Influence of Dynamic and Thermal Effects of Asian Topography on Tropical Cyclone Activity as Simulated in a Global Climate Model
Abstract
:1. Introduction
2. Dataset and Method
2.1. Model Description
2.2. Simulation of FGOALS-f3 in GMMIP Tier 3
2.3. Tracking Algorithms
3. The Changes in Global Climatology of TC Activities due to Asian Topography
4. Possible Reasons for the Influence of Asian Topography on Tropical Cyclone Activities
4.1. The Changes in Large-Scale Factors Associated with Tropical Cyclone Activities
4.2. Asian Topography Affects the Phase Variation of Madden–Julian Oscillation (MJO)
5. Discussion and Conclusions
- Asian topography promotes the formation and precipitation of the Asian summer monsoon. We analyzed the changes of TCs, under the background of southwest winds and positive precipitation anomalies. The results indicate that the Asian topography promotes the generation and development of TCs, especially in WNP. It is worth noting that there is still a positive bias of TC track density in “AMIP-NS”, which means the thermal effect of Asian topography is also essential for TC formation and development.
- In terms of large-scale factors and MJO activity, the possible reasons that the Asian topography modulates the regional TC activities are given. The results indicate that the presence of Asian topography is conducive to the formation of warm core and sea-level pressure, which make a positive contribution to the generation and development of TCs. The genesis potential (GPI is used to explain the connection between the TC genesis and large-scale pattern, and the result indicates that the GPI globally decreased when the Asian topography or surface sensible heating was removed from the CAS FGOALS-f3-L. On the other hand, the existence of Asian topography will facilitate the eastward propagation and the precipitation of MJO, which provides a large-scale environment for TC generation and development.
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emanuel, K. Will global warming make hurricane forecasting more difficult? Bull. Am. Meteorol. Soc. 2017, 98, 495–501. [Google Scholar] [CrossRef]
- Tippett, M.K.; Camargo, S.J.; Sobel, A.H. A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Clim. 2011, 24, 2335–2357. [Google Scholar] [CrossRef]
- Wu, L.; Wang, B. Assessing impacts of global warming on tropical cyclone tracks. J. Clim. 2004, 17, 1686–1698. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Murakami, H.; Villarini, G.; Delworth, T.L.; Yang, X.; Jia, L. Dominant role of Atlantic Multidecadal Oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophys. Res. Lett. 2018, 45, 354–362. [Google Scholar] [CrossRef]
- Girishkumar, M.; Prakash, V.T.; Ravichandran, M. Influence of Pacific Decadal Oscillation on the relationship between ENSO and tropical cyclone activity in the Bay of Bengal during October–December. Clim. Dyn. 2015, 44, 3469–3479. [Google Scholar] [CrossRef]
- Lee, H.S.; Yamashita, T.; Mishima, T. Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific. Prog. Oceanogr. 2012, 105, 67–80. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Wallace, J.M. Meteorological aspects of the El Nino/southern oscillation. Science 1983, 222, 1195–1202. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Hoar, T.J. The 1990–1995 El Niño-Southern Oscillation event: Longest on record. Geophys. Res. Lett. 1996, 23, 57–60. [Google Scholar] [CrossRef]
- Chan, J.C. Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Weather Rev. 1985, 113, 599–606. [Google Scholar] [CrossRef]
- Chan, J.C. Tropical cyclone activity in the western North Pacific in relation to the stratospheric quasi-biennial oscillation. Mon. Weather Rev. 1995, 123, 2567–2571. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H. Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 2005, 18, 2996–3006. [Google Scholar] [CrossRef]
- Zhang, C. Madden–Julian oscillation: Bridging weather and climate. Bull. Am. Meteorol. Soc. 2013, 94, 1849–1870. [Google Scholar] [CrossRef]
- Klotzbach, P.J. The Madden–Julian oscillation’s impacts on worldwide tropical cyclone activity. J. Clim. 2014, 27, 2317–2330. [Google Scholar] [CrossRef]
- Emanuel, K.A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 1995, 52, 3969–3976. [Google Scholar] [CrossRef]
- Emanuel, K.; Nolan, D.S. Tropical cyclone activity and the global climate system. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorolgy, Miami, FL, USA, 3–7 May 2004; pp. 240–241. [Google Scholar]
- Camargo, S.J.; Giulivi, C.F.; Sobel, A.H.; Wing, A.A.; Kim, D.; Moon, Y.; Strong, J.; Del Genio, A.D.; Kelley, M.; Murakami, H. Characteristics of Model Tropical Cyclone Climatology and the Large-Scale Environment. J. Clim. 2020, 33, 4463–4487. [Google Scholar] [CrossRef]
- Ooyama, K. Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci. 1969, 26, 3–40. [Google Scholar] [CrossRef]
- Manabe, S.; Broccoli, A. Mountains and arid climates of middle latitudes. Science 1990, 247, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Lau, N.-C. A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Weather Rev. 1992, 120, 958–977. [Google Scholar] [CrossRef]
- Walsh, K.; Nguyen, K.-C.; McGregor, J. Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim. Dyn. 2004, 22, 47–56. [Google Scholar]
- Landman, W.A.; Seth, A.; Camargo, S.J. The effect of regional climate model domain choice on the simulation of tropical cyclone–like vortices in the southwestern Indian Ocean. J. Clim. 2005, 18, 1263–1274. [Google Scholar] [CrossRef]
- Camargo, S.J.; Wing, A.A. Tropical cyclones in climate models. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 211–237. [Google Scholar] [CrossRef]
- Walsh, K.J.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargo, S.J.; Holland, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.C.; Sobel, A. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Oouchi, K.; Yoshimura, J.; Yoshimura, H.; Mizuta, R.; Kusunoki, S.; Noda, A. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteorol. Soc. Jpn. Ser. II 2006, 84, 259–276. [Google Scholar] [CrossRef]
- Zhao, M.; Held, I.M.; Lin, S.-J.; Vecchi, G.A. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Clim. 2009, 22, 6653–6678. [Google Scholar] [CrossRef]
- Li, J.; Bao, Q.; Liu, Y.; Wu, G.; Wang, L.; He, B.; Wang, X.; Li, J. Evaluation of FAMIL2 in Simulating the Climatology and Seasonal-to-Interannual Variability of Tropical Cyclone Characteristics. J. Adv. Model. Earth Syst. 2019, 11, 1117–1136. [Google Scholar] [CrossRef]
- Zhao, M.; Golaz, J.C.; Held, I.M.; Guo, H.; Balaji, V.; Benson, R.; Chen, J.H.; Chen, X.; Donner, L.; Dunne, J. The GFDL global atmosphere and land model AM4. 0/LM4. 0: 1. Simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst. 2018, 10, 691–734. [Google Scholar] [CrossRef]
- Camp, J.; Wheeler, M.C.; Hendon, H.H.; Gregory, P.A.; Marshall, A.G.; Tory, K.J.; Watkins, A.B.; MacLachlan, C.; Kuleshov, Y. Skilful multiweek tropical cyclone prediction in ACCESS-S1 and the role of the MJO. Q. J. R. Meteorol. Soc. 2018, 144, 1337–1351. [Google Scholar] [CrossRef]
- Yeh, T.-C. The wind structure and heat balance in the lower troposphere over the Tibetan Plateau and its surroundings. Acta Meteorol. Sin. 1957, 28, 108–121. [Google Scholar]
- Flohn, H. Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteorol. Soc. Jpn. Ser. II 1957, 35, 180–186. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim. Dyn. 2005, 24, 793–807. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; Zhang, Q.; Duan, A.; Wang, T.; Wan, R.; Liu, X.; Li, W.; Wang, Z.; Liang, X. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeorol. 2007, 8, 770–789. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y.; He, B.; Bao, Q.; Duan, A.; Jin, F.-F. Thermal controls on the Asian summer monsoon. Sci. Rep. 2012, 2, 404. [Google Scholar] [CrossRef] [PubMed]
- Boos, W.R.; Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 2010, 463, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fan, K.; Sun, J.; Li, S.; Lin, Z.; Zhou, G.; Chen, L.; Lang, X.; Li, F.; Zhu, Y. A review of seasonal climate prediction research in China. Adv. Atmos. Sci. 2015, 32, 149–168. [Google Scholar] [CrossRef]
- Zhao, C.; Ren, H.L.; Eade, R.; Wu, Y.; Wu, J.; MacLachlan, C. MJO modulation and its ability to predict boreal summer tropical cyclone genesis over the northwest Pacific in Met Office Hadley Centre and Beijing Climate Center seasonal prediction systems. Q. J. R. Meteorol. Soc. 2019, 145, 1089–1101. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Ma, T.; Wu, G. Impact of surface potential vorticity density forcing over the Tibetan Plateau on the South China extreme precipitation in January 2008. Part ll: Numerical Simulation. J. Meteorol. Res. 2019, 33, 416–432. [Google Scholar] [CrossRef]
- Ma, T.; Wu, G.; Liu, Y.; Jiang, Z.; Yu, J. Impact of surface potential vorticity density forcing over the Tibetan Plateau on the South China extreme precipitation in January 2008. Part I: Data analysis. J. Meteorol. Res. 2019, 33, 400–415. [Google Scholar] [CrossRef]
- Zhan, R.; Ding, Y.; Wu, L.; Lei, X. Role of ENSO in the interannual relationship between Tibetan Plateau winter snow cover and Northwest Pacific tropical cyclone genesis frequency. Sci. China Earth Sci. 2016, 59, 2009–2021. [Google Scholar] [CrossRef]
- Zhou, T.; Turner, A.G.; Kinter, J.L.; Wang, B.; Qian, Y.; Chen, X.; Wu, B.; Liu, B.; Zou, L.; Bian, H. GMMIP (v1. 0) contribution to CMIP6: Global monsoons model inter-comparison project. Geosci. Model Dev. 2016, 9, 3589–3604. [Google Scholar] [CrossRef]
- He, B.; Liu, Y.; Wu, G.; Bao, Q.; Zhou, T.; Wu, X.; Wang, L.; Li, J.; Wang, X.; Li, J. CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and Tier-3 Experiments. Adv. Atmos. Sci. 2020, 37, 18–28. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Zhou, L.; Bao, Q.; Liu, Y.; Wu, G.; Wang, W.C.; Wang, X.; He, B.; Yu, H.; Li, J. Global energy and water balance: Characteristics from F inite-volume A tmospheric M odel of the IAP/LASG (FAMIL 1). J. Adv. Model. Earth Syst. 2015, 7, 1–20. [Google Scholar] [CrossRef]
- Wu, G.; Liu, H.; Zhao, Y.; Li, W. A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci. 1996, 13, 1–18. [Google Scholar]
- Bao, Q.; Lin, P.; Zhou, T.; Liu, Y.; Yu, Y.; Wu, G.; He, B.; He, J.; Li, L.; Li, J. The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci. 2013, 30, 561–576. [Google Scholar] [CrossRef]
- Liu, H.; Lin, P.; Yu, Y.; Zhang, X. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorol. Sin. 2012, 26, 318–329. [Google Scholar] [CrossRef]
- Oleson, K.W.; Lawrence, D.M.; Gordon, B.; Flanner, M.G.; Kluzek, E.; Peter, J.; Levis, S.; Swenson, S.C.; Thornton, E.; Feddema, J. Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+ STR 2010, 257, 1–257. [Google Scholar]
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Zeng, X.; Yang, Z.L.; Levis, S.; Sakaguchi, K. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 2011, 3, 1–27. [Google Scholar]
- Hunke, E.; Lipscomb, W.; Turner, A.; Jeffery, N.; Elliott, S. CICE: The Los Alamos Sea Ice Model, Documentation and Software; Version 4.0; LA-CC-06-012; Los Alamos National Laboratory: Los Alamos, NM, USA, 2008. [Google Scholar]
- Hunke, E.; Lipscomb, W.; Turner, A.; Jeffery, N.; Elliott, S. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual; Version 4.1; Los Alamos National Laboratory: Los Alamos, NM, USA, 2010. [Google Scholar]
- Craig, A.P.; Vertenstein, M.; Jacob, R. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl. 2012, 26, 31–42. [Google Scholar] [CrossRef]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V. High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef]
- Chen, J.-H.; Lin, S.-J. Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Clim. 2013, 26, 380–398. [Google Scholar] [CrossRef]
- Xiang, B.; Lin, S.-J.; Zhao, M.; Zhang, S.; Vecchi, G.; Li, T.; Jiang, X.; Harris, L.; Chen, J.-H. Beyond weather time-scale prediction for Hurricane Sandy and Super Typhoon Haiyan in a global climate model. Mon. Weather Rev. 2015, 143, 524–535. [Google Scholar] [CrossRef]
- Li, J.; Bao, Q.; Liu, Y.; Wu, G.; Wang, L.; He, B.; Wang, X.; Yang, J.; Wu, X.; Shen, Z. Dynamical seasonal prediction of tropical cyclone activity using the fgoals-f2 ensemble prediction system. Weather Forecast. 2021, 36, 1759–1778. [Google Scholar] [CrossRef]
- Li, J.; Bao, Q.; Liu, Y.; Wang, L.; Yang, J.; Wu, G.; Wu, X.; He, B.; Wang, X.; Zhang, X. Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model. Geosci. Model Dev. 2021, 14, 6113–6133. [Google Scholar] [CrossRef]
- Chang, C.-P.; Yang, Y.-T.; Kuo, H.-C. Large increasing trend of tropical cyclone rainfall in Taiwan and the roles of terrain. J. Clim. 2013, 26, 4138–4147. [Google Scholar] [CrossRef]
- Li, R.C.; Zhou, W. Interdecadal changes in summertime tropical cyclone precipitation over southeast China during 1960–2009. J. Clim. 2015, 28, 1494–1509. [Google Scholar] [CrossRef]
- Jones, E.; Wing, A.A.; Parfitt, R. A global perspective of tropical cyclone precipitation in reanalyses. J. Clim. 2021, 34, 8461–8480. [Google Scholar] [CrossRef]
- Chen, G.; Tam, C.Y. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett. 2010, 37, 1–6. [Google Scholar] [CrossRef]
- Camargo, S.J.; Wheeler, M.C.; Sobel, A.H. Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci. 2009, 66, 3061–3074. [Google Scholar] [CrossRef]
- Chan, J.C.; Shi, J.-E.; Lam, C.-M. Seasonal forecasting of tropical cyclone activity over theWestern North Pacific and the South China Sea. Weather Forecast. 1998, 13, 997–1004. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, G.; Ren, R. Relationship between the subtropical anticyclone and diabatic heating. J. Clim. 2004, 17, 682–698. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R.; Zhang, J.; Drange, H.; Cassou, C.; Deser, C.; Hodson, D.L.; Sanchez-Gomez, E.; Li, J.; Keenlyside, N. Why the western Pacific subtropical high has extended westward since the late 1970s. J. Clim. 2009, 22, 2199–2215. [Google Scholar] [CrossRef]
- Wang, B.; Xiang, B.; Lee, J.-Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA 2013, 110, 2718–2722. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Duan, A.; He, B.; Hao, S. Dynamic and Thermal Effects of the Tibetan and Iranian Plateaus on the Northward-Propagating Intraseasonal Oscillation during Boreal Summer. J. Clim. 2022, 35, 2173–2188. [Google Scholar] [CrossRef]
- Baldwin, J.W.; Vecchi, G.A.; Bordoni, S. The direct and ocean-mediated influence of Asian orography on tropical precipitation and cyclones. Clim. Dyn. 2019, 53, 805–824. [Google Scholar] [CrossRef]
Experimental Name | Variant Label | Integration Time | Description | Horizontal Resolution/Vertical Layer |
---|---|---|---|---|
amip-hist | r1i1p1f1 | 1981–2014 | The model integration starts from 1 January 1861 with the external forcings, including greenhouse gases, solar irradiance, ozone, aerosols, SSTs, and sea ice, similar to the experimental design of AMIP. The outputs from 1870 to 2014 are provided but selected from 1981 to 2014 for this study. | C96 (approximately 100 km)/32 layers |
amip-TIP | r1i1p1f1 | 1981–2014 | The topography of TIP above 500 m is set to 500 m in a polygon region. The coordinates of the polygon corners are as follows: longitude coordinates (from west to east) are 25° E, 40° E, 50° E, 70° E, 90° E and 180° E; latitude coordinates (from south to north) are 5° N, 15° N, 20° N, 25° N, 35° N, 45° N and 75° N. The outputs from 1979 to 2014 are provided but selected from 1981 to 2014 for this study. | Same as amip-hist |
amip-TIP-nosh | r1i1p1f1 | 1981–2014 | The surface sensible heating is removed from topographies above 500 m in order to compare the impact of thermal effects. The coordinates of the polygon corners are the same as amip-TIP. One practical method is to set the vertical temperature diffusion term to zero in the atmospheric thermodynamic equation at the bottom boundary layer. The outputs from 1979 to 2014 are provided but selected from 1981 to 2014 for this study. | Same as amip-hist |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J. Influence of Dynamic and Thermal Effects of Asian Topography on Tropical Cyclone Activity as Simulated in a Global Climate Model. Atmosphere 2023, 14, 905. https://doi.org/10.3390/atmos14050905
Li J. Influence of Dynamic and Thermal Effects of Asian Topography on Tropical Cyclone Activity as Simulated in a Global Climate Model. Atmosphere. 2023; 14(5):905. https://doi.org/10.3390/atmos14050905
Chicago/Turabian StyleLi, Jinxiao. 2023. "Influence of Dynamic and Thermal Effects of Asian Topography on Tropical Cyclone Activity as Simulated in a Global Climate Model" Atmosphere 14, no. 5: 905. https://doi.org/10.3390/atmos14050905
APA StyleLi, J. (2023). Influence of Dynamic and Thermal Effects of Asian Topography on Tropical Cyclone Activity as Simulated in a Global Climate Model. Atmosphere, 14(5), 905. https://doi.org/10.3390/atmos14050905