman, M.I.; Embong, Z.; Taufiq-Yap, Y.H. High coke-resistance Pt/Mg1-xNixO catalyst for dry reforming of methane. PLoS ONE 2016, 11, e145862. [Google Scholar] [CrossRef] [PubMed]
- Singha, R.K.; Shukla, A.; Sandupatla, A.; Deo, G.; Bal, R. Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane. J. Mater. Chem. A 2017, 5, 15688–15699. [Google Scholar] [CrossRef]
- Dehimi, L.; Gaillard, M.; Virginie, M.; Erto, A.; Benguerba, Y. Investigation of dry reforming of methane over Mo-based catalysts. Int. J. Hydrogen Energy 2020, 45, 24657–24669. [Google Scholar] [CrossRef]
- Liang, P.; Gao, H.; Yao, Z.; Jia, R.; Shi, Y.; Sun, Y.; Fan, Q.; Wang, H. Simple synthesis of ultrasmall β-Mo2C and α-MoC1−x nanoparticles and new insights into their catalytic mechanisms for dry reforming of methane. Catal. Sci. Technol. 2017, 7, 3312–3324. [Google Scholar] [CrossRef]
- Shimura, K.; Fujitani, T. Effects of rhodium catalyst support and particle size on dry reforming of methane at moderate temperatures. Mol. Catal. 2021, 509, 111623. [Google Scholar] [CrossRef]
- De Araújo Moreira, T.G.; de Carvalho Filho, J.F.S.; Carvalho, Y.; de Almeida, J.M.A.R.; Romano, P.N.; Sousa-Aguiar, E.F. Highly stable low noble metal content rhodium-based catalyst for the dry reforming of methane. Fuel 2021, 287, 119536. [Google Scholar] [CrossRef]
- Khani, Y.; Shariatinia, Z.; Bahadoran, F. High catalytic activity and stability of ZnLaAlO4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane. Chem. Eng. J. 2016, 299, 353–366. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.; Zhang, L.; Zhu, J.; Han, B.; Fan, W.; Xu, L.; Yu, H.; Cai, W.; Li, Z.; et al. Performance enhancement of methane dry reforming reaction for syngas production over Ir/Ce0.9La0.1O2-nanorods catalysts. Catal. Today 2020, 355, 502–511. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Huang, J.; Cui, Q.; Zhu, Y.; Chen, H. Self-Confinement created for a uniform ir-Ni/SiO2 catalyst with enhanced performances on CO2 reforming of methane. Energy Fuels 2020, 34, 111–117. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Koshta, N.; Deo, G. Effect of O2 and temperature on the catalytic performance of Ni/Al2O3 and Ni/MgAl2O4 for the dry reforming of methane (DRM). Int. J. Hydrogen Energy 2020, 45, 4490–4500. [Google Scholar] [CrossRef]
- Al Swai, B.M.; Osman, N.B.; Ramli, A.; Abdullah, B.; Farooqi, A.S.; Ayodele, B.V.; Patrick, D.O. Low-temperature catalytic conversion of greenhouse gases (CO2 and CH4) to syngas over ceria-magnesia mixed oxide supported nickel catalysts. Int. J. Hydrogen Energy 2021, 46, 24768–24780. [Google Scholar] [CrossRef]
- Budiman, A.W.; Song, S.H.; Chang, T.S.; Choi, M.J. Preparation of a high performance cobalt catalyst for CO2 reforming of methane. Adv. Powder Technol. 2016, 27, 584–590. [Google Scholar] [CrossRef]
- Sukri, M.F.F.; Khavarian, M.; Mohamed, A.R. Effect of cobalt loading on suppression of carbon formation in carbon dioxide reforming of methane over Co/MgO catalyst. Res. Chem. Intermed. 2018, 44, 2585–2605. [Google Scholar] [CrossRef]
- Han, J.W.; Park, J.S.; Choi, M.S.; Lee, H. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Appl. Catal. B 2017, 203, 625–632. [Google Scholar] [CrossRef]
- Budiman, A.W.; Song, S.; Chang, T.; Shin, C.; Choi, M. Dry reforming of methane over cobalt catalysts: A literature review of catalyst development. Catal. Surv. Asia 2012, 16, 183–197. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.; Wang, Z.; Wang, R.; Zhou, J.; Cen, K. Hydrogen production by HI decomposition over nickel-ceria-zirconia catalysts via the sulfur-iodine thermochemical water-splitting cycle. Energy Convers. Manag. 2014, 84, 664–670. [Google Scholar] [CrossRef]
- Jeon, O.S.; Lee, H.; Lee, K.; Paidi, V.K.; Ji, Y.; Kwon, O.C.; Kim, J.P.; Myung, J.; Park, S.Y.; Yoo, Y.J.; et al. Harnessing strong metal-support interaction to proliferate the dry reforming of methane performance by in situ reduction. ACS Appl. Mater. Interfaces 2022, 14, 12140–12148. [Google Scholar] [CrossRef]
- Kwon, Y.; Eichler, J.E.; Mullins, C.B. NiAl2O4 as a beneficial precursor for Ni/Al2O3 catalysts for the dry reforming of methane. J. CO2 Util. 2022, 63, 102112. [Google Scholar] [CrossRef]
- Duan, X.; Pan, J.; Yang, X.; Wan, C.; Lin, X.; Li, D.; Jiang, L. Nickel‒cobalt bimetallic catalysts prepared from hydrotalcite-like compounds for dry reforming of methane. Int. J. Hydrogen Energy 2022, 47, 24358–24373. [Google Scholar] [CrossRef]
- Das, S.; Sengupta, M.; Patel, J.; Bordoloi, A. A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles. Appl. Catal. A 2017, 545, 113–126. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Han, D.; He, B.; Sun, X.; Liu, M.; Mei, Y.; Zu, Y. Small-sized Ni nanoparticles embedded nickel phyllosilicate as a metal-acid bifunctional zeolite catalyst for cooperatively boosting CO2-CH4 reforming. Fuel 2023, 331, 125957. [Google Scholar] [CrossRef]
- Jafarbegloo, M.; Tarlani, A.; Mesbah, A.W.; Sahebdelfar, S. One-pot synthesis of NiO-MgO nanocatalysts for CO2 reforming of methane: The influence of active metal content on catalytic performance. J. Nat. Gas Sci. Eng. 2015, 27, 1165–1173. [Google Scholar] [CrossRef]
- Ghodke, S.R.; Thundiyil, S.; Dongapure, P.; Nandini Devi, R. Effect of B site substitution in Gd2B2−xNiyO7−δ (B = Ti, Zr) ternary metal oxide catalysts in dry reforming of methane. Mol. Catal. 2022, 522, 112242. [Google Scholar] [CrossRef]
- Cao, A.N.T.; Pham, C.Q.; Nguyen, T.M.; Van Tran, T.; Phuong, P.T.T.; Vo, D.N. Dysprosium promotion on Co/Al2O3 catalysts towards enhanced hydrogen generation from methane dry reforming. Fuel 2022, 324, 124818. [Google Scholar] [CrossRef]
- Sengupta, S.; Deo, G. Modifying alumina with CaO or MgO in supported Ni and Ni-Co catalysts and its effect on dry reforming of CH4. J. CO2 Util. 2015, 10, 67–77. [Google Scholar] [CrossRef]
- Gerosa, M.; Bottani, C.E.; Caramella, L.; Onida, G.; Di Valentin, C.; Pacchioni, G. Defect calculations in semiconductors through a dielectric-dependent hybrid DFT functional: The case of oxygen vacancies in metal oxides. J. Chem. Phys. 2015, 143, 134702. [Google Scholar] [CrossRef]
- Gambo, Y.; Jalil, A.A.; Triwahyono, S.; Abdulrasheed, A.A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. J. Ind. Eng. Chem. 2018, 59, 218–229. [Google Scholar] [CrossRef]
- Djinović, P.; Batista, J.; Pintar, A. Efficient catalytic abatement of greenhouse gases: Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 catalyst. Int. J. Hydrogen Energy 2012, 37, 2699–2707. [Google Scholar] [CrossRef]
- Sophiana, I.C.; Iskandar, F.; Devianto, H.; Nishiyama, N.; Budhi, Y.W. Coke-Resistant Ni/CeZrO2 catalysts for dry reforming of methane to produce Hydrogen-Rich syngas. Nanomaterials 2022, 12, 1556. [Google Scholar] [CrossRef] [PubMed]
- Lanre, M.S.; Abasaeed, A.E.; Fakeeha, A.H.; Ibrahim, A.A.; Al-Awadi, A.S.; Jumah, A.B.; Al-Mubaddel, F.S.; Al-Fatesh, A.S. Lanthanum-Cerium-Modified nickel catalysts for dry reforming of methane. Catalysts 2022, 12, 715. [Google Scholar] [CrossRef]
- Owgi, A.H.K.; Jalil, A.A.; Hussain, I.; Hambali, H.U.; Nabgan, W. Enhancing resistance of carbon deposition and reaction stability over nickel loaded fibrous silica-alumina (Ni/FSA) for dry reforming of methane. Int. J. Hydrogen Energy 2022, 47, 42250–42265. [Google Scholar] [CrossRef]
- Zhu, R.; Ding, X.; Liu, Z.; Li, Y.; Wu, L.; Zheng, L.; Wang, Y. Promotional effects of Nd2O3 doped Ni/Al2O3-Y2O3 catalysts on oxygen vacancy and coking-resistant in dry reforming of methane. Catal. Lett. 2022, 153, 19–31. [Google Scholar] [CrossRef]
- Wang, C.; Su, T.; Qin, Z.; Ji, H. Coke-resistant Ni-based bimetallic catalysts for the dry reforming of methane: Effects of indium on the Ni/Al2O3 catalyst. Catal. Sci. Technol. 2022, 12, 4826–4836. [Google Scholar] [CrossRef]
- Liu, D.; Quek, X.; Wah, H.H.A.; Zeng, G.; Li, Y.; Yang, Y. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catal. Today 2009, 148, 243–250. [Google Scholar] [CrossRef]
- Qian, L.; Ma, Z.; Ren, Y.; Shi, H.; Yue, B.; Feng, S.; Shen, J.; Xie, S. Investigation of La promotion mechanism on Ni/SBA-15 catalysts in CH4 reforming with CO2. Fuel 2014, 122, 47–53. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; Shi, Y.; Zhao, B.; Wang, M.; Liu, Q.; Wang, J.; Long, K.; Duan, Y.; Ning, P. A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane. J. CO2 Util. 2017, 17, 10–19. [Google Scholar] [CrossRef]
- Kaydouh, M.N.; El Hassan, N.; Davidson, A.; Casale, S.; El Zakhem, H.; Massiani, P. Highly active and stable Ni/SBA-15 catalysts prepared by a “two solvents” method for dry reforming of methane. Microporous Mesoporous Mater. 2016, 220, 99–109. [Google Scholar] [CrossRef]
- Zhu, L.; Lv, Z.; Huang, X.; Ran, J.; Chen, J.; Qin, C. Understanding the role of support structure in methane dry reforming for syngas production. Fuel 2022, 327, 125163. [Google Scholar] [CrossRef]
- Moradi, G.; Khezeli, F.; Hemmati, H. Syngas production with dry reforming of methane over Ni/ZSM-5 catalysts. J. Nat. Gas Sci. Eng. 2016, 33, 657–665. [Google Scholar] [CrossRef]
- Shiju, N.R. The role of metal-support bonding in controlling the particle size of Ceria-Supported transition metal catalysts. ChemCatChem 2011, 3, 112–114. [Google Scholar] [CrossRef]
- González, J.J.; Da Costa-Serra, J.F.; Chica, A. Biogas dry reforming over Ni-Ce catalyst supported on nanofibered alumina. Int. J. Hydrogen Energy 2020, 45, 20568–20581. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, X.; Zhang, L.; Rao, C.; Lian, J.; Liu, W.; Ying, J.; Zhang, G.; Wang, Z.; Zhang, N.; et al. One-Pot facile fabrication of multiple nickel nanoparticles confined in microporous silica giving a Multiple-Cores@shell structure as a highly efficient catalyst for methane dry reforming. ChemCatChem 2017, 9, 127–136. [Google Scholar] [CrossRef]
- Li, Z.; Mo, L.; Kathiraser, Y.; Kawi, S. Yolk-satellite-shell structured Ni-yolk@Ni@SiO2 nanocomposite: Superb catalyst toward methane CO2 reforming reaction. ACS Catal. 2014, 4, 1526–1536. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Lin, Q.; Cao, J.; Liu, F.; Wai, M.H.; Kawi, S. Sintering resistant cubic ceria yolk Ni phyllosilicate shell catalyst for methane dry reforming. Catal. Today 2022, 402, 319–327. [Google Scholar] [CrossRef]
- Kim, S.; Lauterbach, J.; Sasmaz, E. Yolk-shell Pt-NiCe@SiO2 Single-Atom-Alloy catalysts for low-temperature dry reforming of methane. ACS Catal. 2021, 11, 8247–8260. [Google Scholar] [CrossRef]
- Wang, H.; Kim, S.; Sasmaz, E. Numerical investigation of the reaction kinetics of dry reforming of methane over the yolk-shell and single-atom alloy catalysts. Chem. Eng. J. 2022, 450, 138111. [Google Scholar] [CrossRef]
- Kalai, D.Y.; Stangeland, K.; Li, H.; Yu, Z. The effect of La on the hydrotalcite derived Ni catalysts for dry reforming of methane. Energy Procedia 2017, 142, 3721–3726. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Li, G.; Liu, J.; Wang, Y.; Xu, Y.; Lyu, Y. Understanding structure-activity relationships of the highly active and stable La promoted Co/WC-AC catalyst for methane dry reforming. Int. J. Hydrogen Energy 2022, 47, 7823–7835. [Google Scholar] [CrossRef]
- Seo, J.; Cho, E.; Kim, J.; Kim, S.B.; Youn, J.; Kim, D.H.; Ramasamy, P.K.; Lee, K.; Ko, C.H. Bifunctional metal doping engineering of Ni-supported alumina catalyst for dry methane reforming. J. Environ. Chem. Eng. 2022, 10, 108058. [Google Scholar] [CrossRef]
- Nisa, K.S.; Suendo, V.; Sophiana, I.C.; Susanto, H.; Kusumaatmaja, A.; Nishiyama, N.; Budhi, Y.W. Effect of base promoter on activity of MCM-41-supported nickel catalyst for hydrogen production via dry reforming of methane. Int. J. Hydrogen Energy 2022, 47, 23201–23212. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, J.; Xu, R.; Zhang, R.; Ge, J. Highly dispersed Ni/MgO-mSiO2 catalysts with excellent activity and stability for dry reforming of methane. Nano Res. 2022, 15, 5004–5013. [Google Scholar] [CrossRef]
- Tavasoli, A.; Ozin, G. Green syngas by solar dry reforming. Joule 2018, 2, 571–575. [Google Scholar] [CrossRef]
- Zhou, L.; Martirez, J.M.P.; Finzel, J.; Zhang, C.; Swearer, D.F.; Tian, S.; Robatjazi, H.; Lou, M.; Dong, L.; Henderson, L.; et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 2020, 5, 61–70. [Google Scholar] [CrossRef]
- Du, Z.; Pan, F.; Yang, X.; Fang, L.; Gang, Y.; Fang, S.; Li, T.; Hu, Y.H.; Li, Y. Efficient photothermochemical dry reforming of methane over Ni supported on ZrO2 with CeO2 incorporation. Catal. Today 2022, 409, 31–41. [Google Scholar] [CrossRef]
- Yang, Y.; Chai, Z.; Qin, X.; Zhang, Z.; Muhetaer, A.; Wang, C.; Huang, H.; Yang, C.; Ma, D.; Li, Q.; et al. Light-induced redox looping of a Rhodium/CexWO3 photocatalyst for highly active and robust dry reforming of methane. Angew. Chem. Int. Ed. 2022, 61, 202200567. [Google Scholar]
- Zhang, Z.; Zhang, T.; Liang, W.; Bai, P.; Zheng, H.; Lei, Y.; Hu, Z.; Xie, T. Promoted solar-driven dry reforming of methane with Pt/mesoporous-TiO2 photo-thermal synergistic catalyst: Performance and mechanism study. Energy Convers. Manag. 2022, 258, 115496. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Q.; Wang, C.; Yan, D.; Chen, J.; Jia, H. Light-driven efficient dry reforming of methane over Pt/La2O3 with long-term durability. J. Mater. Chem. A 2022, 10, 16016–16028. [Google Scholar] [CrossRef]
- Snoeckx, R.; Zeng, Y.X.; Tu, X.; Bogaerts, A. Plasma-based dry reforming: Improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Adv. 2015, 5, 29799–29808. [Google Scholar] [CrossRef]
- Boulos, M.I.; Fauchais, P.; Pfender, E. Handbook of Thermal Plasmas; Springer: Berlin, Germany, 2016; pp. 1–34. [Google Scholar]
- Snoeckx, R.; Bogaerts, A. Plasma technology-a novel solution for CO2 conversion? Chem. Soc. Rev. 2017, 46, 5805–5863. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cheng, Y.; Jin, Y. Dry reforming of methane in an atmospheric pressure plasma fluidized bed with Ni/γ-Al2O3 catalyst. Catal. Today 2009, 148, 275–282. [Google Scholar] [CrossRef]
- Khoja, A.H.; Tahir, M.; Amin, N.A.S. Cold plasma dielectric barrier discharge reactor for dry reforming of methane over Ni/γ-Al2O3-MgO nanocomposite. Fuel Process. Technol. 2018, 178, 166–179. [Google Scholar] [CrossRef]
- Khoja, A.H.; Tahir, M.; Saidina Amin, N.A. Process optimization of DBD plasma dry reforming of methane over Ni/La2O3MgAl2O4 using multiple response surface methodology. Int. J. Hydrogen Energy 2019, 44, 11774–11787. [Google Scholar] [CrossRef]
No. | Reaction | Reaction Equation | Reaction Temperature/°C | |
---|---|---|---|---|
(1) | Main reaction | CH4 + CO2→2CO + 2H2 | 248 | >640 |
(2) | Reverse water gas shift reaction | CO2 + H2→CO + H2O | 41 | <820 |
(3) | Methane cracking reaction | CH4→C + 2H2 | 75 | >527 |
(4) | Carbon monoxide disproportionation reaction | 2CO→C + CO2 | −172 | 550~700 |
Catalyst | Surface Area (m2·g−1) | GHSV (mL·g−1·h−1) | Temperature (°C) | Conversion (%) | Carbon Formation (%) | Reference | |
---|---|---|---|---|---|---|---|
CO2 | CH4 | ||||||
Pt/CeZr/Al2O3 | 118 | 6000 | 800 | 68 | 76 | 0.12 | [73] |
Pt-Ni-CeZrO2 | 44 | 5100 | 800 | 54 | 80 | 4.23 | [74] |
Pt/Mg0.85Ni0.15O | 5.44 | 15,000 | 900 | 76 | 95 | - | [75] |
0.2Pd/5Ni-MgO | 181 | 72,000 | 750 | 97 | 96 | 1.5 | [76] |
20Mo10Ni/Al2O3 | - | 5400 | 800 | 70 | 88 | - | [77] |
α-MoC1−x | 29.4 | 6000 | 900 | 87 | 94 | - | [78] |
Rh/SiO2-TiO2 | 315 | 6000 | 600 | - | - | - | [79] |
Rh/Al2O3 | 191.8 | 6000 | 700 | 53 | 63 | - | [80] |
Rh-P/LA | 139 | - | 850 | 90 | - | - | [56] |
Ru/ZnLaAlO4 | 60 | 10,500 | 800 | 89.2 | 90 | - | [81] |
LaAl0.98Ru0.02O3−δ | 4.0 | 6000 | 800 | 86 | 80 | - | [30] |
Ir/Ce0.9La0.1O2 | 73.9 | 18,000 | 800 | 75 | 85 | 0.23 | [82] |
Ni-Ir/SiO2 | 561.41 | 1200 | 700 | - | 44 | - | [83] |
Ni/Al2O3 | 75 | - | 750 | 81.7 | 95.3 | 0.7 | [84] |
Ni/CeO2-MgO | 30.6 | 36,000 | 900 | 98.9 | 97.6 | - | [85] |
Co/SiO2 | 194.5 | 20,000 | 850 | 45.02 | 22 | 2.75 | [86] |
Co/MgO | 51.76 | 24,000 | 750 | 88 | 82 | 0.72 | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, B.; Zhu, T.; Han, Y.; Zhang, X.; Wang, M.; Li, C. Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review. Atmosphere 2023, 14, 770. https://doi.org/10.3390/atmos14050770
Yuan B, Zhu T, Han Y, Zhang X, Wang M, Li C. Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review. Atmosphere. 2023; 14(5):770. https://doi.org/10.3390/atmos14050770
Chicago/Turabian StyleYuan, Bo, Tao Zhu, Yiwei Han, Xueli Zhang, Meidan Wang, and Chen Li. 2023. "Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review" Atmosphere 14, no. 5: 770. https://doi.org/10.3390/atmos14050770
APA StyleYuan, B., Zhu, T., Han, Y., Zhang, X., Wang, M., & Li, C. (2023). Deactivation Mechanism and Anti-Deactivation Measures of Metal Catalyst in the Dry Reforming of Methane: A Review. Atmosphere, 14(5), 770. https://doi.org/10.3390/atmos14050770