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Abstract: Several countries implemented prevention and control measures in response to the 2019
new coronavirus virus (COVID-19) pandemic. To study the impact of the lockdown due to COVID-19
on multiple cities, this study utilized data from 18 cities of Henan to understand the air quality pattern
change during COVID-19 from 2019 to 2021. It examined the temporal and spatial distribution impact.
This study firstly utilized a deep learning bi-directional long-term short-term (Bi-LSTM) model to
predict air quality patterns during 3 periods, i.e., COVID-A (before COVID-19, i.e., 2019), COVID-B
(during COVID-19, i.e., 2020), COVID-C (after COVID-19 cases, i.e., 2021) and obtained the R2 value
of more than 72% average in each year and decreased MAE value, which was better than other studies’
deep learning methods. This study secondly focused on the change of pollutants and observed an
increase in Air Quality Index by 10%, a decrease in PM2.5 by 14%, PM10 by 18%, NO2 by 14%, and
SO2 by 16% during the COVID-B period. This study found an increase in O3 by 31% during the
COVID-C period and observed a significant decrease in pollutants during the COVID-C period
(PM10 by 42%, PM2.5 by 97%, NO2 by 89%, SO2 by 36%, CO by 58%, O3 by 31%). Lastly, the impact
of lockdown policies was studied during the COVID-B period and the results showed that Henan
achieved the Grade I standards of air quality standards after lockdown was implemented. Although
there were many severe effects of the COVID-19 pandemic on human health and the global economy,
lockdowns likely resulted in significant short-term health advantages owing to reduced air pollution
and significantly improved ambient air quality. Following COVID-19, the government must take
action to address the environmental problems that contributed to the deteriorating air quality.

Keywords: air quality pattern; Bi-LSTM; air pollution; COVID-19

1. Introduction

In December 2019, patients with unexplained pneumonia infection were successively
found in Wuhan, Hubei Province, China [1]. Experts identified the pathogen of this
unexplained viral pneumonia case as a new type of coronavirus named COVID-19 [2].
As of 11 March 2020, the sickness reached every corner of the globe and was declared a
pandemic. As of late March 2021, the estimated global case count was over 127 million, with
over 2.7 million fatalities. The first case of infection was confirmed in Henan Province on 22
January 2020, the first-level response to major public health emergencies was launched on 24
January 2020 [3]. From 26 January, all inter-provincial and inter-city road passenger vehicles,
as well as passenger through trains in the airport and the province, were suspended. Henan
province implemented the measure to close all the educational institutions, including
primary schools, middle schools and high schools; public transportation in the city will

Atmosphere 2023, 14, 902. https://doi.org/10.3390/atmos14050902 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos14050902
https://doi.org/10.3390/atmos14050902
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0009-0009-8409-3745
https://orcid.org/0000-0002-8743-2783
https://doi.org/10.3390/atmos14050902
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos14050902?type=check_update&version=1


Atmosphere 2023, 14, 902 2 of 23

be suspended one after another, communities will be managed in a closed manner, and
enterprises will resume work no earlier than February. Government in China implemented
strict lockdown measures in high-risk areas and middle risk areas to control the spread of
COVID-19 [4].

The outbreak of the epidemic coincided with the Spring Festival in 2020. During the
Spring Festival, heavy regional air pollution in Henan occurred due to high tourism and
family events [5]. At present, there are three reasons for air pollution during the epidemic:

• First, the emission sources increase, e.g., fireworks and firecrackers are set off during
the Spring Festival [6]. It is a subjective factor that causes heavy pollution;

• The second is the environmental capacity is greatly reduced due to unfavorable mete-
orological conditions. The emission of air pollutants still exceeds the environmental
capacity by more than two times, and the actual emission reduction is still less than
the emission reduction demand [7];

• The third is due to secondary pollution emission. During the epidemic, the emis-
sion of traffic sources was reduced, NOx was greatly reduced, the effect of ozone
depletion was weakened, the proportion of NOx emission reduction exceeded Volatile
Organic Compound (VOC), ozone increased significantly, and secondary particulate
matter (PM) was generated especially, which offset the primary the emission reduction
of pollutants.

The emission of atmospheric pollutants caused by anthropogenic activities far exceeds
the environmental capacity, adverse meteorological conditions and atmospheric chemical
reactions lead to the frequent occurrence of atmospheric pollution events in China’s autumn
and winter, and the concentration of atmospheric particulate matter (PM) and gaseous
pollutants can reach several times to dozens of times the WHO recommended value [8].
Air quality and human health pose a serious threat, and so, air pollution became a hot topic
of public, academic, and government concern. Gough et al. (2022) compared the air quality
during the COVID-19 lockdown in China in 2020 with the 11-year average (2009–2019), and
the main conclusion was: the columnar abundance of tropospheric NO2, SO2 and aerosol
optical depth (AOD) decreased significantly, the decline of NO2 column loads in southeast,
northeast, northwest, and southwest China is quite different, and the levels of NO2 and
SO2 in southeast and northeast China dropped significantly. Donzelli et al. [9] analyzed the
concentrations of six major air pollutants in 366 cities in mainland China from 1st January to
April 30th each year from 2017 to 2020. The main conclusion was that the air quality in many
provinces improved significantly. Compared with the previous year, the concentration of
O3 in 2020 increased, and the national average concentrations of the other five major air
pollutants all decreased; the daily variation of PM2.5 and PM10 concentrations remained
unchanged. Fang et al. [10] used air pollution data from 289 cities across China from
1st January 2019 to 21st February 2020, and took the first-level response to public health
emergencies in 2020 as the policy time point, and used breakpoints with the regression
method, the main conclusions were: the average air quality index of the city decreases by
36% under the first-level response policy, and there is urban heterogeneity: the air pollution
in the cities where the process production enterprises are concentrated is more negligible,
and the air pollution in the cities with denser roads is smaller. Gough et al. [11] compared
the air quality during the COVID-19 lockdown in the Yangtze River Delta region with
that before the lockdown, and the main conclusion was that the ambient PM2.5 decreased.
Guarnieri et al. [12] divided the Beijing–Tianjin–Hebei epidemic prevention and control
into four stages: early stage, early mid-stage, middle stage, and late stage, and combined
with meteorological, traffic, and industrial data, and comprehensively used mathematical
statistics and spatial analysis methods. The main conclusions are: the overall AQI and
six pollutants decreased compared with 2019; O3 increased significantly in the initial stage
(76.2%); the PM2.5 concentration in Beijing in February was nearly 60% lower than that in
2014 under similar meteorological conditions; In the middle and late stages of control, the
changes of various pollutants tended to be stable or slightly increased.
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Hasnain et al. [13] compared the air quality in western China (Chongqing, Luzhou,
Chengdu) between February 2020 (during the epidemic prevention and control period) and
2017–February 2019, and the main conclusion was that the air quality index’s (three cities
combined. AQI) was the highest. The average air quality indexes of the fifth day decreased
by 23.6%, the average concentrations of PM2.5, PM10, SO2, Co, and NO2 all decreased by
more than 17%, and the average concentration of O3 increased by 6.2%. Hasan et al. [14]
put southern China (Shenzhen, Guangzhou, Foshan) data from 12 January to 27 March,
in 2019 and 2020 was compared with the same period in 2019. The main conclusions
were: air quality index’s (the combined AQIs of the three cities) decreased by 16.0%, and
the average AQIs were Guangzhou > Foshan > Shenzhen in order; the top three AQIs in
2020 (2019) the distribution ratios of grades were 62.7% (45.2%), 37.3% (50.4%), and 0%
(4.40%). He et al. [15] compared the improvement of air quality in Hubei Province during
the COVID-19 lockdown with the improvement in air quality during the Spring Festival in
2018 and 2019, and the main conclusions were: except for NO2, the degree of air quality
improvement was lower than expected; the advancement of SO2 was small, while the
relative and absolute values of O3 concentration increased. Wong et al. [16,17] used to work
on prediction of air quality pattern during lockdown and monitor the changes.

The Need for Predicting the Impact of Lockdown Policies on Air Quality

Lockdowns were a major part of our lives since the COVID-19 pandemic hit us.
Researchers studied the impact of these lockdowns on air pollution levels. They analyzed
the air quality data from before and during the lockdowns to see if there was any change.
Some even compared the data to a [18–20] period before the pandemic to obtain a better
understanding of the impact. Interestingly, a study by Dang and Trinh [21] found that
decreased variety and transit use were factors leading to improved air quality during the
COVID-19 era. This suggests that reducing our daily commute and limiting travel can have
a positive impact on the environment.

The research findings were not just limited to one region. Station-based data from
China [22], Malaysia [23], Brazil [24], USA [25], Italy [26], and several other countries were
analyzed to obtain a global understanding of the impact of lockdowns on air pollution
levels [27]. Overall, these studies highlighted the potential benefits of lockdowns on
air quality and the importance of reducing our daily commute and travel to improve
the environment.

Changes in air quality patterns were also documented in other nations where COVID-
19 cases were prevalent, and lockdowns were enacted. Hu et al. [28] examined the air quality
in Croatia during the epidemic lockdown compared to 2019; The primary conclusions were
that the concentrations of NO2 and PM10 particles in traffic measurement points decreased
by 35%, and the concentrations of total PAHs decreased by 26%; only the concentration of
NO2 in residential measurement points decreased slightly, while the concentrations of PM10
particles and PAHs were essentially the same as the previous year. Jakob et al. [29] compared
the observed concentrations of air pollutants in Italy to the values predicted by the CAMS
ensemble model (without considering lockdown measures). The average concentrations
reduced by 30% and 40%, respectively, whereas the concentration of PM10 remained the
same and the peak concentration of O3 rose. Jakovljevic et al. [30] compared the observed
concentrations of PM10, PM2.5, NO2, and O3 during lockdown in three medium Italian
cities (Florence, Pisa, and Lucca) with the readings for the same period in 2019. In densely
populated regions, there is no indication of a correlation between the deployment of
lockdown measures and the reduction in particulate matter (PM) in urban centers; yet,
NO2, but not O3, concentrations decrease dramatically. Jeong et al. [31] compared and
analyzed the air quality in Southern California before and after the epidemic blockage by
combining chemical weather research and forecasting model (WRF-Chem) with ground
observation data. The principal results were that the population-weighted concentration of
PM2.5 reduced by 15%, and that 68% of the fall in PM2.5 concentrations was due to emission
reductions and 32% was due to meteorological changes. Karagulian et al. [32] evaluated
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the mean amounts of contaminants in Victoria four weeks before and twelve weeks after a
partial lockdown. The primary finding was that pollution levels were drastically lowered.
Lai et al. [33] evaluated the air quality in Delhi before and after the epidemiological
blockage, as well as the condition in 2019 compared to the previous year. PM10 and PM2.5
concentrations reduced by more than 50 percent relative to levels before the blockage, and
by around 60 percent compared to the same period in 2019. Li et al. [34] compared the air
quality of Bangkok before, during, and after the lockdown to the measurements for the
same time period in 2019. The concentrations of PM2.5, PM10, O3, and CO fell dramatically,
whereas NO2 concentrations rose significantly; COVID-19 blocking actions influenced not
only air pollution levels but also air pollution features.

There are two major techniques for neural networks to include context into sequence
processing tasks: aggregate the inputs into overlapping time-windows and consider the
job as spatial, or utilize recurrent connections to directly mimic the passage of time. The
use of time-windows has two key drawbacks: first, the appropriate window size is task-
dependent (too small and the network will ignore essential information, too big and it will
overfit on the training data), and second, the network is incapable of adapting to shifted
or time warped sequences. However, typical RNNs (that is, RNNs with buried layers of
recurrently linked neurons) have their own constraints. For starters, because they analyze
inputs in chronological sequence, their outputs are primarily predicated on past context
(there are techniques to incorporate future context, such as inserting a delay between
the outputs and the targets; however, they seldom fully use backwards dependencies).
Second, they are known to struggle with learning time-dependencies that are more than
a few timesteps long [35]. Bidirectional networks give an elegant solution to the first
challenge. LSTM was proven to be capable of learning extended time-dependencies in the
second scenario.

The spatiotemporal scale of most studies was short-term or single cities/sites, and
relatively few studies were carried out on the spatial distribution, interannual variation,
and seasonal and biannual variation characteristics of long-term regional pollutants. This
study investigated the patterns of air quality in 18 cities of Henan province of China for five
different periods, i.e., Period-2017 (the year 2017), Period-2018 (the year 2018), COVID-A
(the year 2019 period which was before COVID-19), COVID-B (the year 2020 which was
during COVID-19 and lockdown period), and COVID-C (year 2021 which was consid-
ered as after COVID-19 with low active cases). This study also highlighted the impact
of lockdown policies on daily bases on changes in air quality patterns and highlights the
changes in achievement with respect to China GB 3095-2012 ambient air quality standards
with a main focus on Grade I policies standards [36,37]. Henan Province is located in
central China, belonging to the area around Beijing–Tianjin–Hebei, and typical cities in
northern Henan are often ranked 20th after air quality emissions [38]. Its special geo-
graphical location, topographic structure, high emission intensity and population density
lead to frequent occurrences of heavily polluted weather. Henan Province implemented a
number of measures for the prevention and control of air pollution, including emergency
control of heavy pollution in autumn and winter. Exploring the spatio-temporal change
characteristics of pollutants in different regions of Henan Province and the relationship
between pollutants will help support the implementation of control policies, and so, it is es-
sential to study the spatio-temporal change characteristics of pollutants through long-term
continuous observational data. Additionally, the prediction of air quality patterns during
these periods helps to implement deep learning methods for short-term and long-term
relationship predictions.

2. Methods

For various reasons, predicting the influence of COVID-19 lockout rules on air quality
is critical. For starters, it helps us assess how effective these regulations are at reducing air
pollution. Second, it enables us to identify regions where air pollution continues to be a
problem despite the adoption of these measures. These data may be utilized to perform
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targeted air quality improvement actions. Finally, it can assist us in comprehending the
long-term influence of these measures on air quality and informing future policy decisions.

This study is looking into the patterns of air quality in 18 cities in China’s Henan
province for five different years, namely Period-2017 (the year 2017), Period-2018 (the year
2018), COVID-A (the year 2019 period which was before COVID-19), COVID-B (the year
2020 which was during COVID-19 and lockdown period), and COVID-C (the year 2021
which was after COVID-19 with low active cases). Figure 1 shows the flowchart of using
deep learning model for prediction of air quality patterns. This study also illustrates the
influence of lockdown policies on daily basis on variations in air quality patterns, as well as
changes in attainment with regard to China GB 3095-2012 ambient air quality regulations,
with a particular emphasis on Grade I policies [36,37]. Henan Province is located in central
China, close to the cities of Beijing, Tianjin, and Hebei. and typical cities in northern Henan
are often ranked 20th after air quality emissions [38].
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Because of its unique geographical location, topographic structure, high emission
intensity, and population density, it experiences extremely polluted weather on a regular
basis. Henan Province conducted a variety of air pollution preventive and control measures,
including emergency control of severe pollution throughout the fall and winter seasons.
Exploring the spatio-temporal change characteristics of pollutants in different regions of
Henan Province and the relationship between pollutants will help support the implementa-
tion of control policies, and so, long-term continuous observational data are required to
study the spatio-temporal change characteristics of pollutants. Furthermore, predicting
air quality trends during these periods aids in the use of deep learning algorithms for
short-term and long-term relationship forecasts.

2.1. Study Area Monitoring Stations

China’s economy grew rapidly and is now the world’s second biggest, but its economic
expansion is heavily reliant on energy consumption. As a result, China became both one of
the most energy-consuming and one of the most polluting countries.
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Henan, a province that comprises less than 2% of the country’s territory yet feeds
around 7.5% of the people, emerged as an important economic province in China. Henan’s
economy also advanced rapidly in recent years, with GDP reaching 4.4 trillion yuan in
2017. However, its economic development is mainly reliant on the use of fossil fuels, which
causes severe pollution and high emissions.

Henan is one of the world’s oldest areas, as well as one of the most important original
places of the Chinese nation and civilization. The compass, papermaking, and gunpowder
were all created in Henan, one of the four major innovations of ancient China. Throughout
history, more than 20 dynasties (spanning over a thousand years) established their capitals
in Henan, making it the province with the most ancient capitals in China.

Henan also offers a plethora of tourism resources, as well as several cultural artifacts
and historical places. Henan possessed six global cultural heritage sites (compared to
China’s 37), 358 major cultural relics under national protection, and 13 national tourist
attractions as of 2017. As a result, Henan is a world-renowned cultural tourism destination.
Henan Province received 665.11 million tourists in 2017, with 3.0732 million of them being
overseas visitors [39].

The China includes the province of Henan, usually known simply as “Henan”.
Zhengzhou, the capital of the province, is situated in the middle of China [40]. Henan
Province is located between 31◦23′–36◦22′ north and 110◦21′–116◦39′ east, linking Anhui
and Shandong to the east, Hebei and Shanxi to the north, and Shaanxi to the west, south of
Hubei. The south of Henan Province is subtropical. It has a continental monsoon climate
that transitions from subtropical to temperate. East to west, the environment changes
from plain to hilly and mountainous. Frequent, complex weather catastrophes occur. The
province’s annual temperature from south to north is 10.5–16.7 ◦C, the average annual
precipitation is 407.7–1295.8 mm, the most significant rainfall occurs in June–August, the
yearly average sunlight is 1285.7–2292.9 h, and the annual frost-free period is 201–285 days.
All stations used in this are stationary stations and no other mobile stations are used in
this study. Figure 2 shows Henan Province with the selected cities and station details are
present in Supplementary Table S1.

Atmosphere 2023, 14, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 2. Study Area with selected cities. 

2.2. Air Pollutant Data 
Air pollution data from many sites were daily averaged for use in this article. From 

the weather forecast website [41], we obtained the mass concentration data necessary to 
calculate the AQI and the ambient air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3). The 
ambient PM2.5, PM10, NO2, CO, SO2, and O3 concentrations were recorded hourly at each 
monitoring station, and then, the daily average for each city was calculated. Data for five 
years were considered from 1st January to 30th August due to better comparison with the 
year 2020 due to high COVID-19 cases recorded during this period.  

2.3. Long-Term Short-Term Memory (LSTM) Model 
For the prediction of yearly pollutants, the LSTM model mainly consisted of two 

LSTM units for learning spatiotemporal evolution features [42]. The LSTM unit is a mod-
ule consisting of repeating grids, each grid consisted of 3 important gates, namely forget 
gate, the input gate, and output gate [43]. The forget gate, labeled ft, controls the memory 
function of the network and can be expressed (shown in Figure 3) as: 𝑓௧ = 𝜎൫𝑊ሾℎ௧  ି  ଵ, 𝑋௧ሿ + 𝑏൯ (1)

where σ represents the sigmoid function, which can be written as: 

Figure 2. Study Area with selected cities.



Atmosphere 2023, 14, 902 7 of 23

2.2. Air Pollutant Data

Air pollution data from many sites were daily averaged for use in this article. From
the weather forecast website [41], we obtained the mass concentration data necessary to
calculate the AQI and the ambient air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3). The
ambient PM2.5, PM10, NO2, CO, SO2, and O3 concentrations were recorded hourly at each
monitoring station, and then, the daily average for each city was calculated. Data for five
years were considered from 1st January to 30th August due to better comparison with the
year 2020 due to high COVID-19 cases recorded during this period.

2.3. Long-Term Short-Term Memory (LSTM) Model

For the prediction of yearly pollutants, the LSTM model mainly consisted of two
LSTM units for learning spatiotemporal evolution features [42]. The LSTM unit is a module
consisting of repeating grids, each grid consisted of 3 important gates, namely forget gate,
the input gate, and output gate [43]. The forget gate, labeled ft, controls the memory
function of the network and can be expressed (shown in Figure 3) as:

ft = σ
(

W f [ht − 1, Xt] + b f

)
(1)

where σ represents the sigmoid function, which can be written as:

σ(x) =
1

1 + e−x (2)
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In addition, ht−1 represents the output of the previous grid, Xt represents the input
value of the current shed, and W f and b f represent the weight and bias values, respectively.
The input gate it is another important gate, and has a similar form to the forget gate ft:

it = σ(Wi[ht−1, Xt] + bi) (3)

In the formula, Wi and bi represent the weight and bias values, but these values differ
from the values of the forget gate. The candidate value c′ can be expressed as:

C′t = tan h(Wc′ [ht−1, Xt] + bc′) (4)
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This study chooses the tanh function instead of the sigmoid function as the excitation
function.

When it comes to creating complex neural networks, choosing the right activation
functions is crucial. Two popular functions that were extensively used are tanh and sigmoid.
Both functions are monotonically increasing and asymptote at some finite value as the input
approaches positive or negative infinity. Interestingly, tanh is a type of sigmoid function,
known as the hyperbolic tangent function. Despite their similarities, there are a few key
differences between the two functions. Sigmoid values range between 0 and 1, while tanh
values range between 1 and −1 [44]. Additionally, the tanh function is symmetrical about
the origin, which makes it ideal for normalizing inputs and producing outputs that are on
average close to zero leading to faster convergence. This is important because it helps to
prevent the exploding gradient problem, where the value of the gradients becomes very
large. Overall, the use of tanh as an activation function can help to create complex neural
networks that are both stable and effective. The gradient behavior of the two functions is a
significant distinction [45]. Tanh’s gradient is four times larger than the sigmoid function’s
gradient. This means that utilizing the tanh activation function leads in greater gradient
values during training and higher updates to the network’s weights. So, we utilize the tanh
activation function if we want strong gradients and large learning steps [46].

Ct means that the state of the current shed is updated, and the previous state Ct−1
will also affect the state of the current grid. The process can be expressed as:

Ct = f ∗t Ct−1 + it ∗ C′t (5)

Since the current grid state was updated, the output value ot can be calculated, and
the parameter ht in the next grid can be obtained. The following formula can be obtained:

ot = σ(Wo[ht−1, Xt] + bo) (6)

ht = ot
∗ tan h(Ct) (7)

2.4. Statistical Analysis

This study focused on better understanding how COVID-19 impacted air quality in
the surrounding area. Therefore, we analyzed the six air pollutants of Period-2017 (year
2017), Period-2018 (year 2018), COVID-A (the year 2019 period which was before COVID-
19), COVID-B (year 2020 which was during the COVID-19 and lockdown period), and
COVID-C (the year 2021 which was considered as after COVID-19 with low active cases).
Because seasonal variations in air pollution are more significant than annual ones, the year
2019 was selected as the COVID-A period so that we could compare all four seasons rather
than simply winter [47]. It was determined by comparing 2017 (Period-2017) and 2018
(Period-2018) results that the changes had a significant impact on air pollutant trends. The
data were statistically analyzed using SPSS (version 25; IBM Company). The minimum and
maximum values at each monitoring station, as well as the mean, median, and standard
deviation (SD), were used to define the amounts of ambient air pollutants since they all
followed a normal distribution. Additionally, we monitored the daily average variation in
air pollutant concentrations during COVID-19’s operation in an effort to identify patterns.
Plotting and analysis were carried out in OriginPro 2021, while the Seaborn library was
used for visualization. Maps depicting regional variations in air pollution levels were also
generated using the geographic information system ArcGIS.

3. Results

Results in this study highlight the patterns of air quality among different cities spatially,
daily, and yearly in the province.
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3.1. City-Wise Change in Air Quality Patterns

Change of pollutant concentration was observed in different cities of Henan province
and shown in Figure 4 and Table S2. PM2.5 was recorded lowest during the COVID-C period
and an average decrease in percentage was observed in Anyang city, which was −56%
and concentration decreased to 29.78 µg/m3 from 67.09 µg/m3. Other cities recorded
a decrease in PM2.5 such Hebi by −45%, Jiaozuo by −49%, Kaifeng by −49%, Luohe
by −51%, Luoyang by −51%, and Nanyang by −52%. A similar decrease in PM10 was
observed in almost all cities during the COVID-C period, in which the highest decrease
of almost −40% was observed in Nanyang, Xinyang, ZhuMaDian, and Zhengzhou. The
main sources of urban particulate matter include urban dust sources, coal combustion
sources, direct emissions from processes, traffic sources [48], and secondary sources, as
well as other sources such as biomass combustion, cooking fume, and sea salt particles [49].
In addition, the above-mentioned sources can be further subdivided, such as dust sources
can be further subdivided into urban dust, road dust, construction dust, etc.; coal-fired
sources can be divided into industrial boiler coal, power plant coal, civil coal, etc.; traffic
sources can also be subdivided into gasoline locomotives, diesel locomotive sources, etc.
Secondary sources can be subdivided into secondary sulfates, secondary nitrates, and
secondary organics [50]. Secondary sources were not directly emitted through emission
sources, but gaseous pollutants such as SO2, NOx, and volatile organic compounds emitted
from emission sources such as factories and motor vehicles produce secondary aerosols
through photochemical reactions and liquid-phase reactions called the secondary source.
The decrease in the COVID-C period was due to the policy implementation of control of
pollution by the Henan government and addressing both the symptoms and root causes [51],
by highlighting industrial pollution control and emission reduction, resolutely eliminating
outdated production capacity, drastically reducing coal-fired pollution, and paying close
attention to diesel truck pollution [52]. Promoted VOCs management, actively responded to
heavy pollution weather, rectified, and banned more than 120,000 “scattered and polluting”
enterprises in the province, cleared coal-fired boilers under 35 tons of steam and coal-fired
power units in the main urban areas of Zhengzhou, Luoyang, and other cities [53].

Similar changes were observed for NO2 and O3 where the ozone concentration de-
creased much in different cities; the maximum decrease was observed in Jiyuan, Zhoukou,
Xinyang, Puyang, Luohe, Anyang, and Jiaozuo, where a 50% decrease was recorded in the
COVID-C period. An increase in Ozone (O3) was observed with the maximum increase
in Anyang, Hebi, Kaifeng, Luoyang, and Sanmenxia record an increase of more than 60%
in the COVID-C period. Since the outbreak of the new crown epidemic in early 2020,
many countries around the world successively issued social distancing policies [54]. The
reduction in human activities not only stopped the epidemic, but also brought unexpected
benefits: the noise was significantly reduced, wild animals came out to wander, and even
the air pollution index was greatly reduced. The ozone (O3) layer, which is more than
20 km from the biosphere, is a region of the stratosphere in which oxygen and ozone
molecules are constantly being converted back and forth. Pollution of the ozone layer is
widespread because it forms in the lowest layer of the atmosphere, the troposphere, and
then spreads through the air we breathe. Chemical interactions between nitrogen oxides
(NOX) and volatile organic compounds (VOCs) under sunlight are the primary source of
ozone pollution in the troposphere, especially during the clear and overcast late spring,
summer, and fall. Ozone in the atmosphere’s upper layers is very corrosive [55]. Ozone (O3)
molecules only differ structurally from oxygen molecules by one oxygen atom (O2). Ozone,
however, is quickly broken down at normal temperature because this form of oxygen is so
unstable. Strongly oxidizing oxygen atoms are produced during ozone breakdown, which
may not only demolish cell membranes and inactivate proteins but also degrade DNA and
RNA and assault cells from all directions [56].
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Ozone is a potent irritant that, at high enough concentrations, may cause premature
skin aging and mortality and respiratory disorders that affect the mucous membranes
lining our eyes and airways. Unlike particulate pollutants such as PM2.5, ozone is a tiny
air molecule difficult to block with standard face masks. Therefore, the most cost-effective
way to deal with ozone pollution is not “prevention”, but “hide”. The ozone generation
is inseparable from light, and so, ozone pollution is mainly concentrated in the afternoon
of spring and summer. However, because it is easily degraded, we can avoid most of the
ozone damage as long as we avoid traveling during the peak period of ozone pollution
and reduce the frequency of opening windows for ventilation during this period [57].

3.2. Provincial Change Analysis

During the COVID-C period, CO was changed by −58.36%, NO2 was changed by
−89.47%, O3 was changed by 31.25%, PM10 was changed by −41.69%, PM2.5 was changed
by −96.55%, and SO2 was changed by −35.77%. Ozone increases when NOx concentration
in human emissions decreases, the reduced NO concentration makes the rate of ozone
decomposition slower. Moreover, during the isolation period, the increase in human activities
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in courtyards and gardens is very likely to lead to an increase in the concentration of VOCs
and promote the accumulation of ozone. This same type of results were highlighted by
different studies globally [58,59]. During the COVID-B period, CO was changed by 9.55%,
NO2 was changed by −13.8%, O3 was changed by −5.06%, PM10 was changed by −17.97%,
PM2.5 was changed by −14.18%, and SO2 was changed by −15.78. During COVID-A, CO
was changed by −21.73%, NO2 was changed by −8.81%, O3 was changed by −3.97%, PM10
was changed by−10.74%, PM2.5 was changed by−3.36%, and SO2 was changed by−32.79%.
In Year−2018, CO was changed by−21.45%, NO2 was changed by−8.27, O3 was changed by
5.41%, PM10 was changed by −5.17%, PM2.5 was changed by −7.11%, and SO2 was changed
by −44.98%. The reasons for these control in pollutants pattern was due to the prevention
and control of air pollution, the incorporation, prevention, and control of air pollution into
national economic and social development planning, urban and rural planning, optimize
industrial structure and layout, the adjustment of energy structure, promotion of clean
energy utilization, and reduction in coal consumption. Henan government implemented
different policies to gradually reduce the discharge of air pollutants, establish and improve
the coordination mechanism for air pollution prevention and control, and urge relevant
departments to perform their supervision and management duties in accordance with the
law. Figure 5 shows the change of air quality patterns in Henan Provinces in the last 5 years.
Table 1 shows the detailed change of air quality pattern in province.

Table 1. Change of air quality pattern in Henan during COVID-19.

Year Method
Statistical Analysis of Air Pollutants Mean Change from Last Year (%)

AQI CO NO2 O3 PM10 PM2.5 SO2 CO NO2 O3 PM10 PM2.5 SO2

2021
COVID-C

Max 378.71 1.91 71.43 200.21 691.21 170.57 27.08

−58% −89% 31% −42% −97% −36%

Min 14.15 0.10 1.67 28.00 4.57 1.09 1.00

Mean 56.73 0.61 15.21 97.54 60.11 26.62 6.91

Std 27.18 0.20 7.11 30.27 44.94 13.28 3.32

Median 52.13 0.60 14.08 92.81 48.52 24.38 6.42

2020
COVID-B

Max 452.13 24.00 103.71 214.84 443.04 429.46 48.83

10% −14% −5% −18% −14% −16%

Min 13.63 0.11 3.25 3.00 4.60 2.93 1.13

Mean 81.89 0.97 28.82 67.06 85.17 52.33 9.39

Std 45.79 1.79 14.81 32.34 47.15 40.05 4.95

Median 69.75 0.76 25.63 65.83 75.29 38.88 8.38

2019
COVID-A

Max 483.43 5.58 117.17 205.13 508.83 496.14 75.94

−22% −9% −4% −11% −3% −33%

Min 14.17 0.10 2.08 1.00 5.08 2.75 1.00

Mean 93.02 0.88 32.79 70.46 100.48 59.75 10.87

Std 54.36 0.46 16.45 38.15 59.13 48.56 6.35

Median 76.13 0.78 29.50 67.87 85.59 41.95 9.42

2018

Max 441.18 5.48 135.00 219.21 559.67 412.05 134.38

−21% −8% 5% −5% −7% −45%

Min 13.86 0.13 2.75 1.00 7.64 3.19 1.00

Mean 96.72 1.07 35.68 73.26 111.27 61.75 14.43

Std 55.25 0.49 17.30 37.80 69.52 46.58 8.64

Median 80.60 0.96 32.50 69.58 91.92 47.46 12.58

2017

Max 472.58 12.87 155.75 249.88 656.71 439.88 443.00

Min 13.29 0.13 2.05 1.00 4.29 1.62 1.00

Mean 100.06 1.30 38.63 69.29 117.02 66.14 20.93

Std 56.41 0.74 18.93 37.96 69.10 48.11 15.05

Median 85.24 1.14 35.83 62.70 102.09 51.96 17.48
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3.3. Change of Air Quality Pattern Due to Lockdown

The world, especially urban areas, recorded a sharp drop in air pollutant emissions last
year amid lockdowns and related travel restrictions due to the COVID-19 pandemic [60].
Similarly, an impact was observed in Henan after reporting the first case of COVID-19
on 24 January. The government implemented the lockdown in different cities between 24
January 2020 and 6 April 2020, with various restrictions of movement. During this period,
AQI level achieved the world AQI standard [61], of good air quality with values mostly
lower 60 during post lockdown period. PM10 and PM2.5 observed a similar reduction
in concentration during the post lockdown period and PM2.5 and PM10 achieved values
between 10 µg/m3 and 50 µg/m3 during this period which is under the same standard of
China [62] of Grade I. After the relaxation of lockdown policies by the government, the
concentration of pollutants crossed the Grade II level again, which shows the COVID-19
restrictions significantly impacted air quality. Low population density, low consumption of
coal, reduced density, and low traffic made a better impact on particulate matter (PM2.5 and
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PM10) reduction. SO2 did not observe much change during the COVID-19 lockdown period,
while NO2 observed a drop (25 µg/m3 to 35 µg/m3) after lockdown but an increase after
October 2020 when lockdown policies were reduced. Sulfur dioxide (SO2) and nitrogen
dioxide (NO2) pollutes the air mainly due to the burning of fossil fuels in transportation and
industrial processes. Nitrogen dioxide is a brown-red toxic gas with a pungent odor. It will
have a significant impact on the human body [63]. After exposure to nitrogen dioxide above
150 mg/m3 for 3 to 24 h, the human respiratory tract will experience discomfort, including
symptoms such as cough, fever, shortness of breath, bloodshot sputum, extreme weakness,
nausea, and headache. In addition to damage to the human respiratory tract, nitrogen
dioxide harms water, soil, and the atmosphere. COVID-19 proved to be an unplanned
experiment in air quality that did lead to temporary local improvements [64]. However, a
pandemic is not a substitute for sustained and systematic action to deal with major drivers
of population and climate change, thereby protecting the health of people and the planet.
Changes in air quality patterns due to lockdown policies are shown in Figure 6.
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3.4. Prediction Pattern of Air Quality Patterns in 5 Years

This paper studied the LSTM model, which performed best in predicting air pollution
concentrations in the Henan province’s multiple cities (Figure 7). LSTM predicted PM10
and PM2.5 with R2 values of 0.67 and 0.67, RMSE values of 11.41 and 6.66, and MAE values
of 6.89 and 6.11, respectively, throughout the COVID-19 (COVID-B) period. Among other
pollutants, the projected R2 values using LSTM for SO2, NO2, CO, and O3 were 0.63, 0.54,
0.69, and 0.71, respectively, with RMSE values of 0.87, 6.10, 0.14, and 7.12 and MAE values
of 0.81, 4.12, 0.07, and 5.71. Similar work was carried out by using [65], which took the
prediction of daily concentrations of a variety of ground-level air pollutants into account.
These ground-level air pollutants include CO, PM10, NOx, SO2, and O3, and they were
measured by an ambient air quality monitoring station in Ghadafan village in Oman. The
models were trained using the multi-layer perceptron (MLP) approach in conjunction with
the Back-Propagation (BP) algorithm. The findings demonstrate that there was a very
excellent agreement between the anticipated and actual concentrations, as the values of
the coefficient of multiple determinations (R2) for all ANN models were more than 0.70.
These values of R2 were almost near to our proposed methods for different air quality
pollutants of the COVID-B period. The findings also demonstrated that temperature has a
major influence on daily changes of O3, SO2, and NOx, while wind speed and direction
play important roles in daily variations of NO, CO, and NO2. The concentrations of PM10
were affected by practically all of the meteorological conditions that were monitored.

Furthermore, during the COVID-C period, LSTM predicted PM10 and PM2.5 concentra-
tions with R2 = 0.64 and 0.67, RMSE = 19.21 and 8.10 and MAE = 12.11 and 9.01, respectively
(Figure 8). This shows that during the COVID-C period, performance of the LSTM method
performed better with low RMSE and MAE values. LSTM predicted SO2 concentration
with R2 = 0.61, RMSE = 0.79, and MAE = 0.69, NO2 concentration with R2 = 0.59, RMSE
= 4.92, and MAE = 3.98, CO concentration with R2 = 0.70, RMSE = 0.07, and MAE = 0.12,
and O3 concentration with R2 = 0.65. The model performed well in predicting SO2 con-
centrations during the COVID-C period, whereas the R2 value of LSTM was greater for
NO2 prediction during the COVID-B and lowered during the COVID-C, although the
RMSE value was lower during the COVID-C. For PM2.5 forecasting, [66] created a hybrid
model using feature selection and a support vector machine (SVM). First, a feature selection
method based on linear causality was proposed to discover the causality between features
and select the features with strong causality, thereby eliminating the redundant features in
air pollution data and lowering the workload of data analysis, with the goal of determining
the impact of meteorological factors on PM2.5. This hybrid method also achieved the R2

of more than 0.50 for particulate matter on different datasets, the same as our developed
method. By combining the strengths of the principal component regression (PCR) model,
the support vector regression (SVR) machine, and the autoregressive moving average
(ARMA) model, Liu et al. developed an air quality prediction model that greatly improved
the accuracy with which six different types of air pollutants can be predicted. A principal
component analysis was first used to extract the most important information about the
elements influencing air quality, and then, principal component regression was used to
forecast the concentrations of six different pollutants. This hybrid method also achieved
the R2 of more than 0.5 for different pollutant concentrations [67].
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4. Discussion

Predicting the impact of COVID-19 lockdown policies on air quality is important for
several reasons. Firstly, it helps us understand the effectiveness of these policies in reducing
air pollution. Secondly, it allows us to identify areas where air pollution remains high
despite the implementation of these policies. This information can be used to implement
targeted measures to improve air quality. Finally, it can help us understand the long-term
impact of these policies on air quality and inform future policy decisions. The COVID-19
pandemic had a profound impact on the world, and one of the unforeseen consequences
was the improvement in air quality in many cities as a result of lockdown policies. However,
it is important to understand the extent to which these policies are effective in reducing
air pollution, and also to identify areas where air quality remains a concern despite the
implementation of these policies. This information can then be used to develop targeted
measures to improve air quality in these areas. Several studies worked on spatiotemporal
analysis [68], change of haze [69,70], and carbon emission [71] which can use the deep
learning model to extend the prediction to future.

Our study results are similar to a recent study [72] which sought to evaluate the
behavior of the most polluting cities in the world by comparing a typical week before
quarantine to an atypical week during quarantine. The study considered the relationship
between population and air quality stations, with developed countries having a higher
number of stations per inhabitant than emerging countries. However, the lack of access to
data on air pollution in emerging countries, where public and private transport systems
are high, can cause errors or alterations in the real information on the state of air quality.
Another study [73] aimed to build a deep learning time series model using the Bi-directional
Long Short-Term Memory (Bi-LSTM) network, combining various factors such as AOD,
meteorology, and socio-economic factors. However, our study is an extended work which
focused on multiple cities and the analysis of the behavior of air quality patterns. Aamir
et al., [1] in his work, highlighted the spatial change in air quality without using the
prediction model, which our study added. Bhatti et al. [3] focused on Jiangsu to study the
spatiotemporal variation of air quality during COVID-19 and before COVID-19; however,
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that study can also be improved if results use deep learning methods. Hasnain et al. [13]
focused on the lockdown period to monitor the air quality and pollution change, but deep
learning method was not used, whereas our study used the deep learning method.

Recently, many researchers focused on using deep learning for air pollutant concentra-
tion prediction, each taking a unique approach to the subject matter [74–80]. Bai et al. [81]
comprehensively reviewed various prediction methods, ranging from statistical, artificial
intelligence, numerical, and hybrid models, presenting their respective advantages and
disadvantages. Meanwhile, Masih et al. [82] undertook a survey of machine learning tech-
niques specifically for air pollutant concentration prediction, emphasizing the importance
of input predictors, geographic location, and machine learning techniques such as linear
regression, neural network, support vector machine, and ensemble learning algorithms.
Cabaneros et al. [83] focused on the use of artificial neural networks for long-term prediction
of outdoor pollutants, highlighting the predominant use of meteorological and source emis-
sions predictors. Liao et al. [84] provided a brief review of deep learning methods for air
pollution prediction, introducing the use of deep network architectures to explore non-linear
spatio-temporal correlations across multiple scales of air pollution. Finally, Masood and
Ahmad [85] presented an overview of AI-based methods commonly used for air pollution
prediction, discussing the technological gaps and the strengths and limitations associated
with different AI techniques. Despite the thoroughness of these studies, there is still a demand
for an overarching and comprehensive review on air pollutant concentration prediction.

As technology advances, so too does our ability to predict air pollutant concentra-
tions. A plethora of algorithms emerged, falling into two distinct categories: non-deep
learning methods and deep learning methods. The non-deep learning methods can be
further subdivided into deterministic and statistical models, each with their own strengths
and weaknesses [82]. The deterministic models, such as the Community Multiscale Air
Quality (CMAQ) model [83] and the Nested Air Quality Prediction Modeling System
(NAQPMS) [86], rely on pre-determined equations to make predictions. Meanwhile, the sta-
tistical models, such as the Comprehensive Air-quality Model with extension (CAMx) and
the Weather Research and Forecasting/Chemistry-Madrid (WRF/Chem-MADRID) [85],
use data analysis to identify patterns and make predictions. However, even with these
models, there are limitations. For example, the use of ideal theory in determining the model
structure and the estimation of parameters based on experience can hinder their predictive
performance [87]. Despite these limitations, the continued development of air pollutant
prediction algorithms is critical for mitigating the harmful effects of air pollution on human
health and the environment.

Although a lot of work was carried out for the prediction of air quality [88], as previous
literature showed, our study used BiLSTM deep learning method that was used for air quality
prediction in multiple urban cities. There are several benefits of using BiLSTM for air quality
prediction as compared to other deep learning methods, such as convolutional neural net-
works (CNNs) or recurrent neural networks (RNNs). Firstly, BiLSTM is particularly effective
in capturing temporal dependencies and patterns in time series data, which is essential for
air quality prediction. BiLSTM models can effectively model long-term dependencies in the
data, which can help improve the accuracy of predictions. Secondly, BiLSTM models are
bidirectional, which means that they can process the input sequence in both forward and
backward directions. This allows the model to consider both past and future information
when making predictions, which can lead to better performance compared to unidirectional
models. Additionally, BiLSTM models are capable of handling variable-length input se-
quences, which is important for air quality prediction, where the length of the input sequence
can vary depending on the frequency of measurements. BiLSTM models are relatively simple
to implement and can be trained efficiently on large datasets. This makes them a popular
choice for air quality prediction, where large amounts of data are often available. Overall,
the benefits of using BiLSTM for air quality prediction include its ability to capture temporal
dependencies, bidirectional processing, handling of variable-length input sequences, and
efficient training on large datasets. These advantages make BiLSTM a promising deep learn-
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ing method for air quality prediction. Practical implications of this study lies in monitoring
the air quality pattern change and prediction is helpful for government in implementing the
policy for air pollution control, while theoretical contribution of this study lies in using the
deep learning model in predicting air quality change, which can be helpful and motivate
researcher in using latest method in future [88–90].

Air pollution prediction has both practical and theoretical implications. Some of these
implications are:

4.1. Practical Implications

a. Public Health: Air pollution prediction can help in protecting public health by
providing early warnings of potentially hazardous air quality conditions. This
information can be used to warn vulnerable populations and limit their exposure
to air pollution. It can also help policymakers to take measures to reduce pollution
levels in affected areas.

b. Urban Planning: Air pollution prediction can aid in urban planning by providing
accurate and timely data on air quality levels in different parts of the city. This
information can help policymakers to make informed decisions regarding land-use
planning and the location of industrial sites and transportation routes.

c. Industrial Operations: Air pollution prediction can be used in industrial operations
to predict the impact of air pollution on the environment and the health of workers.
This information can help companies to take measures to reduce their emissions and
prevent environmental damage.

4.2. Theoretical Implications

a. Scientific Research: Air pollution prediction can be used to advance scientific research
in the field of atmospheric science, environmental science, and public health. It can
also help researchers to better understand the sources of air pollution and the factors
that contribute to its formation and dispersion.

b. Policy Development: Air pollution prediction can help policymakers to develop
more effective policies and regulations to reduce air pollution levels. It can also
aid in the evaluation of the effectiveness of current policies and the development of
new ones.

c. Climate Change: Air pollution prediction can provide valuable insights into the
impact of air pollution on climate change. It can help scientists to better understand
the complex interactions between air pollution and climate change and to develop
strategies for mitigating the impact of air pollution on the environment.

In summary, air pollution prediction has practical implications for protecting public
health, urban planning, and industrial operations, as well as theoretical implications for
scientific research, policy development, and climate change.

5. Conclusions

This study proposed the deep learning method to predict the change in air quality
patterns in different nearby cities and help in analysis of spatial patterns behavior in relation
to environment. The benefit of prediction method is to help government in formulating
a policy for prevention of this air pollution. There are several significant problems in the
prevention and control of air pollution in Henan Province that are worth thinking about:
the general rebound of ozone in the province, the heavy breakdown of secondary fine
particulate matter, the pollution problems of heavy industrial areas and non-channel cities
are prominent, the air quality in districts and counties is poor, and the level of pollution
control between different regions is uneven. Although the air pollution problem is closely
related to objective factors such as regional topography and meteorological conditions, it is
more reflected in the environment.

This paper, however, has room for improvement. Other important aspects of pollution
concentrations, such as weather and topography, are not considered in this article due
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to data availability. These parameters are predicted to increase model performance and
should be considered in future study. Furthermore, the experiments in this study were all
based in Henan, China, and the findings may be limited to the examined area. Although
the suggested technique is believed to be relevant to various locations and contaminants,
further research is required to confirm its reliability and generalizability.

Furthermore, while the suggested technique delivers a better prediction for data
with a higher temporal resolution, it takes longer to train. Because the base model or
base-resolution data are typically bigger in size than the goal resolution. This problem
can be addressed in the future. Other future possibilities for this research might include
investigating the applicability of other techniques with the BLSTM model in other similar
challenges. Is it feasible, for example, to transfer knowledge from another domain, such as
meteorological characteristics, straight to concentrations? This might help anticipate air
quality in locations where there are no monitoring stations.

There are several suggestions for policymakers and stakeholders who are working
with the government:

• The first suggestion is that the steel industry in Henan Province should develop
in a balanced and green way, improve industrial concentration and environmental
protection law enforcement, establish a fair, competitive environment, improve the
enthusiasm of enterprises to control pollution, and enterprises should consider taking
the road of high-quality development from the long-term perspective of industrial
transformation and source process structure adjustment.

• The second is to strengthen the standardization of provincial control stations and the
non-point source control below the district and county levels and incorporate district
and county sites into the urban state control assessment system, not only one city and
one policy, but also one county and one policy, effectively avoiding “one size fits all”
environmental management.

• The third is to promote the landing of scientific research results to support environ-
mental management needs. The challenge of improving air quality is the “secondary
pollution” treatment based on secondary PM2.5 and ozone (O3), and the causes of
ozone in different regions, the coordinated control scheme between PM2.5 and ozone,
the proportion of VOC and NOx emission reduction, and the objective understand-
ing of NH3 emissions and treatment need to carry out in-depth scientific research to
achieve scientific pollution control truly.
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