Predicting the Impact of Change in Air Quality Patterns Due to COVID-19 Lockdown Policies in Multiple Urban Cities of Henan: A Deep Learning Approach
Abstract
:1. Introduction
- First, the emission sources increase, e.g., fireworks and firecrackers are set off during the Spring Festival [6]. It is a subjective factor that causes heavy pollution;
- The second is the environmental capacity is greatly reduced due to unfavorable meteorological conditions. The emission of air pollutants still exceeds the environmental capacity by more than two times, and the actual emission reduction is still less than the emission reduction demand [7];
- The third is due to secondary pollution emission. During the epidemic, the emission of traffic sources was reduced, NOx was greatly reduced, the effect of ozone depletion was weakened, the proportion of NOx emission reduction exceeded Volatile Organic Compound (VOC), ozone increased significantly, and secondary particulate matter (PM) was generated especially, which offset the primary the emission reduction of pollutants.
The Need for Predicting the Impact of Lockdown Policies on Air Quality
2. Methods
2.1. Study Area Monitoring Stations
2.2. Air Pollutant Data
2.3. Long-Term Short-Term Memory (LSTM) Model
2.4. Statistical Analysis
3. Results
3.1. City-Wise Change in Air Quality Patterns
3.2. Provincial Change Analysis
3.3. Change of Air Quality Pattern Due to Lockdown
3.4. Prediction Pattern of Air Quality Patterns in 5 Years
4. Discussion
4.1. Practical Implications
- Public Health: Air pollution prediction can help in protecting public health by providing early warnings of potentially hazardous air quality conditions. This information can be used to warn vulnerable populations and limit their exposure to air pollution. It can also help policymakers to take measures to reduce pollution levels in affected areas.
- Urban Planning: Air pollution prediction can aid in urban planning by providing accurate and timely data on air quality levels in different parts of the city. This information can help policymakers to make informed decisions regarding land-use planning and the location of industrial sites and transportation routes.
- Industrial Operations: Air pollution prediction can be used in industrial operations to predict the impact of air pollution on the environment and the health of workers. This information can help companies to take measures to reduce their emissions and prevent environmental damage.
4.2. Theoretical Implications
- Scientific Research: Air pollution prediction can be used to advance scientific research in the field of atmospheric science, environmental science, and public health. It can also help researchers to better understand the sources of air pollution and the factors that contribute to its formation and dispersion.
- Policy Development: Air pollution prediction can help policymakers to develop more effective policies and regulations to reduce air pollution levels. It can also aid in the evaluation of the effectiveness of current policies and the development of new ones.
- Climate Change: Air pollution prediction can provide valuable insights into the impact of air pollution on climate change. It can help scientists to better understand the complex interactions between air pollution and climate change and to develop strategies for mitigating the impact of air pollution on the environment.
5. Conclusions
- The first suggestion is that the steel industry in Henan Province should develop in a balanced and green way, improve industrial concentration and environmental protection law enforcement, establish a fair, competitive environment, improve the enthusiasm of enterprises to control pollution, and enterprises should consider taking the road of high-quality development from the long-term perspective of industrial transformation and source process structure adjustment.
- The second is to strengthen the standardization of provincial control stations and the non-point source control below the district and county levels and incorporate district and county sites into the urban state control assessment system, not only one city and one policy, but also one county and one policy, effectively avoiding “one size fits all” environmental management.
- The third is to promote the landing of scientific research results to support environmental management needs. The challenge of improving air quality is the “secondary pollution” treatment based on secondary PM2.5 and ozone (O3), and the causes of ozone in different regions, the coordinated control scheme between PM2.5 and ozone, the proportion of VOC and NOx emission reduction, and the objective understanding of NH3 emissions and treatment need to carry out in-depth scientific research to achieve scientific pollution control truly.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aamir, M.; Li, Z.; Bazai, S.; Wagan, R.A.; Bhatti, U.A.; Nizamani, M.M.; Akram, S. Spatiotemporal Change of Air-Quality Patterns in Hubei Province—A Pre- to Post-COVID-19 Analysis Using Path Analysis and Regression. Atmosphere 2021, 12, 1338. [Google Scholar] [CrossRef]
- Li, Q.; Miao, Y.; Zeng, X.; Tarimo, C.S.; Wu, C.; Wu, J. Prevalence and factors for anxiety during the coronavirus disease 2019 (COVID-19) epidemic among the teachers in China. J. Affect. Disord. 2020, 277, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, U.A.; Zeeshan, Z.; Nizamani, M.M.; Bazai, S.; Yu, Z.; Yuan, L. Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19. Chemosphere 2022, 288, 132569. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, U.A.; Yan, Y.; Zhou, M.; Ali, S.; Hussain, A.; Qingsong, H.; Yuan, L. Time series analysis and forecasting of air pollution particulate matter (PM 2.5): An SARIMA and factor analysis approach. IEEE Access 2021, 9, 41019–41031. [Google Scholar] [CrossRef]
- Chen, Q.X.; Huang, C.L.; Yuan, Y.; Tan, H.P. Influence of COVID-19 event on air quality and their association in Mainland China. Aerosol Air Qual. Res. 2020, 20, 1541–1551. [Google Scholar] [CrossRef]
- Chen, W.; Tang, H.; Zhao, H. Urban air quality evaluations under two versions of the national ambient air quality standards of China. Atmos. Pollut. Res. 2016, 7, 49–57. [Google Scholar] [CrossRef]
- Cretescu, I.; Isopescu, D.N.; Lutic, D.; Soreanu, G. Indoor air pollutants and the future perspectives for living space design. In Indoor Environment and Health; IntechOpen: London, UK, 2019. [Google Scholar]
- Dai, Q.; Liu, B.; Bi, X.; Wu, J.; Liang, D.; Zhang, Y.; Hopke, P.K. Dispersion normalized PMF provides insights into the significant changes in source contributions to PM 2.5 after the COVID-19 outbreak. Environ. Sci. Technol. 2020, 54, 9917–9927. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Morales, A.L.; Suárez-Varela, M.M.M. The Effect of the COVID-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Fang, C.; Liang, L.; Wang, Z. Quantitative simulation and verification of upgrade law of sustainable development in Beijing-Tianjin-Hebei urban agglomeration. Sci. China Earth Sci. 2019, 62, 2031–2049. [Google Scholar] [CrossRef]
- Gough, W.A.; Anderson, V. Changing Air Quality and the Ozone Weekend Effect during the COVID-19 Pandemic in Toronto, Ontario, Canada. Climate 2022, 10, 41. [Google Scholar] [CrossRef]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, A.; Bhatti, U.A.; Wei, G. Spatio-temporal Impact of the COVID-19 Pandemic Lockdown on Air Quality Pattern in Nanjing, China. Front. Environ. Sci. 2022, 10, 1548. [Google Scholar]
- Hasan, N.; Toma, R.N.; Nahid, A.-A.; Islam, M.M.M.; Kim, J.-M. Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach. Energies 2019, 12, 3310. [Google Scholar] [CrossRef]
- He, J.; Gong, S.; Yu, Y.; Yu, L.; Wu, L.; Mao, H.; Song, C.; Zhao, S.; Liu, H.; Li, X.; et al. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut. 2017, 223, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.J.; Yeganeh, A.; Chia, M.Y.; Shiu, H.Y.; Ooi, M.C.G.; Chang, J.H.W.; Shimizu, Y.; Ryosuke, H.; Try, S.; Elbeltagi, A. Quantification of COVID-19 impacts on NO2 and O3: Systematic model selection and hyperparameter optimization on AI-based meteorological-normalization methods. Atmos. Environ. 2023, 301, 119677. [Google Scholar] [CrossRef]
- Wong, Y.J.; Shiu, H.-Y.; Chang, J.H.-H.; Ooi, M.C.G.; Li, H.-H.; Homma, R.; Shimizu, Y.; Chiueh, P.-T.; Maneechot, L.; Sulaiman, N.M.N. Spatiotemporal impact of COVID-19 on Taiwan air quality in the absence of a lockdown: Influence of urban public transportation use and meteorological conditions. J. Clean. Prod. 2022, 365, 132893. [Google Scholar] [CrossRef]
- Naqvi, H.R.; Datta, M.; Mutreja, G.; Siddiqui, M.A.; Naqvi, D.F.; Naqvi, A.R. Improved air quality and associated mortalities in India under COVID-19 lockdown. Environ. Pollut. 2020, 268, 115691. [Google Scholar] [CrossRef]
- Abdullah, S.; Mansor, A.A.; Napi, N.N.L.M.; Mansor, W.N.W.; Ahmed, A.N.; Ismail, M.; Ramly, Z.T.A. Air quality status during 2020 Malaysia Movement Control Order (MCO) due to 2019 novel coronavirus (2019-nCoV) pandemic. Sci. Total Environ. 2020, 729, 139022. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total. Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Dang, H.-A.H.; Trinh, T.-A. Does the COVID-19 lockdown improve global air quality? New cross-national evidence on its unintended consequences. J. Environ. Econ. Manag. 2020, 105, 102401. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. The mediating effect of air quality on the association between human mobility and COVID-19 infection in China. Environ. Res. 2020, 189, 109911. [Google Scholar] [CrossRef] [PubMed]
- Ash’aari, Z.H.; Aris, A.Z.; Ezani, E.; Kamal, N.I.A.; Jaafar, N.; Jahaya, J.N.; Manan, S.A.; Saifuddin, M.F.U. Spatiotemporal Variations and Contributing Factors of Air Pollutant Concentrations in Malaysia during Movement Control Order due to Pandemic COVID-19. Aerosol Air Qual. Res. 2020, 20, 2047–2061. [Google Scholar] [CrossRef]
- Rudke, A.; Martins, J.; de Almeida, D.; Martins, L.; Beal, A.; Hallak, R.; Freitas, E.; Andrade, M.; Foroutan, H.; Baek, B.; et al. How mobility restrictions policy and atmospheric conditions impacted air quality in the State of São Paulo during the COVID-19 outbreak. Environ. Res. 2021, 198, 111255. [Google Scholar] [CrossRef] [PubMed]
- Archer, C.L.; Cervone, G.; Golbazi, M.; Al Fahel, N.; Hultquist, C. Changes in air quality and human mobility in the USA during the COVID-19 pandemic. Bull. Atmos. Sci. Technol. 2020, 1, 491–514. [Google Scholar] [CrossRef]
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Vagnoli, C.; Zaldei, A.; Gioli, B. Quantifying road traffic impact on air quality in urban areas: A Covid19-induced lockdown analysis in Italy. Environ. Pollut. 2020, 267, 115682. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Wang, Q.; Li, Y.; Wang, H.; Gao, Y.; Sun, Y.; Wang, B.; Bian, R.; Li, W.; Zhan, M. Impact of incineration slag co-disposed with municipal solid waste on methane production and methanogens ecology in landfills. Bioresour. Technol. 2023, 377, 128978. [Google Scholar] [CrossRef]
- Hu, J.; Ying, Q.; Wang, Y.; Zhang, H. Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices. Environ. Int. 2015, 84, 17–25. [Google Scholar] [CrossRef]
- Jakob, A.; Hasibuan, S.; Fiantis, D. Empirical evidence shows that air quality changes during COVID-19 pandemic lockdown in Jakarta, Indonesia are due to seasonal variation, not restricted movements. Environ. Res. 2022, 208, 112391. [Google Scholar] [CrossRef]
- Jakovljević, I.; Štrukil, Z.S.; Godec, R.; Davila, S.; Pehnec, G. Influence of lockdown caused by the COVID-19 pandemic on air pollution and carcinogenic content of particulate matter observed in Croatia. Air Qual. Atmos. Health 2021, 14, 467–472. [Google Scholar] [CrossRef]
- Jeong, C.-H.; Yousif, M.; Evans, G.J. Impact of the COVID-19 lockdown on the chemical composition and sources of urban PM2.5. Environ. Pollut. 2022, 292, 118417. [Google Scholar] [CrossRef]
- Karagulian, F.; Temimi, M.; Ghebreyesus, D.; Weston, M.; Kondapalli, N.K.; Valappil, V.K.; Aldababesh, A.; Lyapustin, A.; Chaouch, N.; Al Hammadi, F.; et al. Analysis of a severe dust storm and its impact on air quality conditions using WRF-Chem modeling, satellite imagery, and ground observations. Air Qual. Atmos. Health 2019, 12, 453–470. [Google Scholar] [CrossRef]
- Lai, X.; Li, H.; Pan, Y. A combined model based on feature selection and support vector machine for PM 2.5 prediction. J. Intell. Fuzzy Syst. 2021, 40, 10099–10113. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Nie, Y.; Ma, Y.; Guo, Q.; Dai, X. Identification of Symptoms Prognostic of COVID-19 Severity: Multivariate Data Analysis of a Case Series in Henan Province. J. Med. Internet Res. 2020, 22, e19636. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, Z.; Yin, L.; Zheng, W.; Song, L.; Tian, J.; Yang, B.; Liu, S. A Haze Prediction Model in Chengdu Based on LSTM. Atmosphere 2021, 12, 1479. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef]
- Liang, X.M.; Chen, L.G.; Shen, G.F.; Lu, Q.; Liu, M.; Lu, H.T.; Tao, S. Volatile Organic Compounds (VOCs) Emission Inventory from Domestic Sources in China. Huan Jing Ke Xue Huanjing Kexue 2021, 42, 5162–5168. [Google Scholar]
- Statistical Yearbook of Henan. 2018. Available online: https://www.chinayearbooks.com/tags/henan-statistical-yearbook (accessed on 1 December 2022).
- Lin, G.-Y.; Lee, Y.-M.; Tsai, C.-J.; Lin, C.-Y. Spatial-temporal characterization of air pollutants using a hybrid deep learning/Kriging model incorporated with a weather normalization technique. Atmos. Environ. 2022, 289, 119304. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre. Available online: http://www.cnemc.cn (accessed on 1 December 2022).
- Liu, B.; Jin, Y.; Li, C. Analysis and prediction of air quality in Nanjing from autumn 2018 to summer 2019 using PCR–SVR–ARMA combined model. Sci. Rep. 2021, 11, 348. [Google Scholar] [CrossRef]
- Liu, S.; Hua, S.; Wang, K.; Qiu, P.; Liu, H.; Wu, B.; Shao, P.; Liu, X.; Wu, Y.; Xue, Y.; et al. Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis. Sci. Total Environ. 2018, 624, 396–406. [Google Scholar] [CrossRef]
- Farzad, A.; Mashayekhi, H.; Hassanpour, H. A comparative performance analysis of different activation functions in LSTM networks for classification. Neural Comput. Appl. 2019, 31, 2507–2521. [Google Scholar] [CrossRef]
- Vijayaprabakaran, K.; Sathiyamurthy, K. Towards activation function search for long short-term model network: A differential evolution based approach. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 2637–2650. [Google Scholar]
- Brogärd, A.; Song, P. Performance Analysis of Various Activation Functions Using LSTM Neural Network for Movie Recommendation Systems. Degree Project Technology. In First Cycle; Diva-Portal: Stockholm, Sweden, 2020. [Google Scholar]
- Liu, T.; Wang, X.; Hu, J.; Wang, Q.; An, J.; Gong, K.; Sun, J.; Li, L.; Qin, M.; Li, J.; et al. Driving Forces of Changes in Air Quality during the COVID-19 Lockdown Period in the Yangtze River Delta Region, China. Environ. Sci. Technol. Lett. 2020, 7, 779–786. [Google Scholar] [CrossRef]
- Pang, N.; Gao, J.; Zhao, P.; Wang, Y.; Xu, Z.; Chai, F. The impact of fireworks control on air quality in four Northern Chinese cities during the Spring Festival. Atmos. Environ. 2021, 244, 117958. [Google Scholar] [CrossRef]
- Putaud, J.-P.; Pozzoli, L.; Pisoni, E.; Dos Santos, S.M.; Lagler, F.; Lanzani, G.; Santo, U.D.; Colette, A. Impacts of the COVID-19 lockdown on air pollution at regional and urban background sites in northern Italy. Atmos. Chem. Phys. Discuss. 2021, 21, 7597–7609. [Google Scholar] [CrossRef]
- Shen, F.; Ge, X.; Hu, J.; Nie, D.; Tian, L.; Chen, M. Air pollution characteristics and health risks in Henan Province, China. Environ. Res. 2017, 156, 625–634. [Google Scholar] [CrossRef]
- Mao, M.; Sun, H.; Zhang, X. Air pollution characteristics and health risks in the Yangtze river economic belt, China during winter. Int. J. Environ. Res. Public Health 2020, 17, 9172. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef]
- Siciliano, B.; Dantas, G.; da Silva, C.M.; Arbilla, G. Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 737, 139765. [Google Scholar] [CrossRef]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Liu, J.; Yang, T.; Zhang, M.; Pang, J. The effect of environmental regulation on air quality in China: A natural experiment during the COVID-19 pandemic. Atmos. Pollut. Res. 2021, 12, 21–30. [Google Scholar] [CrossRef]
- Swamy, Y.; Venkanna, R.; Nikhil, G.; Chitanya, D.; Sinha, P.R.; Ramakrishna, M.; Rao, A. Impact of Nitrogen Oxides, Volatile Organic Compounds and Black Carbon on Atmospheric Ozone Levels at a Semi Arid Urban Site in Hyderabad. Aerosol Air Qual. Res. 2012, 12, 662–671. [Google Scholar] [CrossRef]
- Thakur, A.K.; Sathyamurthy, R.; Ramalingam, V.; Lynch, I.; Sharshir, S.W.; Ma, Z.; Poongavanam, G.; Lee, S.; Jeong, Y.; Hwang, J.-Y. A case study of SARS-CoV-2 transmission behavior in a severely air-polluted city (Delhi, India) and the potential usage of graphene based materials for filtering air-pollutants and controlling/monitoring the COVID-19 pandemic. Environ. Sci. Process. Impacts 2021, 23, 923–946. [Google Scholar] [CrossRef] [PubMed]
- Tello-Leal, E.; Macías-Hernández, B.A. Association of environmental and meteorological factors on the spread of COVID-19 in Victoria, Mexico, and air quality during the lockdown. Environ. Res. 2021, 196, 110442. [Google Scholar] [CrossRef]
- Vallyathan, V.; Shi, X. The role of oxygen free radicals in occupational and environmental lung diseases. Environ. Health Perspect. 1997, 105 (Suppl. 1), 165–177. [Google Scholar]
- Wang, T.; Nie, W.; Gao, J.; Xue, L.K.; Gao, X.M.; Wang, X.F.; Qiu, J.; Poon, C.N.; Meinardi, S.; Blake, D.; et al. Air quality during the 2008 Beijing Olympics: Secondary pollutants and regional impact. Atmos. Meas. Tech. 2010, 10, 7603–7615. [Google Scholar] [CrossRef]
- Wan, S.; Cui, K.; Wang, Y.-F.; Wu, J.-L.; Huang, W.-S.; Xu, K.; Zhang, J. Impact of the COVID-19 Event on Trip Intensity and Air Quality in Southern China. Aerosol Air Qual. Res. 2020, 20, 1727–1747. [Google Scholar] [CrossRef]
- Weather and Air Quality Website. Available online: www.tianqihoubao.com (accessed on 27 September 2022).
- Wetchayont, P.; Hayasaka, T.; Khatri, P. Air Quality Improvement during COVID-19 Lockdown in Bangkok Metropolitan, Thailand: Effect of the Long-range Transport of Air Pollutants. Aerosol Air Qual. Res. 2021, 21, 200662. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, Z.; Wang, K.; Wong, S.-S.; Liang, W.; Zanin, M.; Liu, P.; Cao, X.; Gao, Z.; Mai, Z.; et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J. Thorac. Dis. 2020, 12, 165–174. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, T.; Feiock, R.; Li, F. The impacts of China’s provincial energy policies on major air pollutants: A spatial econometric analysis. Energy Policy 2019, 132, 392–403. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, H.Y.; Feng, Z.Y.; Wu, Q.J. A retrospective analysis of the clinical and epidemiological characteristics of COVID-19 patients in Henan Provincial People’s Hospital, Zhengzhou, China. Front. Med. 2020, 7, 286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cui, K.; Wang, Y.-F.; Wu, J.-L.; Huang, W.-S.; Wan, S.; Xu, K. Temporal Variations in the Air Quality Index and the Impact of the COVID-19 Event on Air Quality in Western China. Aerosol Air Qual. Res. 2020, 20, 1552–1568. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Zheng, W.; Yin, L. Spatial and temporal distribution characteristics of haze and pollution particles in China based on spatial statistics. Urban Clim. 2021, 41, 101031. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Huang, W.; Liu, S.; Yang, B.; Zheng, W. Spatiotemporal Analysis of Haze in Beijing Based on the Multi-Convolution Model. Atmosphere 2021, 12, 1408. [Google Scholar] [CrossRef]
- Shang, K.; Chen, Z.; Liu, Z.; Song, L.; Zheng, W.; Yang, B.; Liu, S.; Yin, L. Haze Prediction Model Using Deep Recurrent Neural Network. Atmosphere 2021, 12, 1625. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, S.; Li, C.; Xiong, L.; Song, F.; Du, C.; Li, M.; Luo, Q.; Xue, Y.; Wang, S. A carbon-neutrality-capactiy index for evaluating carbon sink contributions. Environ. Sci. Ecotechnology 2023, 15, 100237. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Hashmi, M.Z.; Sun, Y.; Masud, M.; Nizamani, M.M. Artificial intelligence applications in reduction of carbon emissions: Step towards sustainable environment. Front. Environ. Sci. 2023, 11, 1183620. [Google Scholar] [CrossRef]
- Miao, L.; Tang, S.; Ren, Y.; Kwan, M.-P.; Zhang, K. Estimation of daily ground-level PM2.5 concentrations over the Pearl River Delta using 1 km resolution MODIS AOD based on multi-feature BiLSTM. Atmos. Environ. 2022, 290, 1193620. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Mueller, S.F.; Mallard, J.W. Contributions of natural emissions to ozone and pm 2.5 as simulated by the community multiscale air quality (cmaq) model. Environ. Sci. Technol. 2011, 45, 4817–4823. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, P.; Chen, K.; Du, J.; Zhang, H. Ground-level ozone simulation using ensemble WRF/Chem predictions over the Southeast United States. Chemosphere 2021, 287, 132428. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Maeda, T.; Hayashi, M.; Hsiao, L.-F.; Liu, K.-Y. A Nested Air Quality Prediction Modeling System for Urban and Regional Scales: Application for High-Ozone Episode in Taiwan. Water Air Soil Pollut. 2001, 130, 391–396. [Google Scholar] [CrossRef]
- Konopka, P.; Grooß, J.-U.; Günther, G.; Ploeger, F.; Pommrich, R.; Müller, R.; Livesey, N. Annual cycle of ozone at and above the tropical tropopause: Observations versus simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Atmos. Meas. Tech. 2010, 10, 121–132. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, C.; Niu, S.; Lv, J.; Jia, X.; Xu, X.; Xue, Y.; Zhu, L.; Yan, S. Diverse Dispersion Effects and Parameterization of Relative Dispersion in Urban Fog in Eastern China. J. Geophys. Res. Atmos. 2023, 128, e2022JD037514. [Google Scholar] [CrossRef]
- Bai, L.; Wang, J.; Ma, X.; Lu, H. Air Pollution Forecasts: An Overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef]
- Masih, A. Machine learning algorithms in air quality modelling. Glob. J. Environ. Sci. Manag. 2019, 5, 515–534. [Google Scholar]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Liao, Q.; Zhu, M.; Wu, L.; Pan, X.; Tang, X.; Wang, Z. Deep Learning for Air Quality Forecasts: A Review. Curr. Pollut. Rep. 2020, 6, 399–409. [Google Scholar] [CrossRef]
- Masood, A.; Ahmad, K. A review on emerging artificial intelligence (AI) techniques for air pollution forecasting: Fundamentals, application and performance. J. Clean. Prod. 2021, 322, 129072. [Google Scholar] [CrossRef]
- Liu, H.; Yan, G.; Duan, Z.; Chen, C. Intelligent modeling strategies for forecasting air quality time series: A review. Appl. Soft Comput. 2021, 102, 106957. [Google Scholar] [CrossRef]
- Assael, M.J.; Delaki, M.; Kakosimos, K.E. Applying the ospm model to the calculation of pm10 concentration levels in the historical centre of the city of the ssaloniki. Atmos. Environ. 2008, 42, 65–77. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, D.; Deng, Y.; Sun, Q.; Ma, J.; Liu, F. Evaluation and empirical study of Happy River on the basis of AHP: A case study of Shaoxing City (Zhejiang, China). Mar. Freshw. Res. 2023, 1, MF22196. [Google Scholar] [CrossRef]
- Wang, Y.; Henning, S.; Poulain, L.; Lu, C.; Stratmann, F.; Wang, Y.; Niu, S.; Pöhlker, M.L.; Herrmann, H.; Wiedensohler, A. Aerosol activation characteristics and prediction at the central European ACTRIS research station of Melpitz, Germany. Atmos. Meas. Tech. 2022, 22, 15943–15962. [Google Scholar] [CrossRef]
- Chuang, M.T.; Zhang, Y.; Kang, D. Application of wrf/chem-madrid for real-time air quality forecasting over the south eastern United States. Atmos. Environ. 2011, 45, 6241–6250. [Google Scholar] [CrossRef]
Year | Method | Statistical Analysis of Air Pollutants | Mean Change from Last Year (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AQI | CO | NO2 | O3 | PM10 | PM2.5 | SO2 | CO | NO2 | O3 | PM10 | PM2.5 | SO2 | ||
2021 COVID-C | Max | 378.71 | 1.91 | 71.43 | 200.21 | 691.21 | 170.57 | 27.08 | −58% | −89% | 31% | −42% | −97% | −36% |
Min | 14.15 | 0.10 | 1.67 | 28.00 | 4.57 | 1.09 | 1.00 | |||||||
Mean | 56.73 | 0.61 | 15.21 | 97.54 | 60.11 | 26.62 | 6.91 | |||||||
Std | 27.18 | 0.20 | 7.11 | 30.27 | 44.94 | 13.28 | 3.32 | |||||||
Median | 52.13 | 0.60 | 14.08 | 92.81 | 48.52 | 24.38 | 6.42 | |||||||
2020 COVID-B | Max | 452.13 | 24.00 | 103.71 | 214.84 | 443.04 | 429.46 | 48.83 | 10% | −14% | −5% | −18% | −14% | −16% |
Min | 13.63 | 0.11 | 3.25 | 3.00 | 4.60 | 2.93 | 1.13 | |||||||
Mean | 81.89 | 0.97 | 28.82 | 67.06 | 85.17 | 52.33 | 9.39 | |||||||
Std | 45.79 | 1.79 | 14.81 | 32.34 | 47.15 | 40.05 | 4.95 | |||||||
Median | 69.75 | 0.76 | 25.63 | 65.83 | 75.29 | 38.88 | 8.38 | |||||||
2019 COVID-A | Max | 483.43 | 5.58 | 117.17 | 205.13 | 508.83 | 496.14 | 75.94 | −22% | −9% | −4% | −11% | −3% | −33% |
Min | 14.17 | 0.10 | 2.08 | 1.00 | 5.08 | 2.75 | 1.00 | |||||||
Mean | 93.02 | 0.88 | 32.79 | 70.46 | 100.48 | 59.75 | 10.87 | |||||||
Std | 54.36 | 0.46 | 16.45 | 38.15 | 59.13 | 48.56 | 6.35 | |||||||
Median | 76.13 | 0.78 | 29.50 | 67.87 | 85.59 | 41.95 | 9.42 | |||||||
2018 | Max | 441.18 | 5.48 | 135.00 | 219.21 | 559.67 | 412.05 | 134.38 | −21% | −8% | 5% | −5% | −7% | −45% |
Min | 13.86 | 0.13 | 2.75 | 1.00 | 7.64 | 3.19 | 1.00 | |||||||
Mean | 96.72 | 1.07 | 35.68 | 73.26 | 111.27 | 61.75 | 14.43 | |||||||
Std | 55.25 | 0.49 | 17.30 | 37.80 | 69.52 | 46.58 | 8.64 | |||||||
Median | 80.60 | 0.96 | 32.50 | 69.58 | 91.92 | 47.46 | 12.58 | |||||||
2017 | Max | 472.58 | 12.87 | 155.75 | 249.88 | 656.71 | 439.88 | 443.00 | ||||||
Min | 13.29 | 0.13 | 2.05 | 1.00 | 4.29 | 1.62 | 1.00 | |||||||
Mean | 100.06 | 1.30 | 38.63 | 69.29 | 117.02 | 66.14 | 20.93 | |||||||
Std | 56.41 | 0.74 | 18.93 | 37.96 | 69.10 | 48.11 | 15.05 | |||||||
Median | 85.24 | 1.14 | 35.83 | 62.70 | 102.09 | 51.96 | 17.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatti, M.A.; Song, Z.; Bhatti, U.A.; Ahmad, N. Predicting the Impact of Change in Air Quality Patterns Due to COVID-19 Lockdown Policies in Multiple Urban Cities of Henan: A Deep Learning Approach. Atmosphere 2023, 14, 902. https://doi.org/10.3390/atmos14050902
Bhatti MA, Song Z, Bhatti UA, Ahmad N. Predicting the Impact of Change in Air Quality Patterns Due to COVID-19 Lockdown Policies in Multiple Urban Cities of Henan: A Deep Learning Approach. Atmosphere. 2023; 14(5):902. https://doi.org/10.3390/atmos14050902
Chicago/Turabian StyleBhatti, Mughair Aslam, Zhiyao Song, Uzair Aslam Bhatti, and Naushad Ahmad. 2023. "Predicting the Impact of Change in Air Quality Patterns Due to COVID-19 Lockdown Policies in Multiple Urban Cities of Henan: A Deep Learning Approach" Atmosphere 14, no. 5: 902. https://doi.org/10.3390/atmos14050902
APA StyleBhatti, M. A., Song, Z., Bhatti, U. A., & Ahmad, N. (2023). Predicting the Impact of Change in Air Quality Patterns Due to COVID-19 Lockdown Policies in Multiple Urban Cities of Henan: A Deep Learning Approach. Atmosphere, 14(5), 902. https://doi.org/10.3390/atmos14050902