Risk Assessment of the Impact of Heavy Metals in Urban Traffic Dust on Human Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Sample Analysis
2.3. Contamination Assessment
2.3.1. Geo-Accumulation Index
2.3.2. Health Risk Assessment
3. Results and Discussions
3.1. Contamination Assessment
3.2. Non-Carcinogenic Risk
3.3. Carcinogenic Risk
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef] [PubMed]
- Isaifan, R.J. Air pollution burden of disease over highly populated states in the Middle East. Front. Public Health 2023, 10, 1002707. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Bin Emran, T.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Al-Thani, H.; Koc, M.; Fountoukis, C.; Isaifan, R.J. Evaluation of particulate matter emissions from non-passenger diesel vehicles in Qatar. J. Air Waste Manag. Assoc. 2020, 70, 228–242. [Google Scholar] [CrossRef]
- Al-Thani, H.; Koc, M.; Isaifan, R.J. Investigations on Deposited Dust Fallout in Urban Doha: Characterization, Source Apportionment and Mitigation. Environ. Ecol. Res. 2018, 6, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Farah. Dust Control Strategies Implemented by Qatar 2022 FIFA World Cup Stadiums for Conserving the Environment. Gulf Organisation for Research & Development. 2021. Available online: https://www.gord.qa/blogs/dust-control-strategies-implemented-by-qatar-2022-fifa-world-cup-stadiums-for-conserving-the-environment/ (accessed on 17 March 2023).
- Environmental Protection Agency. Health and Environmental Effects of Particulate Matter (PM). 2019. Available online: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm (accessed on 17 March 2023).
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Khan, S.A.; Muhammad, S.; Nazir, S.; Shah, F.A. Heavy metals bounded to particulate matter in the residential and industrial sites of Islamabad, Pakistan: Implications for non-cancer and cancer risks. Environ. Technol. Innov. 2020, 19, 100822. [Google Scholar] [CrossRef]
- Mahurpawar, M. Effects of Heavy Metals on Human Health. Int. J. Res. GRANTHAALAYAH 2015, 3, 1–7. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gao, Y.; Wu, S.; Zhang, S.; Smith, K.R.; Yao, X.; Gao, H. Global impact of atmospheric arsenic on health risk: 2005 to 2015. Proc. Natl. Acad. Sci. USA 2020, 117, 13975–13982. [Google Scholar] [CrossRef] [PubMed]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, T.; Wang, G.; Buckley, J.P.; Guallar, E.; Hong, X.; Wang, M.-C.; Wills-Karp, M.; Wang, X.; Mueller, N.T. In Utero Exposure to Heavy Metals and Trace Elements and Childhood Blood Pressure in a U.S. Urban, Low-Income, Minority Birth Cohort. Environ. Health Perspect. 2021, 129, 67005. [Google Scholar] [CrossRef]
- Danziger, J.; Dodge, L.E.; Hu, H.; Mukamal, K.J. Susceptibility to Environmental Heavy Metal Toxicity among Americans with Kidney Disease. Kidney360 2022, 3, 1191–1196. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Lead & Other Heavy Metals—Reproductive Health. Centers for Disease Control and Prevention. 2019. Available online: https://www.cdc.gov/niosh/topics/repro/heavymetals.html (accessed on 17 March 2023).
- Jedrychowski, W.; Perera, F.P.; Jankowski, J.; Mrożek-Budzyn, D.; Mroz, E.; Flak, E.; Edwards, S.; Skarupa, A.; Lisowska-Miszczyk, I. Very Low Prenatal Exposure to Lead and Mental Development of Children in Infancy and Early Childhood: Krakow prospective cohort study. Neuroepidemiology 2009, 32, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Environment, U.N. Final Review of Scientific Information on Lead. UNEP. 2010. Available online: https://www.unep.org/resources/report/final-review-scientific-information-lead (accessed on 17 March 2023).
- Matta, G. Mercury, Lead and Arsenic Impact on Environment and Human Health. J. Chem. Pharm. Sci. 2016, 9, 718–725. [Google Scholar]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Chonokhuu, S.; Batbold, C.; Chuluunpurev, B.; Battsengel, E.; Dorjsuren, B.; Byambaa, B. Contamination and Health Risk Assessment of Heavy Metals in the Soil of Major Cities in Mongolia. Int. J. Environ. Res. Public Health 2019, 16, 2552. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Risk Assessment Guidance for Superfund; Human Health Evaluation Manual. Part A; US EPA: Washington, DC, USA, 1986; Volume 1.
- Zhou, L.; Liu, G.; Shen, M.; Hu, R.; Sun, M.; Liu, Y. Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China. Environ. Pollut. 2019, 251, 839–849. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Risk Assessment Guidance for Superfund: Volume III—Part A, Process for Conducting Probabilistic Risk Asessment; EPA 540-R-02-002; US Environmental Protection Agency: Washington, DC, USA, 2001.
- US EPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual; Office of Solid Iste and Emergency Response: Washington, DC, USA, 1989.
- US EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; OSWER: Washington, DC, USA, 2001.
- USEPA. Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors; Publication 9285.6–03; Office of Emergency and Remedial Response: Washington, DC, USA, 1991.
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Office of Superfund Remediation and Technology Innovation: Washington, DC, USA, 2004.
- US EPA. Exposure Factors Handbook; Office of Research and Development: Washington, DC, USA, 2011; Volume 20460, pp. 2–6.
- Alsafran, M.; Usman, K.; Al Jabri, H.; Rizwan, M. Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar. Toxics 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Cortés, J.L.; Delgado, C.; Aguilar, Y.; Aguilar, D.; Cejudo, R.; Quintana, P.; Goguitchaichvili, A.; Bautista, F. Heavy Metal Contamination (Cu, Pb, Zn, Fe, and Mn) in Urban Dust and its Possible Ecological and Human Health Risk in Mexican Cities. Front. Environ. Sci. 2022, 10, 854460. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos. Environ. 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Suvetha, M.; Charles, P.E.; Vinothkannan, A.; Rajaram, R.; Paray, B.A.; Ali, S. Are we at risk because of road dust? An ecological and health risk assessment of heavy metals in a rapid growing city in South India. Environ. Adv. 2022, 7, 100165. [Google Scholar] [CrossRef]
- Yu, R.; He, L.; Cai, R.; Li, B.; Li, Z.; Yang, K. Heavy metal pollution and health risk in China. Glob. Health J. 2017, 1, 47–55. [Google Scholar] [CrossRef]
- Moya, J.; Phillips, L. A review of soil and dust ingestion studies for children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 545–554. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; World Health Organization: Geneva, Switzerland, 2004; Available online: https://www.who.int/publications-detail-redirect/9789241549950 (accessed on 17 March 2023).
- Zhao, L.; Xu, Y.; Hou, H.; Shangguan, Y.; Li, F. Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci. Total Environ. 2014, 468–469, 654–662. [Google Scholar] [CrossRef] [PubMed]
Value | Class | Contamination Level |
---|---|---|
Igeo ≤ 0 | Class 0 | Uncontaminated |
0 < Igeo ≤ 1 | Class 1 | Uncontaminated to moderately contaminated |
1 < Igeo ≤ 2 | Class 2 | Moderately contaminated |
2 < Igeo ≤ 3 | Class 3 | Moderately to highly contaminated |
3 < Igeo ≤ 4 | Class 4 | Highly contaminated |
4 < Igeo ≤ 5 | Class 5 | Highly to very highly contaminated |
Igeo ≥ 5 | Class 6 | Very highly contaminated |
Value | Pollution Level |
---|---|
IPI ≤ 1 | Low level |
1 < IPI ≤ 2 | Moderate level |
2 < IPI ≤ 5 | High level |
5 < IPI | Extremely high level |
Elements | Concentration in Urban Doha | Background Concentration |
---|---|---|
(mg/kg) | ||
Arsenic (As) | 18.86 | 0 |
Lead (Pb) | 63.28 | 0 |
Mercury (Hg) | 0 | 0 |
Cadmium (Cd) | 0 | 0 |
Chromium (Cr) | 60.31 | 0 |
Cobalt (Co) | 0 | 0 |
Nickle (Ni) | 31.28 | 10.33 |
Copper (Cu) | 56 | 79 |
Zinc (Zn) | 151.37 | 13.5 |
Parameter | Unit | Child | Adult | References |
---|---|---|---|---|
Concentration of element (C) | mg/kg | As per Table 3 | This study | |
Body weight (BW) | kg | 15 | 70 | [27] |
Exposure frequency (EF) | days/year | 180 | 180 | [28] |
Exposure duration (ED) | years | 6 | 24 | [26] |
Ingestion rate (Ring) | mg/day | 200 | 100 | [24,28] |
Inhalation rate (Rinh) | m3/day | 10 | 20 | [29] |
Skin surface area (SA) | cm2 | 2800 | 5700 | [28] |
Soil adherence factor (SL) | mg/cm2·day | 0.2 | 0.07 | [28] |
Dermal absorption factor (ABS) | None 0.03 for Arsenic 0.001 for all other metals | [30] | ||
Particulate emission factor (PEF) | m3/kg | 1.36 × 109 | 1.36 × 109 | [28] |
Conversion factor (CF) | kg/mg | 1 × 10−6 | 1 × 10−6 | [31] |
Average time (AT): | ||||
for carcinogens | days | 365 × 70 | 365 × 70 | [28] |
for non-carcinogens | 365 × ED | 365 × ED | [27] |
Element | SFing (mg/(kg day)) | SFinh (mg/(kg day)) | SFderm (mg/(kg day)) |
---|---|---|---|
As | 1.5 | 1.51 | 3.66 |
Pb | 0.0085 | 0.042 | - |
Cr | 0.05 | 4.20 | 2.00 |
Ni | 1.70 | 0.9 | 4.25 |
Indices | Ni | Classification | Cu | Classification | Zn | Classification |
---|---|---|---|---|---|---|
Igeo | 1.01 | Uncontaminated to moderate contamination | −1.08 | Uncontaminated | 2.89 | Moderate to heavy contamination |
PI | 3.02 | High pollution | 0.71 | Low pollution | 11.2 | Extremely high pollution |
IPI | 4.98 | High pollution |
Elements | RfDing (mg/kg day) | RfDinh (mg/kg day) | RfDderm (mg/kg day) | HQing | HQinh | HQderm | HI |
---|---|---|---|---|---|---|---|
As | 3.00 × 10−4 | 1.23 × 10−4 | 1.23 × 10−4 | 2.30 × 10−3 | 2.82 × 10−5 | 1.65 × 10−4 | 4.67 × 10−4 |
Pb | 1.40 × 10−3 | 3.52 × 10−3 | 5.24 × 10−4 | 1.65 × 10−3 | 3.30 × 10−6 | 8.80 × 10−6 | 1.84 × 10−4 |
Cr | 3.00 × 10−3 | 2.86 × 10−5 | 3.00 × 10−3 | 7.34 × 10−4 | 3.87 × 10−4 | 1.47 × 10−6 | 2.98 × 10−4 |
Ni | 2.00 × 10−2 | 2.06 × 10−2 | 5.40 × 10−3 | 5.71 × 10−5 | 2.79 × 10−7 | 4.22 × 10−7 | 6.54 × 10−6 |
Cu | 4.00 × 10−2 | 4.00 × 10−2 | 1.20 × 10−2 | 5.11 × 10−5 | 2.57 × 10−7 | 3.40 × 10−7 | 5.83 × 10−6 |
Zn | 3.00 × 10−1 | 3.00 × 10−1 | 6.00 × 10−2 | 1.84 × 10−5 | 9.27 × 10−8 | 1.84 × 10−7 | 2.14 × 10−6 |
Total | - | - | - | - | - | - | 9.64 × 10−4 |
Elements | RfDing (mg/kg day) | RfDinh (mg/kg day) | RfDderm (mg/kg day) | HQing | HQinh | HQderm | HI |
---|---|---|---|---|---|---|---|
As | 3.00 × 10−4 | 1.23 × 10−4 | 1.23 × 10−4 | 2.30 × 10−3 | 2.82 × 10−5 | 1.65 × 10−4 | 2.49 × 10−3 |
Pb | 1.40 × 10−3 | 3.52 × 10−3 | 5.24 × 10−4 | 1.65 × 10−3 | 3.30 × 10−6 | 8.80 × 10−6 | 1.66 × 10−3 |
Cr | 3.00 × 10−3 | 2.86 × 10−5 | 3.00 × 10−3 | 7.34 × 10−4 | 3.87 × 10−4 | 1.47 × 10−6 | 1.12 × 10−3 |
Ni | 2.00 × 10−2 | 2.06 × 10−2 | 5.40 × 10−3 | 5.71 × 10−5 | 2.79 × 10−7 | 4.22 × 10−7 | 5.78 × 10−5 |
Cu | 4.00 × 10−2 | 4.00 × 10−2 | 1.20 × 10−2 | 5.11 × 10−5 | 2.57 × 10−7 | 3.40 × 10−7 | 5.17 × 10−5 |
Zn | 3.00 × 10−1 | 3.00 × 10−1 | 6.00 × 10−2 | 1.84 × 10−5 | 9.27 × 10−8 | 1.84 × 10−7 | 1.87 × 10−5 |
Total | - | - | - | - | - | - | 5.40 × 10−3 |
Elements | CRing Adult | CRing Child | CRinh Adult | CRinh Child | CRderm Adult | CRderm Child |
---|---|---|---|---|---|---|
As | 3.80 × 10−8 | 8.86 × 10−8 | 1.01 × 10−9 | 4.48 × 10−10 | 3.17 × 10−8 | 6.35 × 10−9 |
Pb | 7.21 × 10−10 | 1.68 × 10−9 | 9.44 × 10−11 | 4.18 × 10−11 | - | - |
Cr | 4.05 × 10−6 | 9.44 × 10−6 | 9.00 × 10−9 | 3.99 × 10−9 | 1.85 × 10−9 | 3.88 × 10−10 |
Ni | 7.14 × 10−8 | 1.67 × 10−7 | 1.00 × 10−9 | 4.43 × 10−10 | 2.03 × 10−9 | 4.08 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, N.; Al-Shahwani, D.; Al-Thani, H.; Isaifan, R.J. Risk Assessment of the Impact of Heavy Metals in Urban Traffic Dust on Human Health. Atmosphere 2023, 14, 1049. https://doi.org/10.3390/atmos14061049
Mahmoud N, Al-Shahwani D, Al-Thani H, Isaifan RJ. Risk Assessment of the Impact of Heavy Metals in Urban Traffic Dust on Human Health. Atmosphere. 2023; 14(6):1049. https://doi.org/10.3390/atmos14061049
Chicago/Turabian StyleMahmoud, Nima, Dana Al-Shahwani, Hanadi Al-Thani, and Rima J. Isaifan. 2023. "Risk Assessment of the Impact of Heavy Metals in Urban Traffic Dust on Human Health" Atmosphere 14, no. 6: 1049. https://doi.org/10.3390/atmos14061049
APA StyleMahmoud, N., Al-Shahwani, D., Al-Thani, H., & Isaifan, R. J. (2023). Risk Assessment of the Impact of Heavy Metals in Urban Traffic Dust on Human Health. Atmosphere, 14(6), 1049. https://doi.org/10.3390/atmos14061049