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Abstract: China has made remarkable achievements in reducing carbon emissions in recent years.
However, there is still much reduction room before achieving carbon neutrality. In Beijing, the
capital of China, it is a strategic choice to respond to global climate change by promoting green and
low-carbon development. This paper calculates the carbon dioxide emissions of key industries in
Beijing and analyzes the temporal evolution trend of carbon emissions. Carbon dioxide emissions
in Beijing before 2030 are predicted based on the grey prediction GM (1,1) and BP neural network
model. The effects of factors of carbon dioxide emissions are discussed using the threshold regression
model under different economic conditions. The results show that energy consumption intensity,
GDP per capita, and the ownership of civil cars have a positive impact on carbon dioxide emissions,
while the number of permanent residents and urban green space areas have a negative impact on
carbon dioxide emissions. These findings of carbon emission prediction and influencing factors
contribute to carbon reduction path design. Related policy implications on carbon emission reduction
are put forward from the aspects of promoting industrial upgrading, accelerating the construction
of advanced economic structures, optimizing transportation structures, and strengthening green
building development.

Keywords: carbon emission; carbon neutrality; GM (1,1); BP neural network; threshold regression model

1. Introduction

With the continuous advancement of global industry and the economic activities of
human society depending heavily on resource consumption [1], the problem of climate
warming caused by excessive greenhouse gas emissions is becoming increasingly seri-
ous [2,3]. From 2000 to 2019, global carbon emissions increased from 232 billion tons to
344 billion tons. To tackle climate change, promoting the transformation of the economic
development mode to green and low-carbon and implementing carbon emission reduction
measures are essential [4,5]. Controlling carbon emissions and achieving net zero emissions
are common goals of global climate governance. Only some European countries, such as
France and Germany, have achieved overall carbon reduction [6]. Most responsibility for
carbon emissions lies with industrialized countries [7]. Some developed countries have
imposed strict restrictions on the use of fossil fuels to cope with the increase in carbon
emissions [8]. Climate change is a global issue that brings a serious challenge to developing
countries [9]. China has committed to reach a carbon peak by 2030 and become carbon neu-
tral by 2060. The proposal of carbon peaking and carbon neutrality goals has also become
an opportunity and challenge for society’s comprehensive green transformation [10]. To
achieve the “double carbon” target, the Chinese government promulgates many related
files. The implementation of carbon emission reduction policies will accelerate the com-
prehensive green and low-carbon transformation of the economy. The 14th Five Year Plan
for China’s national economic and social development and the outline of long-term goals
for 2035 put forward the objectives and tasks related to the ecological environment, such
as achieving remarkable results in the green transformation of production and lifestyle,
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more reasonable allocation of energy resources, significantly improving utilization effi-
ciency, and reducing energy intensity and carbon dioxide emissions by 13.5% and 18%,
respectively. The government will improve the dual control system of total energy con-
sumption and energy intensity, focus on controlling fossil energy consumption, and further
promote low-carbon transformation in industry, construction, transportation, and other
key fields [11].

China is facing huge pressure to reduce carbon emissions, with primary energy con-
sumption accounting for 26.1% of global primary energy consumption in 2020 [12]. Since
being identified as a low-carbon pilot city in 2012, Beijing has achieved positive results in
low-carbon development. Industrial structure and energy structure have been optimized,
and the problem of economy, energy, and population have been alleviated, which has grad-
ually promoted the goal of carbon emission reduction [13,14]. In 2020, coal consumption
in Beijing accounted for 1.5% of the total energy consumption. Therefore, the space for
reducing carbon emissions through the removal of coal is relatively small [15]. During the
14th Five Year Plan period, Beijing will carry out special actions on pollutants and carbon
emission reduction. These actions will be effectively combined with economic growth,
green energy development, and industrial structure optimization to ensure a steady de-
cline in carbon emission reduction. Beijing will continue to support the growth of green
energy and environmental protection sectors, prioritize the low-carbon transformation
of key industries, conduct concurrent research on the path to carbon neutrality, encour-
age regional collaborative emission reduction, and speed up the achievement of carbon
neutrality goals.

In recent years, carbon emission reduction has received extensive attention. Many
scholars have researched the path of carbon emission reduction in different industries and
regions and put forward some targeted emission reduction measures. Khalil et al. [16]
evaluated carbon reduction levels through the Global Cleantech Innovation Program
(GCIP) project and compared the differences between zero-emission technologies and
traditional practices, thereby providing support for Pakistan’s carbon reduction efforts.
Chhabra et al. [17] examined the impact of trade openness and institutional quality on
CO2 emissions in BRICS countries and discovered that trade openness aggravates CO2
emissions. Konstantinavicete and Bobinaite [18] evaluated the carbon dioxide emission
coefficients of the energy industry in EU countries and compared the estimated carbon
dioxide emissions with the calculations provided by the IPCC. Honma et al. [19] examined
the carbon efficiency of the metal industry in Japan and analyzed the relationship between
carbon emission, output, and carbon efficiency. Gordic et al. [20] found that European
grid-connected households can reduce their carbon footprint using electricity generated
from local renewable energy, and voluntary carbon offset can become a practical solution
for achieving a carbon-neutral household. Wu et al. [21] considered that improving the
percentage of tertiary industry and decreasing the percentage of primary industry and
secondary industries are beneficial for improving total factor carbon emission efficiency
and energy efficiency utilization.

Furthermore, reasonable prediction of carbon emission levels is an essential reference
basis for optimizing carbon emission reduction measures. Some scholars used the nonlinear
multivariate grey model [22], random forest model [23], machine learning algorithms [24],
and deep neural networks [25] to predict and analyze the carbon emission levels of different
regions and departments. Additional research has investigated the decomposition of
influencing factors of carbon emission [26,27]. However, few studies predicted carbon
dioxide emission by combining the GM (1,1) model with the backpropagation (BP) neural
network model and analyzing the influencing factors of carbon emission using the threshold
model in Beijing.

This paper calculates carbon emissions of the sub-sector in Beijing, analyzes carbon
emission characteristics, makes a time series dynamic prediction of carbon emission levels
before 2030 using the grey GM (1,1) model and BP neural network model, and examines
the factors of carbon emission using the threshold model. Based on the results, several
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suggestions for carbon emission reduction are put forward. A single prediction method
may have a consistent trend in the predicted results, leading to the possibility of inaccurate
results. To avoid the shortcomings of single method prediction, this study considers the
advantages and disadvantages of the GM (1,1) model and BP neural network model and
combines these two methods to predict carbon emissions, which can ensure the prediction
results are more reliable. For the advanced analysis of the impact of the economic devel-
opment level on carbon emissions, we introduced the level of technological development
as a threshold value. We not only observed the changes in carbon emissions under the
influence of a single factor but also effectively analyzed the impact of control variables
included in the extended STRPAT model on carbon emissions. This paper studies carbon
emission reduction from the perspectives of carbon emission prediction and influencing
factors, thereby providing effective support for carbon emission reduction work.

2. Model and Methodology
2.1. GM (1,1) Grey Prediction Model

The grey model is simple and capable of better handling sudden parameter changes
without many data points for prediction updates [28]. The GM (1,1) model, the basic model
of the grey prediction model, is a prediction method with a small amount of data and is
suitable for uncertain systems [29]. Compared with other prediction models, the advantage
of the GM (1,1) model is that it only requires a small sample size, at least four data values,
to summarize the rules of the original data and to predict the values. Additionally, the GM
(1,1) model can make accurate predictions for monotonic processes [30]. It is widely used in
predicting energy consumption [31], greenhouse gas emissions [32], Novel Coronavirus [33],
air pollution [34], and other fields. This paper applies the GM (1,1) model to predict carbon
dioxide emissions in Beijing. The sample size is fully suitable for the data requirements
of this model. The prediction results based on the GM (1,1) model are more accurate than
those based on the complex network prediction model, which requires larger samples.

The modeling process is as follows:
Set the original data as:

X(0) =
{

X(0)(1), X(0)(2), . . . , X(0)(N)
}

. (1)

The formula satisfies the condition of X(0)(K) ≥ 0, K = 1, 2, . . . N.
Conduct an accumulation calculation to obtain:

X(1) =
{

X(1)(1), X(1)(2), . . . , X(1)(N)
}

. (2)

Suppose X(1) satisfies the first-order ordinary differential equation:

dX(1)

dt
+ aX(1)= u. (3)

a is a constant.
The discrete value of equally spaced sampling is:

X(1)(K + 1) =
[

X(1)(1)− u
a

]
e−aK+

u
a

. (4)

At this time, the condition t is satisfied, t0 = 1, and the a and u values are estimated
by the least square method.

Because the calculation of 4X(1) involves the two time values of X(1)(t), the mean
value of the two nodes before and after is taken for the calculation. Therefore, based on
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the original sequence X(0) and the accumulated sequence X(1), the average sequence is
calculated as follows:

Z(1) =
{

Z(1)(1), Z(1)(2), . . . , Z(1)(N)
}

. (5)

The data matrix is constructed as follows:

B =


−Z(1)(1) 1
−Z(1)(2) 1
· · · · · ·

−Z(1)(N) 1

, (6)

A = (a, u)T . (7)

Therefore, the matrix form is as follows:

Y = BA, (8)

Â = (â, û)T= (BT B)
−1

BTyn. (9)

By calculating the values of a and u, and bringing the calculated values into
Formula (7), we successively calculate the fitting value when K = 1, 2, . . . N − 1 and
the predicted value when K is greater than or equal to n.

Regardless of whether the data before the construction of the model can carry out
high-precision GM (1,1), prediction requires testing. Generally, X(0) is subject to the level
ratio test. It is considered that X(0) can be used for GM (1,1) modeling and prediction if the
following conditions are met

δ =
X(0)(K− 1)

X(0)(K)
ε(e−

2
N+1 , e

2
N+1 ). (10)

The prediction results of the model should also be tested accordingly, and the posterior
error test should be adopted.

X is the mean of X(0). The variance of X(0) is as follows:

S1 =

√√√√ 1
N

N

∑
K=1

[
X(0)(K)− X

]2. (11)

ε(K) is the residual and ε is the residual’s mean value. The variance of the residual
between the actual value and the fitted value of X(0) is as follows:

S2 =

√√√√ 1
N − 1

N

∑
K=2

[ε(K)− ε]2. (12)

The ratio of calculated posterior error is as follows:

C =
S2

S1
. (13)

The small error probability values are as follows:

P = P{|ε(K)− ε| < 0.6745S1}. (14)
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The prediction accuracy is comprehensively evaluated according to the actual calcu-
lation data and the accuracy standard. The accuracy of the forecast is higher when C is
smaller, and P is larger.

2.2. BP Neural Network Model

Artificial neural networks appeared in the middle of the 19th century and were widely
used after 1940. Backpropagation (BP) neural networks, one of the most popular artificial
neural network models, are neural networks that simulate the structure and thinking
modes of the human brain. They are utilized extensively in a variety of domains, including
nano samples volume determination [35], nonlinear fitting [36], management system
construction [37], data mining [38], and other fields. The BP algorithm is an error back
propagation network learning algorithm proposed by Rumelhart and McClelland [39]. The
BP neural network is a perception that uses the BP algorithm to adjust weights. It contains
two procedures known as forward signal transmission and reverse error propagation. The
structure of the general BP neural network prediction model is shown in Figure 1. m, n,
and i represent the number of layers, respectively, and X and Z represent the input and
output of data.

Figure 1. Structure of BP neural network prediction model.

2.3. Carbon Emissions Drivers Model Construction

The IPAT model of environmental pressure regulation was first suggested by Ehrlich
and Holdren [40], and the precise formula is as follows:

I = P× A× T. (15)

I is the interpreted variable, indicating the environmental impact. P is population
impact, A is the degree of affluence, and T is the technical influence factor.

Richard and Eugene [41] proposed the environmental impact assessment model (STIR-
PAT) and incorporated the elasticity coefficient to examine the effects of each driving
element on the environment in order to solve the shortcomings of the model that is too
simple. The precise formula is written as follows:

I = aPb AcTdε, (16)

where a is the model coefficient; b, c, and d depict the indices of variables P, A, and T; ε is
the model error term.
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The model is improved and expanded to be applied to the analysis of driving factors
of carbon emissions, and relevant indicators of natural factors and traffic structure are
added. The formula is as follows:

I = aPb × Ac × Td × H f × Lg × ε, (17)

where H and L represent specific indicators of natural factors and traffic structure, respec-
tively; f and g represent their indices.

The STIRPAT model is a nonlinear model with multiple driving factors and generally
analyzes the logarithm of the formula data. Therefore, the driving factors selected according
to the model can be effectively applied to the threshold regression model. The approach of
merging the extended environmental impact assessment model with the threshold model
is used to examine the influence relationship of each driving element on carbon emissions
in order to effectively identify the variables that cause carbon dioxide emissions.

The threshold effect refers to a variable indicator reaching a specific value and causing a
shift in the relationship between other variable indices. Hansen’s panel threshold model [42]
endogenously divides the intervals according to the data’s characteristics and finds the
threshold values, which can effectively avoid the bias caused by artificially divided sample
intervals or quadratic term models. Its advantage is that it can assess the existence of a
threshold feature, determine the precise threshold value, and perform a significant test on
the threshold effect.

We use the technology level at various stages as the threshold variable to examine the
nonlinear relationship between the level of economic development of the core explanatory
variable and the carbon emissions of the explained variable. The multiple threshold model
is constructed by logarithmic processing of data, as shown in the formula:

ln y = mt + di ln xi t + b1 ln x1t × I(ln x2t ≤ γ1) + b2 ln x1t × I(γ1 < ln x2t ≤ γ2) + · · · · · ·
+bs ln x1t × I(γs−1 < ln x2t ≤ γs) + bs+1 ln x1 × I(ln x2t ≥ γs) + εt

(18)

t is the year, s is the number of threshold values, I(.) is the indicative function, γ is the
threshold, and ε is the random disturbances. x1 is the core explanatory variable; xi is the
control variable. The value of i is 1 to N. N is the number of control variables.

3. Data Description

To calculate carbon dioxide emissions in Beijing, this paper adopts the carbon diox-
ide data provided by Guan [43] and Shan [44] (https://www.ceads.net/data/province/
(accessed on 20 March 2023)) and combines the IPCC national greenhouse gas guidelines
method. We mainly focus on the carbon dioxide emission from the primary energy of
raw coal, coke, crude oil, fuel oil, gasoline, kerosene, diesel, natural gas, and liquefied
petroleum gas. The data come from the Beijing Statistical Yearbook from 2004 to 2020.
The following is the calculation formula for total carbon dioxide emissions from primary
energy combustion:

EC =
m

∑
i=1

ECi =
m

∑
i=1

Ei × CGi × CCi × COFi ×
44
12

, (19)

where EC stands for carbon emissions, ECi represents the carbon emission of the ith energy
source, and Ei represents the ith energy consumption. CGi represents the low calorific value
of the ith energy source, CCi stands for carbon content per unit calorific value, and COFi
indicates the carbon oxidation factor.

The carbon dioxide emissions of 16 districts in Beijing were calculated. Considering
the availability of data, we selected carbon dioxide emissions during the period of 2003 and
2017 to further observe the temporal variation characteristics of carbon dioxide emissions
in various districts, as shown in Figure 2. Figure 2 demonstrates that the carbon dioxide
emissions in Chaoyang District, Yanqing County, and Fengtai District in 2017 were much

https://www.ceads.net/data/province/
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lower than those in 2003, indicating the significant progress made in energy saving and
emission reduction.

Figure 2. Distribution map of carbon dioxide emissions in Beijing in 2003 (left) and 2017 (right).

4. Results
4.1. Energy Carbon Emissions and Sectoral Carbon Emissions

As shown in Figure 3, the total carbon dioxide emission in Beijing and the carbon
dioxide emission in key departments, including residential, architecture, transportation,
and industry, are described.

Figure 3. Total carbon dioxide emissions and carbon dioxide emissions of key industries.

Figure 3 indicates that carbon dioxide emissions in Beijing showed an earlier increasing
and later decreasing trend from 2003 to 2019. Carbon dioxide emissions were about
81.9 million tons in 2003 and increased to 103 million tons in 2010, which shows a high
carbon dioxide emission level. After 2010, carbon dioxide emissions gradually declined.
In 2019, carbon dioxide emissions were about 85.79 million tons, 16.7% lower than in
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2010. Although industrial carbon dioxide emissions have dropped, they still account
for a large proportion of the total carbon dioxide emissions. Carbon dioxide emissions
from transportation, storage, post, and telecommunication services have continued to
rise. Residential and construction carbon dioxide emissions are relatively similar. In 2019,
the proportions of industrial, construction, residential, transportation, storage, post, and
telecommunication services in total carbon dioxide emissions were 37.96%, 1.23%, 18.12%,
and 31.47%, respectively.

The carbon dioxide emissions of agriculture, mining, manufacturing, construction,
power, gas, and water production and supply are shown in Figure 4. Since the tertiary in-
dustry involves many industries, its comprehensive data are used for descriptive statistics.

Figure 4. Carbon emissions of various industries.

The carbon dioxide emissions of agriculture, forestry, animal husbandry, and fisheries
have demonstrated relative stability since 2003, making up a modest fraction of Beijing’s
overall carbon dioxide emissions. As an essential part of the industrial sector, the carbon
dioxide emissions of the mining industry have maintained a relatively low level. They only
increased significantly in 2010, with about 8.1 million tons of carbon dioxide emissions, and
then gradually decreased. The manufacturing industrial sector’s carbon dioxide emissions
were very high in the beginning but have now decreased significantly, by roughly 86.5% in
2019 compared to 2003. The carbon dioxide emissions of the building industry contribute
a modest amount of overall emissions, gradually dropping after 2010. In recent years,
carbon dioxide emissions from the production and supply of water, gas, and electricity
have shown a slow downward trend but still significantly impact Beijing’s total carbon
dioxide emissions. In 2019, its carbon emissions accounted for about 33.5% of the total
emissions. The carbon dioxide emission of the tertiary industry in Beijing have increased
significantly, with an increase of about 21.63 million tons in 2019 compared with 2003. The
carbon dioxide emission data of primary, secondary, and tertiary industries can be obtained
by classifying each industry into three groups for calculation, as shown in Figure 5.
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Figure 5. Changing trend of carbon emissions of various industries.

Following a succession of strategies for changing the industrial structure and energy-
saving and emission-reduction initiatives, carbon dioxide emissions from the secondary
industry have shown a clear downward trend since 2003, decreasing by about 42% in
2019 compared with 2003. In 2017, the carbon dioxide emissions from the secondary
industry were lower than those from the tertiary industry. The proportion of primary
industry carbon dioxide emissions in total emissions is relatively small, and its carbon
dioxide emissions show a downward trend. The carbon dioxide emissions from the
tertiary industry are rising, particularly those generated by the post office, storage, and
transportation sectors’ continued growth, which could play a crucial role in future efforts
to reduce carbon emissions.

4.2. Carbon Emission Intensity and Per Capita Emission

From 2000 to 2019, Beijing’s energy consumption and CO2 emissions increased at
first and then decreased. In 2010, CO2 emissions exceeded 100 million tons. The overall
dispersion of the data is low. With the continuous growth of per capita GDP, the growth
rate of carbon dioxide emissions is much lower than that of economic development. Beijing
has achieved certain results in controlling and reducing coal consumption.

Figure 6 indicates that under the condition that Beijing’s regional GDP increases
annually, the carbon emission per unit GDP (CEPUG) decreases year by year. With the
growth of Beijing’s overall economic development level, carbon dioxide emission shows
a negative correlation change. In 2007, Beijing’s carbon emissions per capita (CEPC)
reached an average of 63,000 tons per 10,000 people. The number of permanent residents in
Beijing increased yearly from 2003 to 2016 and then decreased. The overall CEPC shows a
fluctuating decreasing trend.
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Figure 6. Carbon emissions per capita (Unit: tons/person) and per unit GDP (Unit: Ton/104 yuan).

4.3. Time Series Dynamic Prediction of Carbon Emissions
4.3.1. CO2 Emission Prediction Results Based on GM (1,1)

Beijing’s carbon dioxide emissions are predicted based on the GM (1,1) model. First, an
ex-ante test is performed according to the steps predicted. Since the statistical data are from
2003 to 2019, we define the value of N as 17 to test whether δ belongs to the (e−

2
N+1 , e

2
N+1 )

range. The original data column can be predicted by GM (1,1), modeling if the conditions
are met. The original data are tested by MATLAB software through the pre-prediction test,
and the obtained response function is as follows.

X(1)(K + 1) = −15844441.1e−0.0062K + 1592631.1. (20)

The average relative error between the initial value obtained after translational trans-
formation and the fitted value is about 3.9%. Then, the trend simulation of the data is
performed, as shown in Figure 7. The changes in emissions can be observed more intu-
itively through the simulation data graph. According to the simulation results, the average
growth rate declined after 2004.

Figure 7. Comparison of simulated data with actual data.
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The prediction results of the model are also tested accordingly, and the posterior
difference test is adopted. The prediction accuracy is comprehensively evaluated according
to the comparison between the actual calculation data and the accuracy standard. When
P > 0.95, C < 0.35, the prediction accuracy of the model is high. When 0.8 < P < 0.95,
0.35 < C < 0.5, the result is good. When 0.7 < P < 0.8, 0.5 < C < 0.65, the result
is qualified. When P < 0.7, C > 0.65, the result is unqualified, and the residual can be
corrected until the accuracy meets the requirements. According to the test, P = 1, C = 0.58,
which meets the prediction accuracy standard, then the carbon dioxide emission of Beijing
before 2030 is predicted. Table 1 presents the results.

Table 1. Predicted emission of CO2 in Beijing (unit: 104 tons).

Year Predicted Value Year Predicted Value

2020 8916 2026 8588
2021 8860 2027 8535
2022 8805 2028 8482
2023 8750 2029 8429
2024 8696 2030 8376
2025 8642

According to the prediction results, Beijing’s overall carbon dioxide emissions will
trend downward in the next few years. Beijing’s carbon dioxide emissions in 2030 are set to
be 83.76 million tons, reducing by 2.03 million tons compared with 2019. The actual decline
is expected to exceed this estimation through the implementation of a series of emission
reduction measures.

4.3.2. CO2 Emission Prediction Based on the BP Neural Network

First, the carbon dioxide emission data of each of the first five years are taken as a
training sample by grouping the data. The data of the sixth year are affected by the data
of the previous five years. The data from the sixth year are used as a result and divided
into groups in turn. Since the first five groups of data are used as training samples, in
order to obtain the simulation values from 2003 to 2019, the five-year CO2 emission data
from 1998 to 2002 should be added for training, and then 14 groups of sliding time series
can be obtained. Next, the data are normalized and processed using MATLAB, and the
maximum number of training times is set to 20,000. A comparison chart of the simulated
fitted value and the actual value is drawn in order to compare the accuracy of the prediction,
as shown in Figure 8. The simulation results show that there is an average absolute error of
approximately 338 between the forecast value and the actual figure and an average relative
error of 3.9%. The goodness of fit R2 is 0.913, close to 1. The goodness of fit is high, and the
prediction results meet the standard.

After data training through BP neural network perceptron, the carbon dioxide emis-
sions before 2030 are predicted, and the data obtained are shown in Table 2. From 2020
to 2030, Beijing’s carbon dioxide emissions will show a fluctuating trend. There will be
higher peaks in emissions in 2021, 2024, and 2027, respectively. After 2027, the emissions
will show a fluctuating downward trend.
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Figure 8. Comparison between actual values and predicted values based on BP neural network.

Table 2. Predicted emissions of CO2 (unit: 104 tons).

Year Predicted Value Year Predicted Value

2020 8871 2026 9712
2021 10,327 2027 10,089
2022 9045 2028 9142
2023 9611 2029 9867
2024 10,602 2030 9526
2025 8870

4.3.3. Comparison of CO2 Emission Prediction Results

According to the comparison between the above GM (1,1) model and BP neural net-
work prediction results, both prediction results are scientific to a certain extent, with the
same average relative error and good prediction accuracy, which plays an important guid-
ing role in observing the emission characteristics of carbon dioxide in Beijing in the next
10 years and judging whether the carbon neutrality target will be achieved. During the
14th Five Year Plan period, through the implementation of the Action Plan for peaking
carbon dioxide emissions, China deeply promoted low-carbon and clean transformation
in energy, industry, construction, transportation, and other fields, and vigorously devel-
oped non-fossil fuels. Therefore, actual carbon dioxide emissions in the future may be
even smaller.

There are also some differences between the results predicted by the two models.
It can be seen from Figures 5 and 6 that the GM (1,1) model prediction value is close to
the actual value in fewer years, while the BP neural network prediction value is more
coincident with the actual value, and its fitting effect is relatively better. The changing
trend of prediction results based on the GM (1,1) model is relatively gentle, and the overall
emissions showed a downward trend after reaching their peak. The results predicted by the
BP neural network vary greatly, showing that carbon dioxide emissions will rise and fall
suddenly. From this feature, it can be seen that the GM (1,1) model can be used to predict
the change characteristics of carbon dioxide emissions, which can better grasp the overall
change trend in the future so as to clarify its emission rules. However, the predicted carbon
dioxide emissions have been showing a downward trend in the next few years, and it is
impossible to accurately observe the time when carbon emissions become neutral in Beijing.
The prediction results of the BP neural network show fluctuating change. The change is
relatively slow after reaching a large value in a period. However, the changing trend of
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overall control of carbon dioxide emissions is relatively weak due to the high frequency of
data fluctuation.

4.4. Threshold Model Results
4.4.1. Threshold Result Analysis

Analyzing the driving factors of carbon dioxide emissions is essential for formulating
targeted emission reduction measures. This study introduces the extended STIRPAT model
to examine the implementation path of carbon reduction from the perspective of key
driving forces, such as economic development, natural factors, transportation structure,
population size, and technological progress. The threshold regression model is used
to examine the relationship between carbon dioxide emissions and the primary driving
forces in Beijing. This paper discusses the phased impact of economic development level
on carbon dioxide emissions with the change of energy consumption intensity. In the
aspect of selecting driving indicators, we refer to the research of Wang et al. [45] and Ma
et al. [46] and consider the representativeness and availability of data given the current
status of carbon emission characteristics in Beijing. The technical level is selected as the
threshold variable, and its specific indicator is energy consumption intensity, represented
by ECI. GDP per capita is the core explanatory variable, which is expressed by PCGDP.
The index of carbon dioxide emission is the explained variable, represented by CDE.
Subsequently, the control variables include the number of permanent residents, the number
of civilian vehicles, energy consumption intensity, and the area of urban green space,
represented by PR, CV, ECI, and UGS, respectively. According to the above indicators, we
conducted a descriptive statistical analysis of the relevant data from 2004 to 2019, as shown
in Table 3.

Table 3. Descriptive statistics of variables.

Variable Unit MEAN S.D. Min Max

Carbon dioxide emissions
(CED) 104 tons 9405 565 8497 10,300

Energy consumption
intensity (ECI)

tons of
standard coal 0.49 0.24 0.23 1.03

GDP per capita (PCGDP) yuan 89,763 37,083 41,099 164,000
Permanent population (PR) 104 persons 1942 249 1493 2173

Civil car ownership (CV) 104 vehicles 460 132 229.6 608.4
Urban green space (UGS) 104 hectares 6.56 1.52 4.44 8.87

Data source: Beijing Statistical Yearbook (2005–2020), China Urban Statistical Yearbook (2005–2020).

Before analyzing the threshold model, it is necessary to test the threshold effect to
determine whether there is a threshold value and its number. Bootstrap was used to
repeatedly sample 500 times to improve the efficiency of the threshold effect significance
test. This model does not have double or triple threshold values according to a regression
test. The threshold test results are significant at the 1% significance level through the single
threshold test. The threshold significance test results are shown in Table 4.

Table 4. Threshold value test (a).

Threshold RSS MSE F P Threshold
Value

Single 0.0194 0.0006 67.15 *** 0.00 −0.3769
Note: *** mean significant at 1% significance levels.

The threshold regression model results are shown in Table 5.
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Table 5. Threshold regression results (a).

Variables Parameters

Ln PR −0.204 ***
Ln CV 0.254 ***
Ln ECI 0.387 ***
Ln UGS −0.083 ***

ln PCGDP (ln ECI ≤ −0.3769) 0.189 ***
ln PCGDP (ln ECI > −0.3769) 0.173 ***

Constant 7.495 ***
R-squared 0.881

*** p < 0.01.

According to the regression analysis results, the above results passed the significance
test. The factor of per capita GDP has a periodic impact on carbon dioxide emissions under
the change in energy consumption intensity. With the improvement of per capita GDP,
CO2 emissions will increase. The increase rate will decrease when the logarithm of the
value of energy consumption intensity exceeds the threshold value of −0.3769, according
to the regression coefficient analysis. Lower energy intensity represents a higher level of
technological development. Therefore, in the case of high technological development, the
elastic coefficient of the impact of economic development level on carbon dioxide emissions
is large. The single factor of technical progress cannot directly control the amount of carbon
dioxide emissions, so various factors should be considered.

The results show that the GDP per capita, energy consumption intensity, and the
ownership of civil vehicles have a positive impact on carbon dioxide emissions; that is,
the increase in the GDP per capita, energy consumption intensity, and the ownership of
civil vehicles will increase CO2 emissions. The factors of permanent residents and the
area of urban green space have a negative impact on carbon dioxide emissions, which
indicates that the increase in population is conducive to the reduction of carbon dioxide
emissions. At the same time, the expansion of urban green space has effectively reduced
carbon dioxide emissions.

4.4.2. Threshold Model Test

The threshold value can be tested by judging the confidence interval structure of the
likelihood ratio statistic (LR) of the threshold variable. LR is the ordinate, and the threshold
value of the threshold variable to be estimated is the abscissa. A horizontal dashed line c is
drawn to determine the reference confidence level. Among them, α is the significant level,
c = −2ln (1−

√
(1− α)). Because of the existence of a single threshold, the confidence

level detection charts will be generated by detecting the single threshold value, as shown
in Figure 9.

The maximum likelihood ratio is the LR level of the threshold variable. The threshold
effect of the threshold variable is present and significant when the LR value of the threshold
variable falls inside its 95% confidence interval. The significance of the threshold effect and
the number of threshold values (inflection points) are judged by the number and range
of LR values of threshold variables falling within their 95% confidence interval. Figure 9
shows that the threshold variable indicator meets the 95% significance level.
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Figure 9. Test of threshold value.

4.4.3. Robustness Test

In order to further analyze whether the development of economy and technology has
a certain cumulative effect on carbon emissions and weakens the possible endogenous, this
study lags behind the core explanatory variables for one year to study its impact on carbon
dioxide emissions for a robustness test. The threshold significance test is shown in Table 6.

Table 6. Threshold value test (b).

Threshold RSS MSE F P Threshold
Value

Single 0.0200 0.0007 44.05 *** 0.00 −0.3769
Note: *** mean significant at 1% significance levels.

Table 6 shows that the regression findings are significant and that the threshold value
remained constant. Table 7 displays the outcomes of the threshold regression model. The
findings indicate that the impact on carbon emissions under the influence of technological
level gradually increases as economic development improves. In addition, the elastic
coefficient of each control variable has little change. Therefore, it is believed that the impact
trend of various variables on carbon dioxide emissions is basically consistent, and the result
is robust.
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Table 7. Threshold regression results (b).

Variables Parameters

Ln PR −0.196 ***
Ln CV 0.233 ***
Ln ECI 0.277 ***
Ln UGS −0.052 ***

ln PCGDP (ln ECI ≤ −0.3769) 0.066 ***
ln PCGDP (ln ECI > −0.3769) 0.053 ***

Constant 8.813 ***
R-squared 0.8665

*** p < 0.01.

5. Discussion

According to the predicted analysis results, it can be verified that the GM (1,1) model
can be used to predict with scanty amounts of imperfect data and be appropriated for
data prediction with clear trends. It can be used for short-term forecasting activities. This
finding is consistent with previous studies [47]. The BP neural network model can effec-
tively analyze nonlinear data samples by constructing a parallel interconnected network
composed of multiple nonlinear simple units. This backpropagation algorithm aims to
enhance the connectivity between layers to obtain optimal results [48]. Therefore, it is
necessary to combine the BP neural network advantages in nonlinear quantitative analysis
of data with the characteristics of the GM (1,1) model of research on carbon emission predic-
tion trends. Based on the two prediction results, the carbon emission prediction trend can
be described.

From the regression results in Table 5, it can be seen that Beijing’s carbon dioxide
emissions can be reduced in proportion to a decrease in energy intensity. This finding is
in line with the studies of Chen et al. [49]. In Beijing, carbon emissions can be reduced
by improving the technical level and rationally planning the traffic structure. Similarly,
Awan et al. [50] and Sun et al. [51] demonstrated that technological innovation is beneficial
for reducing carbon dioxide emissions from a variety of sectors. High-quality economic
development can also accelerate the reduction of carbon dioxide emissions, and scientifi-
cally expanding the area of urban green space can effectively increase carbon absorption
in Beijing. The previous studies indicated that economic development promotes carbon
dioxide emissions in selected Sub-Saharan African (SSA) countries [52]. Although their
research differs from the regions in this paper, the research results on the impact of eco-
nomic growth on carbon emissions are similar. Then, the implementation mode of Beijing’s
carbon emission reduction path is further explored from the aspect of threshold regression
analysis of driving factors. Based on the above discussion, it can be concluded that the
relevant research findings are not only applicable to the studied region but also provide a
reference for the carbon reduction work of other regions and countries.

The limitations and improvements of this paper are mainly in the following aspects.
First, we used the GM (1,1) model to predict carbon emissions. This model predicts current
data, easily ignoring new information and failing to consider the impact of more factors.
It also has certain requirements for data, which must be positive and have the same time
interval. As for further work, we can improve the methods based on actual data to obtain
more accurate forecast results. Second, we used data in Beijing for threshold regression
analysis. In order to obtain reliable regression results, although we conducted repeated
sampling of time series data, there may also be a problem of insufficient sample size. In
future research, we can analyze the national data and form panel data for regression to
make the research results more reliable. Third, due to the limitations in data availability,
the studied factors affecting carbon emissions are limited. Thus, we should further develop
and use different indicators in future research to fully analyze the influencing factors of
carbon emissions reduction.
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6. Conclusions

This study analyzed the carbon dioxide emission characteristics of various depart-
ments and three important industries in Beijing. In order to provide references for the
analysis of Beijing’s future carbon emission trend, we developed a time series dynamic
prediction of the levels of carbon emissions in Beijing before 2030 using the grey GM (1,1)
and BP neural network models. Then, the influencing factors of carbon dioxide emissions
in Beijing were identified based on the threshold model. The technology level was used as
the threshold variable in the study of the relationship between per capita GDP and carbon
emissions, and the degree to which each control variable affects carbon emissions was
observed. The number of permanent residents and the amount of urban green space had a
negative impact on carbon dioxide emissions, while the GDP per capita, energy consump-
tion intensity, and ownership of civil vehicles had positive effects. The carbon emission
reduction paths and countermeasures under the carbon neutrality target were discussed
based on the analysis of the characteristics and contributing factors of CO2 in Beijing. We
proposed several countermeasures and suggestions for Beijing’s implementation of carbon
emission reduction measures. Our specific recommendations are as follows:

1. Government departments should further integrate modern service and advanced
manufacturing sectors to encourage the upgrading of industrial structures. Beijing
should use the tertiary sector to propel the growth of the primary and secondary
industries in the future. Regarding primary industries, the government assures the
availability of essential agricultural goods and minimizes waste generation and envi-
ronmental degradation. Enterprises should continue to strive to improve the quality
of the secondary industry, enhance the modernization level of industry and supply
chain, and pursue the goal of intelligent production and high-end manufacturing.

2. The government should boost carbon emission reduction in the industrial sector while
accelerating the development of a high-quality, accurate, and modern economic struc-
ture. Beijing should continue to adhere to the direction of intelligent manufacturing
and high-end manufacturing and upgrade and transform the energy terminal sector to
achieve low-carbon emissions. Subsequently, the regulatory authorities should strictly
control the industrial access threshold. Promoting the development of low-carbon
technology is also crucial.

3. It is necessary to optimize the transportation structure and implement low-carbon
transportation. The carbon emission level of Beijing’s transportation system has
been increasing, which is a relatively large emission department after the industrial
sector. Therefore, Beijing needs to strengthen the management and control of traffic
activities in the process of urbanization, reduce the increase in long-distance traffic
activities caused by the expansion of built-up areas, and pay attention to the organic
integration of road resources. Furthermore, the government and enterprises should
promote the development of transportation energy technology, reduce the energy
consumption intensity of urban transportation, and take green transportation as the
future development direction.

4. Beijing should implement the green building development strategy and strengthen
carbon emission reduction in the construction field. Government departments should
improve the qualification standard of green buildings and continue to develop energy-
saving technologies. Additionally, Beijing can also establish ultra-low energy con-
sumption buildings, promote near-zero energy consumption buildings, and vig-
orously develop the recycling of building materials to promote carbon emission
reduction through energy conservation.
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