Potential Vorticity Generation in Breaking Gravity Waves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equations
2.2. Scale Analysis
2.3. Numerical Approach
3. Results
3.1. Main Simulation
3.2. Sensitivity to Reynolds and Froude Numbers
3.3. Sensitivity to Numerical Resolution
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staquet, C.; Riley, J.J. On the Velocity Field Associated with Potential Vorticity. Dyn. Atmos. Oceans 1989, 14, 93–123. [Google Scholar] [CrossRef]
- Lelong, M.P.; Riley, J.J. Internal Wave-Vortical Mode Interactions in Strongly Stratified Flows. J. Fluid Mech. 1991, 232, 1–19. [Google Scholar] [CrossRef]
- Bartello, P. Geostrophic Adjustment and Inverse Cascades in Rotating Stratified Turbulence. J. Atmos. Sci. 1995, 52, 4410–4428. [Google Scholar] [CrossRef]
- Kafiabad, H.A.; Bartello, P. Balance Dynamics in Rotating Stratified Turbulence. J. Fluid Mech. 2016, 795, 914–949. [Google Scholar] [CrossRef]
- Lilly, D.K. Stratified Turbulence and the Mesoscale Variability of the Atmosphere. J. Atmos. Sci. 1983, 40, 749–761. [Google Scholar] [CrossRef]
- Lindborg, E. The Energy Cascade in a Strongly Stratified Fluid. J. Fluid Mech. 2006, 550, 207–242. [Google Scholar] [CrossRef]
- Herring, J.R. Approach of Axisymmetric Turbulence to Isotropy. Phys. Fluids 1974, 17, 859–872. [Google Scholar] [CrossRef]
- Herring, J.R.; Métais, O. Numerical Experiments in Forced Stably Stratified Turbulence. J. Fluid Mech. 1989, 202, 97–115. [Google Scholar] [CrossRef]
- Waite, M.L.; Bartello, P. Stratified Turbulence Dominated by Vortical Motion. J. Fluid Mech. 2004, 517, 281–308. [Google Scholar] [CrossRef]
- Waite, M.L. Potential Enstrophy in Stratified Turbulence. J. Fluid Mech. 2013, 722, R4. [Google Scholar] [CrossRef]
- Rosenberg, D.; Pouquet, A.; Marino, R. Correlation Between Buoyancy Flux, Dissipation and Potential Vorticity in Rotating Stratified Turbulence. Atmosphere 2021, 12, 157. [Google Scholar] [CrossRef]
- Billant, P.; Chomaz, J.M. Self-Similarity of Strongly Stratified Inviscid Flows. Phys. Fluids 2001, 13, 1645–1651. [Google Scholar] [CrossRef]
- Callies, J.; Bühler, O.; Ferrari, R. The Dynamics of Mesoscale Winds in the Upper Troposphere and Lower Stratosphere. J. Atmos. Sci. 2016, 73, 4853–4872. [Google Scholar] [CrossRef]
- Li, Q.; Lindborg, E. Weakly or Strongly Nonlinear Mesoscale Dynamics Close to the Tropopause. J. Atmos. Sci. 2018, 75, 1215–1229. [Google Scholar] [CrossRef]
- Herring, J.R.; Kerr, R.M.; Rotunno, R. Ertel’s Potential Vorticity in Unstratified Turbulence. J. Atmos. Sci. 1994, 51, 35–47. [Google Scholar] [CrossRef]
- Kurien, S.; Smith, L.; Wingate, B. On the two-point correlation of potential vorticity in rotating and stratified turbulence. J. Fluid Mech. 2006, 555, 131–140. [Google Scholar] [CrossRef]
- Benielli, D.; Sommeria, J. Excitation of Internal Waves and Stratified Turbulence by Parametric Instability. Dyn. Atmos. Oceans 1996, 23, 335–343. [Google Scholar] [CrossRef]
- Bouruet-Aubertot, P.; Sommeria, J.; Staquet, C. Breaking of Standing Internal Gravity Waves Through Two-Dimensional Instabilities. J. Fluid Mech. 1995, 285, 265–301. [Google Scholar] [CrossRef]
- Bouruet-Aubertot, P.; Sommeria, J.; Staquet, C. Stratified Turbulence Produced by Internal Wave Breaking: Two-Dimensional Numerical Experiments. Dyn. Atmos. Oceans 1996, 23, 357–369. [Google Scholar] [CrossRef]
- Carnevale, G.F.; Briscolini, M.; Orlandi, P. Buoyancy- to Inertial-Range Transition in Forced Stratified Turbulence. J. Fluid Mech. 2001, 427, 205–239. [Google Scholar] [CrossRef]
- Fritts, D.C.; Isler, J.R.; Andreassen, Ø. Gravity Wave Breaking in Two and Three Dimensions 2. Three-Dimensional Evolution and Instability Structure. J. Geophys. Res. 1994, 99, 8109–8123. [Google Scholar] [CrossRef]
- Dörnbrack, A. Turbulent mixing by breaking gravity waves. J. Fluid Mech. 1998, 375, 113–141. [Google Scholar] [CrossRef]
- Remmler, S.; Fruman, M.D.; Hickel, S. Direct Numerical Simulation of a Breaking Inertia-Gravity Wave. J. Fluid Mech. 2013, 722, 424–436. [Google Scholar] [CrossRef]
- Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: Berlin, Germany, 1987. [Google Scholar]
- Dougherty, J.P. The Anisotropy of Turbulence at the Meteor Level. J. Atmos. Terr. Phys. 1961, 21, 210–213. [Google Scholar] [CrossRef]
- Ozmidov, R.V. On the Turbulent Exchange in a Stably Stratified Ocean. Izvestia Akad. Nauk. SSSR Atmospheric and Oceanic Physics Ser. 1965, 1, 853–860. [Google Scholar]
- Davidson, P.A. Turbulence in Rotating, Stratified and Electrically Conducting Fluids; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Gargett, A.E.; Osborn, T.R.; Nasmyth, P.W. Local Isotropy and the Decay of Turbulence in a Stratified Fluid. J. Fluid Mech. 1984, 144, 231–280. [Google Scholar] [CrossRef]
- Brethouwer, G.; Billant, P.; Lindborg, E.; Chomaz, J.M. Scaling Analysis and Simulation of Strongly Stratified Turbulent Flows. J. Fluid Mech. 2007, 585, 343–368. [Google Scholar] [CrossRef]
- Durran, D.R. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics; Springer: Berlin, Germany, 1999. [Google Scholar]
- Legaspi, J.D.; Waite, M.L. Prandtl Number Dependence of Stratified Turbulence. J. Fluid Mech. 2020, 903, A12. [Google Scholar] [CrossRef]
- Riley, J.J.; Couchman, M.M.P.; de Bruyn Kops, S.M. The Effect of Prandtl Number on Decaying Stratified Turbulence. J. Turbul. 2023, 1–19. [Google Scholar] [CrossRef]
- Maffioli, A.; Davidson, P.A. Dynamics of Stratified Turbulence Decaying From a High Buoyancy Reynolds Number. J. Fluid Mech. 2016, 786, 210–233. [Google Scholar] [CrossRef]
Run | n | Max | Max | ||||
---|---|---|---|---|---|---|---|
Main | 1 | 3333 | 1024 | 0.0037 | 3.2 | 12.2 | |
High Visc | 1 | 1667 | 512 | 0.0047 | 2.5 | 7.9 | |
Low Visc | 1 | 4500 | 1728 | 0.0060 | 3.8 | 26.9 | |
High Strat | 1 | 3333 | 1024 | 0.0052 | 2.9 | 8.6 | |
Higher Strat | 1/2 | 3333 | 1034 | 0.0030 | 3.3 | 2.5 | |
Low Res | 1 | 3333 | 512 | 0.0041 | 1.5 | 13.8 | |
High Res | 1 | 3333 | 1536 | 0.0040 | 4.6 | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waite, M.L.; Richardson, N. Potential Vorticity Generation in Breaking Gravity Waves. Atmosphere 2023, 14, 881. https://doi.org/10.3390/atmos14050881
Waite ML, Richardson N. Potential Vorticity Generation in Breaking Gravity Waves. Atmosphere. 2023; 14(5):881. https://doi.org/10.3390/atmos14050881
Chicago/Turabian StyleWaite, Michael L., and Nicholas Richardson. 2023. "Potential Vorticity Generation in Breaking Gravity Waves" Atmosphere 14, no. 5: 881. https://doi.org/10.3390/atmos14050881
APA StyleWaite, M. L., & Richardson, N. (2023). Potential Vorticity Generation in Breaking Gravity Waves. Atmosphere, 14(5), 881. https://doi.org/10.3390/atmos14050881