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Abstract: Drought is a natural disaster with long duration and which causes great harm. Studying
the characteristics of drought evolution in Shanxi Province can grasp the regularity of drought
occurrence and provide a basis for drought prevention and resistance. This study utilizes MODIS
products to analyze and quantify the extent of drought in a specific area. The study calculates several
indices, including the Crop Water Stress Index (CWSI), Vegetation Supply Water Index (VSWI), and
Temperature Vegetation Dryness Index (TVDI), using variables such as the Normalized Difference
Vegetation Index (NDVI), Land Surface Temperature (LST), Evapotranspiration (ET), and Potential
Evapotranspiration (PET). Additionally, three drought indices are analyzed for correlation with the
self-calibrated Palmer Drought Severity Index (sc-PDSI), and the most suitable drought index is
selected through validation with typical drought events. Finally, the selected indices are used to
investigate the spatiotemporal characteristics of drought in the study area from 2001 to 2020. The
results show: (1) CWSI and sc-PDSI have a strong correlation both in terms of time and spatial
analysis. Furthermore, CWSI has been shown to be more effective in monitoring significant drought
events. (2) The multi-year mean values of CWSI range from 0.71 to 0.85, with a significant degree
of spatial heterogeneity. In the study area, the percentage of the area affected by different levels of
drought is in the following order: moderate drought > severe drought > mild drought > no drought.
(3) The trend of CWSI changes shows that the drought situation in Shanxi Province has been alleviated
from 2001 to 2020, and the overall spatial distribution indicates that the degree of drought alleviation
in the southern region is greater than that in the northern region. The turning point from drought to
wetness in the study area was in 2011, showing the overall characteristic of “dry in the north and wet
in the south”.

Keywords: Shanxi Province; MODIS data; drought index; temporal and spatial characteristics

1. Introduction

Drought is one of the natural disasters that does great harm to human beings [1–3], and
its recurring and long-lasting nature causes serious environmental, social, and economic
disasters worldwide. With global warming [4], economic losses due to drought amount
to billions of dollars and affect more than two billion people every year [5,6], which is far
more than the losses caused by other natural disasters. Sixty percent of China’s regions are
prone to drought, especially in the last three decades when droughts have become more
frequent. Shanxi Province is located in the upstream of the Yellow River in North China, a
typical arid and semi-arid region where most areas are severely affected by drought, with
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only a few areas experiencing mild droughts. In recent years, due to the rapid development
of the local economy and the fragile ecological environment, extreme weather has occurred
frequently, leading to noticeable warming and drying of the climate. Shanxi Province
has a typical Southeast Asian monsoon climate and is far from the ocean, with uneven
precipitation mainly concentrated in summer and autumn, resulting in frequent extreme
weather events. In recent years, the frequency of extreme weather events in Shanxi Province
has been increasing, with drought being particularly prominent, causing serious impacts
on agriculture, the economy, and even people’s livelihoods. Therefore, studying drought in
Shanxi Province can help us understand the patterns of drought occurrence, and provide
guidance and reference for agricultural production in drought-prone areas. It can also
provide valuable insights for the government to propose disaster prevention and mitigation
measures, playing a crucial role in safeguarding food security.

Traditional drought monitoring relies heavily on meteorological data collected from
monitoring stations, which provides high accuracy but has certain limitations. Firstly, site
data is sparse and unevenly distributed, making it challenging to obtain continuous spatial
coverage with a certain lag in data acquisition. Secondly, traditional monitoring requires a
significant amount of human and material resources, and the scope of application is small.
With the advancement of remote sensing technology [7,8], the challenges associated with
drought research have been addressed to a large extent. It is recorded that drought research
has been carried out since 1861 based on precipitation. However, due to the intricate
nature of the causes of drought and its susceptibility to human activities, researchers have
frequently used the drought index as a means of describing this phenomenon. Palmer [9,10]
developed the Palmer Drought Index (PDSI), a widely used drought index that is based on
the relationship between water supply and demand, but the selection of its parameters was
somewhat territorial. To address this issue, Wells [11] proposed the self-calibrated Palmer
Drought Severity Index (sc-PDSI), which is based on the same principles as the PDSI but
uses a self-calibration technique to standardize the parameters across different regions.
This makes the sc-PDSI a more reliable and consistent measure of drought severity that
can be used worldwide. Mckee et al. [12] proposed the Standardized Precipitation Index
(SPI), which calculates the cumulative probability density function of precipitation based
on precipitation information to access drought conditions. Carlson et al. [13] proposed
the Vegetation Supply Water Index (VSWI), a composite index of drought conditions with
a good response to drought conditions throughout the growing season. The Crop Water
Stress Index (CWSI) proposed by Jackson et al. [14] is based on the heat balance principle
and can reflect certain vegetation soil moisture conditions. Sandholt et al. [15] proposed the
Temperature Vegetation Dryness Index (TVDI) based on the relationship between surface
temperature and vegetation index. Wang Pengxin et al. [16] proposed the Vegetation
Temperature Condition Index(VTCI) based on the scatter plot of NDVI and LST with a
triangular regional distribution.

Using meteorological station data to calculate drought index is convenient, and the
data is easily accessible. However, the observation data is greatly influenced by the relo-
cation and uneven distribution of meteorological observation stations, which limits the
monitoring of drought. Therefore, drought indices based on remote sensing monitoring
data are used to quantitatively characterize the drought situation in Shanxi Province. The
MODIS is a remote sensing satellite sensor used to obtain surface information worldwide,
including vegetation coverage, land surface temperature, and other parameters. Drought
research based on MODIS products has the characteristics of global coverage, high reso-
lution, comprehensive multiple parameters, and timely data updates. CWSI, VSWI, and
TVDI are not easily affected by other non-drought factors, are easy to calculate, their data
is easily accessible, and they have been widely applied. To reveal the drought characteris-
tics of Shanxi Province, this research utilizes the evapotranspiration products, vegetation
indices, and surface temperature data provided by MODIS sensors. These data are used
to calculate CWSI, VSWI, and TVDI, respectively. The research assesses the variability of
each drought index on the drought monitoring ability of Shanxi Province from different



Atmosphere 2023, 14, 799 3 of 18

perspectives, and conducts correlation analysis with the Palmer drought index to select the
most suitable index. Finally, based on the optimized drought index, the spatiotemporal
variation characteristics of drought in Shanxi Province from 2001 to 2020 were analyzed,
providing a model for agricultural production and drought prevention in the region.

2. Materials and Methods
2.1. Overview of the Study Area

Shanxi Province is located in the northwestern region of China, positioned between
34◦34′–40◦44′ N and 110◦14′–114◦33′ E, in the upper reaches of the Yellow River, with a
total area of 156,700 km2 (Figure 1). It borders Hebei to the east, Inner Mongolia to the
north, Shanxi to the west, and Henan to the south. Shanxi Province is a typical mountainous
plateau covered by loess. Its topography is characterized by high elevations in the northeast
and lower elevations in the southwest, with undulating terrain, rivers, and valleys. The
province’s landforms are complex and diverse, comprising hills, mountains, plains, and
other types of landscapes. Shanxi Province is located in the eastern mid-latitude inland
region of Asia and Europe, and belongs to the semi-arid-semi-humid region. The winters
are long and cold, with dry weather prevailing, while the summers are longer in the south
and shorter in the north, with concentrated precipitation. The province enjoys abundant
sunshine and heat resources, but its weather can be quite unpredictable and sometimes
disastrous.
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Figure 1. Study area land type zoning.

2.2. Data Sources and Research Methods

This article mainly applies RS and GIS technologies, based on MODIS digital data
and sc-PDSI data, to analyze the spatiotemporal pattern of drought in the study area,
under the premise of model verification. The technology roadmap illustrated in Figure 2 is
shown below:
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2.2.1. Data Sources

The study uses evapotranspiration products, vegetation index, and surface tempera-
ture data from the MODIS sensor to calculate CWSI, VSWI, and TVDI, respectively. The
images were obtained from NASA (https://ladsweb.modaps.eosdis.nasa.gov/ accessed
on 1 October 2022).The 2001–2020 surface temperature (LST) was obtained from the NASA
MOD11A2 sensor; the Normalized Difference Vegetation Index (NDVI) from the MOD13A1
sensor [17]; and the actual evapotranspiration (ET) and potential evapotranspiration (PET)
from the MOD16A2 sensor. The sc-PDSI data from January to December of 2001–2020 are
derived from climate research (https://crudata.uea.ac.uk/ accessed on 30 October 2022);
land type data in Shanxi Province were obtained from the number of land types at 1 km

https://ladsweb.modaps.eosdis.nasa.gov/
https://crudata.uea.ac.uk/
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resolution provided by the Resource and Environmental Science and Data Centre of the
Chinese Academy of Sciences (http://www.resdc.cn/ accessed on 15 November 2022),
which can be reclassified to obtain forest, grassland, and cropland types.A description of
the relevant data is shown in Table 1:

Table 1. Data resolution and purpose used in this study.

Name of Data Temporal Resolution Usage

MOD11A2 8d Calculation of VSWI and TVDI
MOD13A1 16d Calculation of VSWI and TVDI
MOD16A2 8d Calculation of CWSI

2.2.2. Research Methods

(1) CWSI

Remote sensing methods for soil moisture estimation typically provide information
only on the soil surface, which may not accurately reflect the moisture levels at the root
level of crops. To obtain more accurate measurements, it is necessary to measure the canopy
temperature of vegetation and calculate the Crop Water Stress Index (CWSI). The CWSI is
based on the principle of energy balance and monitors drought conditions in real time by
considering soil moisture and evapotranspiration from farmland. In 1981, Idso et al. [18]
proposed the CWSI based on the empirical relationship between canopy temperature and
air vapor pressure deficit. Later, Jackson et al. [19] based their theoretical interpretation on
the canopy energy balance and proposed the calculation of the CWSI, which they defined
as [20,21]:

CWSI = 1− ET
PET

(1)

where ET is the actual evapotranspiration and PET is the potential evapotranspiration. The
value of CWSI ranges from 0 to 1, with smaller values indicating wetter conditions and
larger values indicating drier conditions.

(2) VSWI

The VSWI uses the ratio of vegetation index to surface temperature as an indicator
of the extent of vegetation exposure to drought, and provides a better understanding of
the drought condition in areas with high vegetation cover and strong vegetation transpi-
ration [22,23]. Under normal conditions when crop water supply is adequate, the crop
canopy temperature stays within a certain range. If there is a drought and the crop water
supply is insufficient, the vegetation index from satellite remote sensing will decrease and
at the same time the crop canopy temperature will increase. The VSWI drought monitoring
model uses the Normalized Difference Vegetation Index (NDVI) and Channel 4 remote
sensing bright temperature as factors, and is defined as [24]:

VSWI =
NDVI

TC
(2)

where NDVI is the Normalized Difference Vegetation Index, and Tc is the canopy temper-
ature of vegetation. Since it is difficult to obtain the canopy temperature, LST is used to
replace it. The VSWI takes on a value between 0 and 1, with smaller values indicating a
drier region, and larger values indicating a more humid region.

(3) TVDI

In their study of soil moisture, Sandholt et al. [25] found a number of contours in the
characteristic space of the normalized vegetation index and the surface temperature, based
on which the TVDI was proposed. The defining equation is [26]:

TVDI =
LST − LSTNDVI,min

LSTNDVI,max − LSTNDVI,min
(3)

http://www.resdc.cn/
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LSTNDVI,max = a1 + b1 × NDVI (4)

LSTNDVI,min = a2 + b2 × NDVI (5)

where LST refers to Land Surface Temperature, LSTNDVI,max and LSTNDVI,min represent
the minimum and maximum values of LST corresponding to a certain NDVI value. a1, a2
and b1, b2 are the fitting coefficients for dry and wet edges. TVDI has a value between 0
and 1; a smaller TVDI value indicates a more humid region, while a larger value indicates
a drier region.

(4) sc-PDSI

The Palmer Drought Severity Index (PDSI), developed by Palmer in 1956, is a widely
used measure of accumulated deviation of surface moisture supply and demand on land.
It incorporates the effects of temperature on precipitation and can accurately reflect the
impact of climate on drought. However, its applications in analyzing drought in different
spatial areas have limitations, and it may not be suitable for evaluating drought in diverse
regions. To address these limitations, the self-calibrated PDSI (sc-PDSI) has been developed.
The sc-PDSI dynamically calculates the monthly PDSI value and replaces the empirical
constant of the original location. In this article, the sc-PDSI is used to analyze its correlation
with different drought indices and to select the most suitable drought index for the study
area. The findings of this study will help to enhance the accuracy of drought monitoring
and prediction in the region.

(5) Other methods

The Pearson correlation coefficient is widely used to measure the degree of correlation
between two variables. In order to test the drought monitoring ability of different remote
sensing indices, the correlation index R between the three indices and sc-PDSI is analyzed,
which represents the difference ratio between the different indices and the Pearson correla-
tion coefficient, reflecting the dispersion degree of the drought index itself [27–29]. Overall,
the correlation analysis between drought indices and sc-PDSI can help to identify which
indices are most effective in monitoring drought conditions, and can provide valuable
information for drought management and mitigation efforts.

The Theil-sen Median method and the Mann—Kendall (MK): The Theil-sen Median
method is a robust non-parametric statistical trend calculation method [30]. This method
has high computational efficiency and is insensitive to measurement errors and outliers.
It is often used in trend analysis of long time series data. The MK trend test [31] is a non-
parametric test for analyzing trends in time series [32,33]. It is essentially a non-parametric
test that does not require the sample to follow a specific distribution and is not disturbed
by a few outliers, but also has a wide detection range, a high degree of quantification,
and a simple calculation process. Sen trend analysis and MK testing are often combined
for analysis. First, the Sen trend value is calculated, and then the MK method is used to
determine the significance of the trend. In this study, the Sen trend is used to analyze
the trend of drought intensity in Shanxi Province, and the MK method is used to test the
significance of the trend.

3. Results and Analysis
3.1. Validation of Integrated Drought Monitoring Models
3.1.1. Correlation Analysis

Using the above method, three indices are calculated. To verify the accuracy of the
three remote sensing drought indices, Pearson correlation coefficient analysis is performed
between the three indices and sc-PDSI data (Figure 3). Through statistical analysis, the
correlation coefficients of CWSI, VSWI, and TVDI are −0.54, 0.35, and −0.16, respectively.
Results show that overall CWSI and TVDI are negatively correlated with sc-PDSI, that is,
the larger the CWSI and TVDI, the smaller the sc-PDSI and the drier the study area. VSWI is
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positively correlated with sc-PDSI, that is, the larger the VSWI, the larger the PDSI and the
wetter the study area. The correlation between CWSI and sc-PDSI passed the significance
test with a p value of less than 0.05 in most regions., indicating that CWSI is more sensitive
to interannual changes in drought in the study area.
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The monitoring results of droughts may differ in different land use types due to
factors such as vegetation coverage, soil type, and terrain. Generally, urban areas are
characterized by extensive impervious surfaces, which reduce the amount of water that
can infiltrate into the soil. This can result in increased runoff and decreased soil moisture,
making urban areas more susceptible to drought. Farmland typically has lower vegetation
cover and higher evapotranspiration rates than natural land, which can result in lower
soil moisture levels and increased susceptibility to drought. Grassland typically has lower
evapotranspiration rates than forests, but higher rates than agricultural land. Overall, it is
important to understand the characteristics of different land use types in order to assess their
vulnerability to drought and develop effective drought mitigation strategies. For different
land use types (as shown in Table 2), the higher the Pearson correlation coefficient, the better
the fit and the more applicable the index. The correlation coefficients of CWSI are relatively
high for different land use types, including farmland, forest, and grassland. Among them,
the fitting degree of grassland is the highest, with a mean correlation coefficient of −0.55,
which passed the significance test with p < 0.05. This is much higher than the other two
index models. Through comprehensive analysis, it is concluded that CWSI has a greater
advantage in drought monitoring and simulation in Shanxi Province.

Table 2. Average correlation coefficient between remote sensing drought index and sc-PDSI of each
vegetation division from 2001 to 2020.

Index
Land Use Type

Farmland Forest Grassland All

CWSI −0.53 −0.54 −0.55 −0.54
VSWI 0.37 0.30 0.39 0.35
TVDI −0.10 −0.24 −0.18 −0.16
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3.1.2. Verification of Typical Drought Events

To further validate the accuracy of CWSI drought monitoring, it combines with typical
drought events for verification. According to the Statistical Yearbook of Shanxi Province,
between 1997 and 2002 Shanxi Province suffered from severe drought, which was caused
by global warming, reduced precipitation, and a sharp decrease in water coming from
rivers. From historical statistics, Shanxi Province suffers from a drought every 2.6 years,
causing serious impacts on industries, agriculture, and other aspects. During the years 2001
and 2002, Shanxi Province experienced a relatively severe drought, where the maximum
value of CWSI was 0.97 in 2001 (Figure 4a) and 0.96 in 2002 (Figure 4b); and its annual
average values of CWSI were 0.85 and 0.82, respectively, which are the maximum values
during the study period, further indicating the accuracy of CWSI in monitoring drought in
Shanxi Province.
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Figure 4. CWSI values in 2001 and 2002.

3.2. Drought Classification

The above correlation analysis shows that the CWSI index is more applicable in the
study area than the other two indices. Therefore, the CWSI is selected to analyze the spatial
and temporal characteristics of drought in the study area. However, before the analysis, the
drought class criteria need to be classified. For this purpose, the research uses the sc-PDSI,
and the CWSI value at the corresponding location for a one-dimensional linear regression
analysis (Figure 5). During the study period, most of the sc-PDSI in Shanxi Province range
from −3 to 1. Thus, the drought classes are classified into four levels according to the
sc-PDSI criteria for classifying drought, while sample points are selected according to the
area share of different land types in Shanxi Province; and one-dimensional linear regression
is performed to obtain the classification thresholds of CWSI corresponding to different
classes (Table 3).
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Table 3. Drought grading.

Drought Rating PDSI CWSI

No drought >0 0~0.56
Mild drought 0~−1 0.56~0.69

Moderate drought −1~−2 0.69~0.81
Severe drought −2~−3 0.81~0.92

3.3. Temporal Variation Characteristics of Drought

According to the interannual variation and cumulative anomaly of CWSI in Shanxi
Province (Figure 6), the fluctuation range of CWSI has been small over the years, with a
decreasing trend. The CWSI fluctuates between 0.71 and 0.85, with a multi-year average of
0.76, the maximum value in 2001 (0.85) and the minimum value in 2016 and 2018 (0.71). In
2001, the highest CWSI values are due to less rainfall, weaker actual evapotranspiration and
stronger potential evapotranspiration, which led to higher CWSI values and more severe
drought. In 2016 and 2018, the lowest CWSI values were due to abundant rainfall, lower
temperatures, weaker actual evapotranspiration and stronger potential evapotranspiration,
which led to lower CWSI values and less severe drought [34,35].

This study builds on previous research and identifies a turning point interval when the
cumulative anomaly value is considered stable, i.e., when the trend change does not pass a
significance test with p < 0.05. From the cumulative distance level values of CWSI during
2001–2020, it can be observed that the cumulative distance level values of CWSI show a
significant increasing trend from 2001 to 2011, and start to decrease after the cumulative
distance level reaches the highest value in 2011. This indicates that 2011 was a turning
point from drought to wet conditions in the study area.
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3.4. Spatial Variation Characteristics of Drought

Figure 7 displays the spatial distribution of the annual average CWSI and its correspond-
ing drought level in Shanxi Province. The average CWSI value for many years is between 0.71
and 0.85, and there is a noticeable spatial heterogeneity. The CWSI shows that the northwest is
larger than the southeast, which means that the drought in the northwest is relatively severe,
while the drought in the southeast is relatively mild. Multiple urban areas, including Datong
City, Shuozhou City, Xinzhou City, and Taiyuan City have high CWSI values, indicating that
drought is severe in these areas. In contrast, Jincheng City, Changzhi City, and other cities
have lower CWSI values, indicating slight drought conditions. According to the drought
grade map, Shanxi Province as a whole presents moderate drought, with severe drought
regions mainly concentrated in the west of Shanxi Province, namely, Shuozhou City, Xinzhou
City, and Luliang City. Moderate drought mainly concentrates in the southeast of Shanxi
Province, namely, Jinzhong City and Changzhi City; it rarely distributes in drought-free areas.
Mild drought accounts for 12% of the total area; moderate drought accounts for 62% of the
total area; severe drought accounts for 25% of the whole area. In a comprehensive analysis,
the percentages of the area occupied by drought levels in the study area in descending order:
moderate drought > severe drought > mild drought > no drought.
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Figure 7. Drought changes in Shanxi Province from 2001 to 2020 based on CWSI.

According to the statistical interannual variation of the average annual Crop Water
Stress Index in each city of Shanxi Province(Figure 8), it can be observed that fluctuations
in 11 cities are not too significant, and the overall trend of each city is consistent with that
of the province. The average value of CWSI in each city in the past 20 years is ranked
from highest to lowest as follows: Shuozhou City (0.811), Datong City (0.793), Taiyuan City
(0.776), Luliang City (0.774), Xinzhou City (0.772), Jinzhong City (0.755), Yangquan City
(0.753), Linfen City (0.751), Yuncheng City (0.745), Changzhi City (0.742), and Jincheng
City (0.722). Shuozhou City has the largest average CWSI of 0.811 over the past 20 years,
indicating severe drought conditions. Jincheng City has the smallest average crop water
deficit index at 0.722, indicating a relatively lower risk of drought.. The CWSI in Shuozhou
City fluctuates between 0.72 and 0.82, with a multi-year average of 0.811, which is a severe
drought; the rest of the urban areas, Datong City and Taiyuan City, have a multi-year
average CWSI of less than 0.81, which is a moderate drought. The high CWSI in Shuozhou,
Datong, and Taiyuan is mainly due to low precipitation and high evaporation, resulting in
a relatively high risk of drought.
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3.5. Drought Change Characteristics of Different Land Use Types

Different land use types will directly affect the growth of vegetation, as well as the
change in evapotranspiration. Starting from different land use types, the characteristics of
drought change are analyzed.

The interannual variation characteristics of drought conditions in different land use
types in Shanxi Province from 2001 to 2020 are shown in Figure 9. In terms of interannual
variation in annual average CWSI, the annual average CWSI for each land use type is, in
descending order, buildings > unused land > farmland > grassland > forest. The CWSI of
buildings fluctuates between 0.76 and 0.86, with severe drought in most years; the CWSI of
other land fluctuates between 0.76 and 0.86, with moderate drought in most years; the CWSI
of farmland fluctuates between 0.72 and 0.86, with moderate drought in most years; the
CWSI of grassland fluctuates from 0.72 to 0.86, and most years it shows moderate drought;
and the CWSI of the forest fluctuates between 0.72 and 0.86, with moderate drought in
most years. Surface drought is mainly related to a number of factors, such as land cover
type, geographical location, and climatic precipitation. The vegetation cover on building
sites is generally low, and the risk of drought is high due to high temperatures and rapid
water loss caused by the heat island effect. Conversely, forests are less at risk of drought,
as they are generally located at higher altitudes, have abundant precipitation and a better
ability to hold water, and their actual evapotranspiration is higher, making them relatively
more resistant to drought. Most of the farmland is artificially vegetated and cultivated
with crops such as rice, wheat, maize, and oilseed rape. The risk of drought on cultivated
land is high because the harvesting of crops causes the annual mean ET to become smaller,
resulting in larger CWSI values.
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3.6. Temporal and Spatial Evolution of Drought in Shanxi Province

Sen slope estimates are used to calculate trend values and are usually used in con-
junction with MK non-parametric test. In this study, the spatiotemporal change analysis
method combining the Sen trend and the MK test is used to calculate the rate of change of
Shanxi Province from 2001 to 2020 image by image; the slope of change image values greater
than 0 indicated an increasing trend of the element, and less than 0 showed a decreasing
trend. The spatial trends of CWSI in Shanxi Province and the spatial distribution of its
significance are obtained as shown below (Figure 10a,b). Then, according to Table 4, the
Sen trend analysis and MK test results are overlayed to obtain a detailed drought change
map in Shanxi Province (Figure 10c).
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Table 4. Ranking of significance of drought trends.

CWSISlope
|Z|

|Z| ≤ 1.96 1.96 < |Z| ≤ 2.58 2.58 < |Z| ≤ 3.33 |Z| > 3.33

Slope ≤ −0.001 Stable and unchanged Slightly wet Wet Significantly wet
−0.001 < Slope ≤ 0.001 Stable and unchanged Stable and unchanged Stable and unchanged Stable and unchanged

Slope > 0.001 Stable and unchanged Slightly dried Dry Significantly dried

From the figure, it can be seen that the change rate of CWSI is between −0.02 and 0.01.
During the study period, the change rate of CWSI is mostly negative, indicating a decreasing
trend in drought, and the overall spatial distribution shows that the drought alleviation
degree in the south is greater than that in the north, while the drought in the north is severe.
It is evident from the figure that about 87% of the total images are significantly wetted,
while approximately 6% of the total images are wetted. Overall, the trend of wetter images
accounts for around 94% of the total images, while the trend of drier images accounts
for only about 0.1% of the total images. Therefore, a comprehensive analysis of the data
suggests that the drought trend in the study area is generally becoming wetter, indicating
that the overall drought condition in Shanxi Province has been continuously improving
from 2001 to 2020, and the degree of drought in most areas has been alleviated.

4. Discussion

In recent years, several studies have investigated the spatiotemporal characteristics of
drought in Shanxi Province using long-term meteorological observation data. However,
the accuracy of these studies is affected by the limited number of observation stations, and
their uneven distribution across the province. To overcome this limitation, the research
uses MODIS data as the basis for drought research. MODIS data has a better temporal and
spatial resolution [36] and is less affected by weather, making it widely used for calculating
drought indices [37,38]. The research results indicate that CWSI is more suitable for drought
monitoring in the study area, followed by VSWI. The MOD16 evapotranspiration data used
by CWSI is derived from the Mu [39] Improved algorithm. The CWSI algorithm takes the
transpiration of plants as the main pathway for water and energy exchange between plants
and the environment. Then, the transpiration of plants is compared with the temperature
and humidity of the surrounding environment to calculate the corresponding saturation
vapor pressure of crop surface transpiration, which is used to obtain the CWSI index. CWSI
can be used for real-time monitoring of crop water status, and to promptly detect and diag-
nose the degree of water stress that crops are subjected to, in order to take corresponding
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irrigation measures. CWSI can also combine historical data and meteorological forecast
data for drought prediction to prevent and respond to drought risks in advance. CWSI
can accurately detect the degree of crop water stress, provide highly accurate information,
better describe soil moisture information, and its results are very easy to interpret and
understand. Therefore, CWSI has a greater advantage in regional drought monitoring.
TVDI evaluates the degree of soil drought using temperature and vegetation information.
Although TVDI has some advantages in drought monitoring, its application is susceptible
to weather conditions. It can only assess the degree of surface soil drought and cannot
evaluate water evaporation. Therefore, it cannot reflect the water content inside the soil
and crops very well.

According to the research results, the long-term average of CWSI is 0.76, and most
areas in the region are considered arid. This is in good agreement with the research results
of scholars such as Ma Zice and Li Lihong, once again verifying the applicability of CWSI
in the study area. The drought is more severe in the northwestern part of the study area.
Due to the combined effects of precipitation, temperature, and other factors [40], CWSI
in Shuozhou City, located in the northwest direction, fluctuates between 0.72 and 0.82,
with a long-term average of 0.811, which belongs to the severe drought category. The
drought is relatively mild in the southeastern part of the study area. The southeastern part
has generally lower elevations, and the drought intensity in these areas is relatively low.
Overall, the monitoring results of CWSI indicate that the spatial and temporal evolution
trend of drought in the study area is generally improving. This is mainly due to the fact
that the Shanxi provincial government has taken a series of measures, such as building
reservoirs, diverting water, and implementing soil and water conservation to increase the
water resources in the region and improve the ecological environment.

In recent years, frequent droughts have occurred in Shanxi Province, causing serious
economic and social impacts and affecting people’s daily lives. Through scientific research,
we can improve our understanding of drought phenomena and provide scientific basis
for drought prevention and management in Shanxi Province. Research results can help
relevant departments in Shanxi Province grasp the patterns of recent drought occurrences,
develop more scientific and reasonable drought defense mechanisms, and adopt effective
drought response measures. At the same time, research results can also provide important
scientific support for agricultural production and water resources management in Shanxi
Province. In summary, scientific research can provide important support for drought
prevention and management, agricultural production, and water resources management in
Shanxi Province, and contribute to its economic and social development.

This study constructed three drought indices and conducted a correlation analysis
with the Palmer Drought Severity Index to select the most suitable drought index for
analyzing the characteristics of drought changes in Shanxi Province. The study used
multi-source remote sensing data for drought monitoring and simulation research, and
although the overall monitoring effect was good, there were still some limitations in this
study. Only considering ET and PET has certain limitations, and drought is an extremely
complex natural phenomenon. Therefore, it is recommended to further consider the impact
of factors such as vegetation phenology changes, temperature, precipitation, and human
activities on drought.

5. Conclusions

This article calculates three drought indices based on ET, PET, NDVI, and LST data,
respectively. The calculated results are correlated with the Palmer Drought Severity Index
and validated with typical drought events in Shanxi Province to screen for a more suitable
drought index for the study area, the CWSI. On this basis, the distribution of drought
in Shanxi Province in the past 20 years is inverted, and the spatiotemporal variation
characteristics of drought are analyzed. The following conclusions are drawn:

(1) The study has found that among the three drought indices (CWSI, VSWI, and TVDI)
studied, CWSI is more effective in reflecting drought conditions in Shanxi Province. This
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conclusion is based on the comparison of the relationship between these indices and the
sc-PDSI. The study has shown that the correlation between CWSI and sc-PDSI is stronger
than that of the other two indices, indicating that CWSI is more closely related to the actual
drought conditions in the study area. Therefore, the CWSI is a more suitable index for
monitoring and assessing drought in Shanxi Province.

(2) The temporal variation of drought in the study area: From 2001 to 2020, the average
value of CWSI varied between 0.71 and 0.85, with an overall 20-year average of 0.76. The
highest value was recorded in 2001 at 0.85, while the lowest values were observed in 2016
and 2018 at 0.71. The year 2011 was the turning point where the drought conditions started
to shift towards wetter conditions.

(3) Spatial distribution pattern of drought in the study area: From 2001 to 2020, the
overall drought in Shanxi province presented a “north dry and south wet” pattern, with
significant spatial variability. The majority of the province was located in drought-prone
areas, with the largest area experiencing moderate drought. In general, the northwest
region was slightly more severe, specifically in the western areas of Shuozhou, Xinzhou,
and Luliang. Moderate drought was mainly concentrated in the southeast of Shanxi
province, specifically in Jinzhong and Changzhi. Areas without drought were rare. The
areas of each drought level in descending order were moderate drought, severe drought,
mild drought, and no drought.

(4) Land use types have a significant impact on the growth and distribution of vegeta-
tion, as well as on the changes in evapotranspiration in a region. In general, the severity of
drought is closely related to land use type, with different land use types exhibiting different
levels of vulnerability to drought. The research results indicate that in Shanxi Province, the
drought severity of different land use types is in the following order: buildings, unused
land, farmland, grassland, and forest.

(5) The overall trend of drought in the study area is improving, with most of the area
experiencing relief from drought. Overall, the trend towards becoming wetter accounts
for about 94% of the total area, while the trend towards becoming drier accounts for about
0.1% of the total area.
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