Tuning Monte Carlo Models to Reproduce Cosmic Radiation Interacting with the Earth’s Atmosphere
Abstract
:1. Introduction
2. Methodology and Models
3. Analyses, Findings, and Interpretation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Auger, P.; Ehrenfest, P.; Maze, R.; Daudin, J.; Robley, A.F. Extensive cosmic ray showers. Rev. Mod. Phys. 1939, 11, 288–291. [Google Scholar] [CrossRef]
- Dorman, L. Cosmic Rays in the Earth’s Atmosphere and Underground. In Astrophysics and Space Science Library; Springer: Dordrecht, The Netherlands, 2004; Volume 303. [Google Scholar] [CrossRef]
- Seo, E.S.; Anderson, T.; Angelaszek, D.; Baek, S.J.; Baylon, J.; Buénerd, M.; Copley, M.; Coutu, S.; Derome, L.; Fields, B.; et al. Cosmic Ray Energetics Furthermore, Mass for the International Space Station (ISS-CREAM). Adv. Space Res. 2014, 53, 1451–1455. [Google Scholar] [CrossRef]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; et al. The PAMELA Mission: Heralding a new era in precision cosmic ray physics. Phys. Rept. 2014, 544, 323–370. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube. Phys. Rev. D 2019, 100, 082002. [Google Scholar] [CrossRef] [Green Version]
- Scholten, O.; Pierre Auger Collaboration. Measurement of the cosmic-ray energy spectrum above 2.5 × 1018 eV using the Pierre Auger Observatory. Phys. Rev. D 2020, 102, 062005. [Google Scholar] [CrossRef]
- Ellis, R.K.; Stirling, W.J.; Webber, B.R. QCD and collider physics. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 1996, 8, 1–435. [Google Scholar]
- Collins, J.C.; Soper, D.E.; Sterman, G.F. Factorization of Hard Processes in QCD. Adv. Ser. Direct. High Energy Phys. 1989, 5, 1–91. [Google Scholar] [CrossRef] [Green Version]
- Adam, J. Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at = 13 TeV. Phys. Lett. B 2016, 753, 319–329. [Google Scholar] [CrossRef]
- Ajaz, M.; Ahmed, A.; Wazir, Z.; Shehzadi, R.; Younis, H.; Khan, G.; Khan, R.; Ali, S.; Waqas, M.; Yang, P.P.; et al. Centrality dependence of PT distributions and nuclear modification factor of charged particles in Pb–Pb interactions at SNN = 2.76 TeV. Results Phys. 2021, 30, 104790. [Google Scholar] [CrossRef]
- Ajaz, M.; Waqas, M.; Peng, G.X.; Yasin, Z.; Younis, H.; Haj Ismail, A.A.K. Study of pT spectra of light particles using modified Hagedorn function and cosmic rays Monte Carlo event generators in proton–proton collisions at = 900 GeV. Eur. Phys. J. Plus 2022, 137, 52. [Google Scholar] [CrossRef]
- Elia, D. Strange and identified particle production with ALICE at the LHC. EPJ Web Conf. 2015, 95, 03008. [Google Scholar] [CrossRef]
- Waqas, M.; Peng, G.; Liu, F.-H. An evidence of triple kinetic freezeout scenario observed in all centrality intervals in Cu-Cu, Au-Au and Pb-Pb collisions at high energies. J. Phys. G Nucl. Part. Phys. 2021, 48, 075108. [Google Scholar] [CrossRef]
- Muhammad, W.; Liu, F.-H.; Wang, R.-Q.; Irfan, S. Energy scan/dependence of kinetic freeze-out scenarios of multi-strange and other identified particles in central nucleus-nucleus collisions. Eur. Phys. J. A 2020, 56, 188. [Google Scholar] [CrossRef]
- ALICE Collaboration. Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nat. Phys. 2017, 13, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.N.; Gyulassy, M. HIJING: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 1991, 44, 3501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalmykov, N.N.; Ostapchenko, S.S.; Pavlov, A.I. EAS and a quark-gluon string model with jets. Bull. Russ. Acad. Sci. Phys. 1994, 58, 1966. [Google Scholar]
- Fletcher, R.S.; Gaisser, T.K.; Lipari, P.; Stanev, T. SIBYLL: An event generator for simulation of high energy cosmic ray cascades. Phys. Rev. D Part. Fields 1994, 50, 5710–5731. [Google Scholar] [CrossRef] [Green Version]
- Demir, D.A.; CMS Collaboration. Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at = 0.9 and 2.36 TeV. J. High Energy Phys. 2010, 02, 041. [Google Scholar]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; et al. Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at = 7 TeV. Phys. Rev. Lett. 2010, 105, 022002. [Google Scholar] [CrossRef] [Green Version]
- Bruno, G.E. Rapidity distributions of strange particles in Pb-Pb at 158-A-GeV/c. arXiv 2005, arXiv:nucl-ex/0511022. [Google Scholar]
- Cadman, R.V.; Krueger, K.; Spinka, H.M.; McClain, C.J.; Underwood, D.G.; Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J. Strange particle production in p+p collisions at s**(1/2) = 200-GeV. Phys. Rev. C 2007, 75, 064901. [Google Scholar] [CrossRef] [Green Version]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al. Strange Particle Production in pp Collisions at = 0.9 and 7 TeV. J. High Energy Phys. 2011, 05, 64. [Google Scholar] [CrossRef] [Green Version]
- Ajaz, M.; Bilal, M.; Ali, Y.; Suleymanov, M.K.; Khan, K.H. Models prediction of hadrons production ratios in pp collisions at = 7 TeV. Mod. Phys. Lett. A 2019, 34, 1950090. [Google Scholar] [CrossRef]
- Yang, P.P.; Ajaz, M.; Waqas, M.; Liu, F.H.; Suleymanov, M.K. Pseudorapidity dependence of the pT spectra of charged hadrons in pp collisions at = 0.9 and 2.36 TeV. J. Phys. G 2022, 49, 055110. [Google Scholar] [CrossRef]
- Ajaz, M.; Haj Ismail, A.A.K.; Waqas, M.; Suleymanov, M.; AbdelKader, A.; Suleymanov, R. Pseudorapidity dependence of the bulk properties of hadronic medium in pp collisions at 7 TeV. Sci. Rep. 2022, 12, 8142. [Google Scholar] [CrossRef]
- Tabassam, U.; Ali, Y.; Suleymanov, M.; Bhatti, A.S.; Ajaz, M. The production of pi (+/-), K-+/-, p and (p) over-bar in p-Pb collisions at root S-NN = 5.02 Tev. Mod. Phys. Lett. A 2018, 33, 1850094. [Google Scholar] [CrossRef]
- Ajaz, M.; Waqas, M.; Li, L.L.; Tabassam, U.; Suleymanov, M. Bulk properties of the medium in comparison with models’ predictions in pp collisions at 13 TeV. Eur. Phys. J. Plus 2022, 137, 592. [Google Scholar] [CrossRef]
- Ajaz, M.; Khan, R.; Wazir, Z.; Khan, I.; Bibi, T. Model prediction of transverse momentum spectra of strange hadrons in pp collisions at = 200 GeV. Int. J. Theor. Phys. 2020, 59, 3338. [Google Scholar] [CrossRef]
- Khan, R.; Ajaz, M. Model predictions of charge particle densities and multiplicities in the forward region at 7 TeV. Mod. Phys. Lett. A 2020, 35, 2050190. [Google Scholar] [CrossRef]
- Ajaz, M.; Tufail, M.; Ali, Y. Study of the production of strange particles in proton–proton collisions at = 0.9 TeV. Arab. J. Sci. Eng. 2020, 45, 411–416. [Google Scholar] [CrossRef]
- Haj Ismail, A. Monte Carlo simulation of the cosmic muon charge ratio. Kuwait J. Sci. 2022, 49, 1–8. [Google Scholar] [CrossRef]
- Li-Li, L.; Ismail, A.H. Study of Bulk Properties of Strange Particles in Au+Au Collisions at = 54.4 GeV. Entropy 2022, 24, 1720. [Google Scholar] [CrossRef]
- Andersson, B.; Gustafson, G.; Ingelman, G.; Sjöstr, T. Parton fragmentation and string dynamics. Phys. Rep. 1983, 97, 31. [Google Scholar] [CrossRef]
- Capella, A.; Sukhatme, U.; Tran Thanh Van, J. Soft multihadron production from partonic structure and fragmentation functions. Z. Phys. C 1980, 3, 329. [Google Scholar] [CrossRef]
- Soleiman, M.H.M. Event by Event Studies of Au-Au Collisions at = 200 GeV Using Two Event Generators. Arab J. Nucl. Sci. Appl. 2020, 53, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Ajaz, M.; Wazir, Z.; Ali, Y.; Khan, K.H.; Younis, H. Hadron production models’ prediction for p T distribution of charged hadrons in pp interactions at 7 TeV. Sci. Rep. 2019, 9, 11811. [Google Scholar] [CrossRef] [Green Version]
- Gyulassy, M.; Wang, X.N. HIJING 1.0: A Monte Carlo program for parton and particle production in high energy hadronic and nuclear collisions. Comput. Phys. Commun. 1994, 83, 307–331. [Google Scholar] [CrossRef] [Green Version]
- Durand, L.; Hong, P. QCD and rising cross sections. Phys. Rev. Lett. 1987, 58, 303. [Google Scholar] [CrossRef]
- Good, M.L.; Walker, W.D. Diffraction Dissociation of Beam Particles. Phys. Rev. 1960, 120, 1857. [Google Scholar] [CrossRef]
- Riehn, F.; Engel, R.; Fedynitch, A.; Gaisser, T.K.; Stanev, T. Hadronic interaction model Sibyll 2.3 d and extensive air showers. Phys. Rev. D 2020, 102, 063002. [Google Scholar] [CrossRef]
- Ostapchenko, S. Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model. Phys. Rev. D 2011, 83, 014018. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.; Ter-Martirosyan, K.A. Gribov’s Reggeon calculus: Its physical basis and implications. Phys. Rept. 1976, 28, 1. [Google Scholar] [CrossRef]
- Ostapchenko, S. QGSJET-II: Towards reliable description of very high energy hadronic interactions. Nucl. Phys. B-Proc. Suppl. 2006, 151, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Ajaz, M.; Ali, Y. Spectra of strange hadrons and their role in neutrinos flux prediction. EPL 2018, 123, 31001. [Google Scholar] [CrossRef]
- Calcagni, L.; Canal, C.G.; Sciutto, S.J.; Tarutina, T. LHC updated hadronic interaction packages analyzed up to cosmic-ray energies. Phys. Rev. D 2018, 98, 083003. [Google Scholar] [CrossRef] [Green Version]
- Gaisser, T.K. Cosmic Rays and Particle Physics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Dumitru, A.; Spieles, C. Inverse slope systematics in high-energy p+p and Au+Au reactions. Phys. Lett. B 1999, 446, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.N.; Gyulassy, M. A Systematic study of particle production in p + p (anti-p) collisions via the HIJING model. Phys. Rev. D 1992, 45, 844–856. [Google Scholar] [CrossRef]
- Biro, T.S.; Nielsen, H.B.; Knoll, J. Colour rope model for extreme relativistic heavy ion collisions. Nucl. Phys. B 1984, 245, 449. [Google Scholar] [CrossRef]
- Bialas, A.; Czyz, W. Chromoelectric flux tubes and the transverse-momentum distribution in high-energy nucleus-nucleus collisions. Phys. Rev. 1985, 31, 198. [Google Scholar] [CrossRef]
- Gyulassy, M.; Iwazaki, A. Quark and gluon pair production in SU (N) covariant constant fields. Phys. Lett. B 1985, 165, 157. [Google Scholar] [CrossRef] [Green Version]
- Merino, C.; Pajares, C.; Ranft, J. Effects of interaction of strings in the dual parton model. Phys. Lett. B 1992, 276, 168. [Google Scholar] [CrossRef]
- Levai, P.; Skokov, V. Nonperturbative enhancement of heavy quark-pair production in a strong SU(2) color field. Phys. Rev. D 2010, 82, 074014. [Google Scholar] [CrossRef] [Green Version]
- Hebenstreit, F.; Alkofer, R.; Gies, H. Pair Production Beyond the Schwinger Formula in Time-Dependent Electric Fields. Phys. Rev. D 2008, 78, 061701. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajaz, M.; Haj Ismail, A.; Waqas, M.; Shehzadi, R.; Asghar, I.; Younis, H.; Mian, M.U.; AbdelKader, A.; Adil Khan, M.; Safeen, K. Tuning Monte Carlo Models to Reproduce Cosmic Radiation Interacting with the Earth’s Atmosphere. Atmosphere 2023, 14, 1028. https://doi.org/10.3390/atmos14061028
Ajaz M, Haj Ismail A, Waqas M, Shehzadi R, Asghar I, Younis H, Mian MU, AbdelKader A, Adil Khan M, Safeen K. Tuning Monte Carlo Models to Reproduce Cosmic Radiation Interacting with the Earth’s Atmosphere. Atmosphere. 2023; 14(6):1028. https://doi.org/10.3390/atmos14061028
Chicago/Turabian StyleAjaz, Muhammad, Abd Haj Ismail, Muhammad Waqas, Ramoona Shehzadi, Ishrat Asghar, Hannan Younis, Mateen Ullah Mian, Atef AbdelKader, Muhammad Adil Khan, and Kashif Safeen. 2023. "Tuning Monte Carlo Models to Reproduce Cosmic Radiation Interacting with the Earth’s Atmosphere" Atmosphere 14, no. 6: 1028. https://doi.org/10.3390/atmos14061028
APA StyleAjaz, M., Haj Ismail, A., Waqas, M., Shehzadi, R., Asghar, I., Younis, H., Mian, M. U., AbdelKader, A., Adil Khan, M., & Safeen, K. (2023). Tuning Monte Carlo Models to Reproduce Cosmic Radiation Interacting with the Earth’s Atmosphere. Atmosphere, 14(6), 1028. https://doi.org/10.3390/atmos14061028