Short-Period Variation of the Activity of Atmospheric Turbulence in the MLT Region over Langfang
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussions
3.1. Short-Period Variation of in the MLT Region
3.2. Relationship between the Activities of Atmospheric Turbulence and Atmospheric Tides
3.3. Relationship between the Activities of Atmospheric Turbulence and Atmospheric Gravity Waves
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lübken, F.J. Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by in situ measurements of neutral density fluctuations. J. Geophys. Res. 1997, 102, 13441–13456. [Google Scholar] [CrossRef]
- Sasi, M.N.; Vijayan, L. Turbulence characteristics in the tropical mesosphere as obtained by MST radar at Gadanki (13.5° N, 79.2° E). Ann. Geophys. 2001, 19, 1019–1025. [Google Scholar] [CrossRef] [Green Version]
- Roper, R.G.; Brosnahan, J.W. Diurnal variations in the rate of dissipation of turbulent energy in the equatorial upper mesosphere-lower thermosphere: Upper mesosphere turbulence. Radio Sci. 2005, 40, 1–15. [Google Scholar] [CrossRef]
- Holdsworth, D.A.; Vincent, R.A.; Reid, I.M. Mesospheric turbulent velocity estimation using the Buckland Park MF radar. Ann. Geophys. 2001, 19, 1007–1017. [Google Scholar] [CrossRef]
- Hall, C.M.; Meek, C.E.; Manson, A.H.; Nozawa, S. Turbopause determination, climatology, and climatic trends using medium frequency radars at 52° N and 70° N. J. Geophys. Res. 2008, 113, D13104. [Google Scholar] [CrossRef]
- Hall, C.M.; Holmen, S.E.; Meek, C.E.; Manson, A.H.; Nozawa, S. Change in turbopause altitude at 52 and 70° N. Atmos. Chem. Phys. 2016, 16, 2299–2308. [Google Scholar] [CrossRef] [Green Version]
- Lehmacher, G.A.; Larsen, M.F.; Collins, R.L.; Barjatya, A.; Strelnikov, B. On the short-term variability of turbulence and temperature in the winter mesosphere. Ann. Geophys. 2018, 36, 1099–1116. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Collins, R.; Lu, X.; Williams, B. Lidar observations of instability and estimates of vertical eddy diffusivity induced by gravity wave breaking in the Arctic mesosphere. JGR Atmos. 2021, 126, e2020JD033450. [Google Scholar] [CrossRef]
- Roper, R.; Berkey, F. Mesospheric and lower thermospheric turbulence over Bear Lake, Utah, 1999–2003. J. Atmos.-Sol.-Terr. Phys. 2011, 73, 921–924. [Google Scholar] [CrossRef]
- Roper, R.G. Atmospheric turbulence in the meteor region. J. Geophys. Res. 1966, 71, 5785–5792. [Google Scholar] [CrossRef] [Green Version]
- Strelnikov, B.; Szewczyk, A.; Strelnikova, I.; Latteck, R.; Baumgarten, G.; Lübken, F.J.; Rapp, M.; Fasoulas, S.; Löhle, S.; Eberhart, M.; et al. Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign. Ann. Geophys. 2017, 35, 547–565. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.; Xu, Q.; Hu, X.; Yang, J. Initial Results of Meteor Wind with Langfang Medium Frequency Radar. Atmosphere 2020, 11, 507. [Google Scholar] [CrossRef]
- Cai, B.; Xu, Q.; Hu, X.; Cheng, X.; Yang, J.; Li, W. Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China. Earth Planet. Phys. 2021, 5, 270–279. [Google Scholar] [CrossRef]
- Briggs, B. Radar observations of atmospheric winds and turbulence: A comparison of techniques. J. Atmos. Terr. Sci. 1980, 42, 823–833. [Google Scholar] [CrossRef]
- Holdsworth, D.A.; Reid, I.M. A simple model of atmospheric radar backscatter: Description and application to the full correlation analysis of spaced antenna data. Radio Sci. 1995, 30, 1263–1280. [Google Scholar] [CrossRef]
- Hocking, W.K. Strengths and limitations of MST radar measurements of middle-atmosphere winds. Ann. Geophys. 1997, 15, 1111–1122. [Google Scholar] [CrossRef]
- Blamont, J.E. Turbulence in atmospheric motions between 90 and 130 km of altitude. Planet Space Sci. 1963, 10, 89–101. [Google Scholar] [CrossRef]
- Manson, A.H.; Meek, C.E. Gravity waves of short period (5–90 min), in the lower thermosphere at 52 N (Saskatoon, Canada). J. Atmos. Terr. Sci. 1980, 42, 103–113. [Google Scholar] [CrossRef]
- Weinstock, J. Energy Dissipation Rates of Turbulence in the Stable Free Atmosphere. J. Atmos. Sci. 1981, 38, 880–883. [Google Scholar] [CrossRef]
- Oakey, N.S. Determination of the Rate of Dissipation of Turbulent Energy from Simultaneous Temperature and Velocity Shear Microstructure Measurements. J. Phys. Oceanogr. 1982, 12, 256–271. [Google Scholar] [CrossRef]
- Lilly, D.K.; Waco, D.E.; Adelfang, S.I. Stratospheric Mixing Estimated from High-Altitude Turbulence Measurements. J. Appl. Meteor. 1974, 13, 488–493. [Google Scholar] [CrossRef]
- Hocking, W.K. The dynamical parameters of turbulence theory as they apply to middle atmosphere studies. Earth Planets Space 1999, 51, 525–541. [Google Scholar] [CrossRef] [Green Version]
- Gavrilov, N.M.; Luce, H.; Crochet, M.; Dalaudier, F.; Fukao, S. Turbulence parameter estimations from high-resolution balloon temperature measurements of the MUTSI-2000 campaign. Ann. Geophys. 2005, 23, 2401–2413. [Google Scholar] [CrossRef] [Green Version]
- Emmert, J.T.; Drob, D.P.; Picone, J.M.; Siskind, D.E.; Jones, M.; Mlynczak, M.G.; Bernath, P.F.; Chu, X.; Doornbos, E.; Funke, B.; et al. NRLMSIS 2.0: A whole-atmosphere empirical model of temperature and neutral species densities. Earth Space Sci. 2021, 8, e2020EA001321. [Google Scholar] [CrossRef]
- Yuan, T.; Stevens, M.H.; Englert, C.R.; Immel, T.J. Temperature tides across the mid-latitude summer turbopause measured by a sodium lidar and MIGHTI/ICON. JGR Atmos. 2021, 126, e2021JD035321. [Google Scholar] [CrossRef]
- She, C.Y.; Krueger, D.A.; Yuan, T.; Oberheide, J. On the polarization relations of diurnal and semidiurnal tide in the mesopause region. J. Atmos. Solar-Terr. Phys. 2016, 142, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Fraser, G.J.; Khan, U. Semidiurnal variations in the time scale of irregularities near the Antarctic summer mesopause. Radio Sci. 1990, 25, 997–1003. [Google Scholar] [CrossRef]
- Lindzen, R.S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 1981, 86, 9707. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Murayama, Y.; Kawamura, S. Tidal modulations of mesospheric gravity wave kinetic energy observed with MF radar at Poker Flat Research Range, Alaska. J. Geophys. Res. Atmos. 2015, 120, 6379–6390. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, A.Z.; Gardner, C.S. First Na lidar measurements of turbulence heat flux, thermal diffusivity, and energy dissipation rate in the mesopause region. Geophys. Res. Lett. 2017, 44, 5782–5790. [Google Scholar] [CrossRef] [Green Version]
- Kovalam, S.; Tsuda, T.; Gurubaran, S. High-frequency gravity waves observed in the low-latitude mesosphere-lower thermosphere (MLT) region and their possible relationship to lower-atmospheric convection. J. Geophys. Res. 2011, 116, D15101. [Google Scholar] [CrossRef] [Green Version]
- Kurosaki, S.; Yamanaka, M.; Hashiguchi, H.; Sato, T.; Fukao, S. Vertical eddy diffusivity in the lower and middle atmosphere: A climatology based on the MU radar observations during 1986–1992. J. Atmos. Terr. Phys. 1996, 58, 727–734. [Google Scholar] [CrossRef]
- Tsuda, T.; Murayama, Y.; Yamamoto, M.; Kato, S.; Fukao, S. Seasonal variation of momentum flux in the mesosphere observed with the MU radar. Geophys. Res. Lett. 1990, 17, 725–728. [Google Scholar] [CrossRef]
- Avsarkisov, V.; Becker, E.; Renkwitz, T. Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model. J. Atmos. Sci. 2022, 79, 933–952. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xiao, C.; Hu, X.; Yang, J.; Cheng, X.; Xu, Q.; Xiao, L.; Wu, X. Short-Period Variation of the Activity of Atmospheric Turbulence in the MLT Region over Langfang. Atmosphere 2023, 14, 1045. https://doi.org/10.3390/atmos14061045
Wang Z, Xiao C, Hu X, Yang J, Cheng X, Xu Q, Xiao L, Wu X. Short-Period Variation of the Activity of Atmospheric Turbulence in the MLT Region over Langfang. Atmosphere. 2023; 14(6):1045. https://doi.org/10.3390/atmos14061045
Chicago/Turabian StyleWang, Zewei, Cunying Xiao, Xiong Hu, Junfeng Yang, Xuan Cheng, Qingchen Xu, Luo Xiao, and Xiaoqi Wu. 2023. "Short-Period Variation of the Activity of Atmospheric Turbulence in the MLT Region over Langfang" Atmosphere 14, no. 6: 1045. https://doi.org/10.3390/atmos14061045
APA StyleWang, Z., Xiao, C., Hu, X., Yang, J., Cheng, X., Xu, Q., Xiao, L., & Wu, X. (2023). Short-Period Variation of the Activity of Atmospheric Turbulence in the MLT Region over Langfang. Atmosphere, 14(6), 1045. https://doi.org/10.3390/atmos14061045