Indoor Radon Research in the Asia-Pacific Region
Abstract
:1. Introduction
2. Radon Regulations
3. Radon Surveys
3.1. Afghanistan (IV)
3.2. Armenia (V)
3.3. Australia (Oceania)
3.4. Azerbaijan (V)
3.5. Bangladesh (IV)
3.6. Brunei (III)
3.7. China, Hong Kong, Taiwan (II)
3.8. Central Asian Countries (I)
3.9. Georgia (V)
3.10. India (IV)
3.11. Indonesia (III)
3.12. Iran (IV)
3.13. Iraq (V)
3.14. Israel (V)
3.15. Japan (II)
3.16. Jordan (V)
3.17. Kazakhstan (I)
3.18. Kuwait, Jordan, Syria, Yemen (V), and Arab Countries (Egypt, Libya, Tunisia)
3.19. Kyrgyzstan (I)
3.20. Korea (II)
3.21. Lebanon (V)
3.22. Malaysia (III)
3.23. Mongolia (II)
3.24. Myanmar (III)
3.25. Nepal (IV)
3.26. New Zealand (Oceania)
3.27. Oman (V)
3.28. Pakistan (IV)
3.29. Palestine (V)
3.30. Papua New Guinea (Oceania)
3.31. Philippines (III)
3.32. Qatar (V)
3.33. Saudi Arabia (V)
3.34. Singapore (III)
3.35. Syria (V)
3.36. Tajikistan (I)
3.37. Thailand (III)
3.38. Turkey (V)
3.39. United Arab Emirates (V)
3.40. Uzbekistan (I)
3.41. Vietnam (III)
4. Identification of Problems
4.1. Bias Due to the Thoron Interference
4.2. Tendency toward “Green” Construction
4.3. Survey Design and Evaluation
5. Recent Developments
5.1. Thoron
5.2. Calibration Chambers
5.3. New Detectors
5.4. Soil Radon as Tracer
5.5. Advanced Data Preprocessing and Evaluation
5.6. Radon Awareness and Risk Communication
5.7. Radon Therapy
6. Discussion and Conclusions
6.1. Variation of Survey Density
6.2. Information Exchange and Logistical Harmonization
6.3. Radon Mapping and Geogenic Radon
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pirchan, A.; Sikl, H. Cancer of the Lung in the Miners of Jachymov (Joachimstal): Report of Cases Observed in 1929–1930. Am. J. Cancer 1932, XVI, 681–722. [Google Scholar]
- Lundin, F.E.J.; Wagoner, J.K.; Archer, V.E. Radon Daughter Exposure and Respiratory Cancer Quantitative and Temporal Aspects; Department of Health, Education, and Welfare: Washington, DC, USA, 1971. [Google Scholar]
- Sevc, J.; Kunz, E.; Placek, V. Lung cancer in uranium miners and long-term exposure to radon daughter products. Health Phys. 1976, 30, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Holaday, D.A.; Gafafer, W.M. Control of Radon and Daughters in Uranium Mines and Calculations on Biologic Effects; US Department of Health, Education, and Welfare, Public Health Service: Washington, DC, USA, 1957. [Google Scholar]
- Akerblom, G.; Andersson, P.; Clevensjo, B. Soil Gas Radon—A Source for Indoor Radon Daughters. Radiat. Prot. Dosim. 1984, 7, 49–54. [Google Scholar] [CrossRef]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ Clin. Res. Ed. 2005, 330, 223. [Google Scholar] [CrossRef]
- Field, R. William. A Review of Residential Radon Case-Control Epidemiologic Studies Performed in the United States. Rev. Environ. Health 2001, 16, 151–168. [Google Scholar] [CrossRef]
- Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Field, R.W.; Klotz, J.B.; Letourneau, E.G.; Lynch, C.F.; Lyon, J.I.; et al. Residential Radon and Risk of Lung Cancer. Epidemiology 2005, 16, 137–145. [Google Scholar] [CrossRef]
- Tomasek, L.; Darby, S.C. Recent results from the study of West Bohemian uranium miners exposed to radon and its progeny. Environ. Health Perspect. 1995, 103, 55–57. [Google Scholar] [CrossRef]
- William Field, R.; Krewski, D.; Lubin, J.H.; Zielinski, J.M.; Alavanja, M.; Catalan, V.S.; Klotz, J.B.; Létourneau, E.G.; Lynch, C.F.; Lyon, J.L.; et al. An Overview of the North American Residential Radon and Lung Cancer Case-Control Studies. J. Toxicol. Environ. Health Part A 2006, 69, 599–631. [Google Scholar] [CrossRef]
- Mifune, M.; Sobue, T.; Arimoto, H.; Komoto, Y.; Kondo, S.; Tanooka, H. Cancer Mortality Survey in a Spa Area (Misasa, Japan) with a High Radon Background. Jpn. J. Cancer Res. 1992, 83, 1–5. [Google Scholar] [CrossRef]
- Tanooka, H.; Sobue, T. Cancer Mortality Studies in Misara, a Radon Hot Spring in Japan: A Summary up to 2003. Hum. Ecol. Risk Assess. Int. 2004, 10, 1189–1194. [Google Scholar] [CrossRef]
- Ye, W.; Sobue, T.; Lee, V.S.; Tanooka, H.; Mifune, M.; Suyama, A.; Koga, T.; Morishima, H.; Kondo, S. Mortality and cancer incidence in Misasa, Japan, a spa area with elevated radon levels. Jpn. J. Cancer Res. 1998, 89, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, S.M.; Ghiassi-Nejad, M.; Rezaiean, M. Cancer risk due to exposure to high levels of natural radon in the inhabitants of Ramsar, Iran. Int. Congr. Ser. 2005, 1276, 436–437. [Google Scholar] [CrossRef]
- Dobrzyński, L.; Fornalski, K.W.; Reszczyńska, J. Meta-analysis of thirty-two case–control and two ecological radon studies of lung cancer. J. Radiat. Res. 2018, 59, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Pylak, M.; Fornalski, K.W.; Reszczyńska, J.; Kukulski, P.; Waligórski, M.P.; Dobrzyński, L. Analysis of Indoor Radon Data Using Bayesian, Random Binning, and Maximum Entropy Methods. Dose-Response 2021, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Janiak, M.K.; Waligórski, M.P. Can Low-Level Ionizing Radiation Do Us Any Harm? Dose-Response 2023, 21, 1–15. [Google Scholar] [CrossRef]
- IAEA. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards; General Safety Requirements Part 3 No. GSR Part 3; Technical Report; IAEA: Vienna, Austria, 2014. [Google Scholar]
- Woith, H. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top. 2015, 224, 611–627. [Google Scholar] [CrossRef]
- Friedmann, H. Radon in earthquake prediction research. Radiat. Prot. Dosim. 2012, 149, 177–184. [Google Scholar] [CrossRef]
- Mir, A.A.; Celebi, F.V.; Alsolai, H.; Qureshi, S.A.; Rafique, M.; Alzahrani, J.S.; Mahgoub, H.; Hamza, M.A. Anomalies Prediction in Radon Time Series for Earthquake Likelihood using Machine Learning Based Ensemble Model. IEEE Access 2022, 10, 37984–37999. [Google Scholar] [CrossRef]
- Chambers, S.D.; Williams, A.G.; Conen, F.; Griffiths, A.D.; Reimann, S.; Steinbacher, M.; Krummel, P.B.; Steele, L.P.; van der Schoot, M.V.; Galbally, I.E.; et al. Towards a universal “Baseline” characterisation of air masses for high- and low-altitude observing stations using radon-222. Aerosol Air Qual. Res. 2016, 16, 885–899. [Google Scholar] [CrossRef]
- Chambers, S.D.; Preunkert, S.; Weller, R.; Hong, S.B.; Humphries, R.S.; Tositti, L.; Angot, H.; Legrand, M.; Williams, A.G.; Griffiths, A.D.; et al. Characterizing atmospheric transport pathways to antarctica and the remote southern ocean using radon-222. Front. Earth Sci. 2018, 6, 190. [Google Scholar] [CrossRef]
- Crawford, J.; Chambers, S.; Kang, C.H.; Griffiths, A.; Kim, W.H. Analysis of a decade of Asian outflow of PM10 and TSP to Gosan, Korea; also incorporating Radon–222. Atmos. Pollut. Res. 2015, 6, 529–539. [Google Scholar] [CrossRef]
- Röttger, S.; Röttger, A.; Grossi, C.; Vargas, A.; Karstens, U.; Cinelli, G.; Chung, E.; Kikaj, D.; Rennick, C.; Mertes, F.; et al. Radon metrology for use in climate change observation and radiation protection at the environmental level. Adv. Geosci. 2022, 57, 37–47. [Google Scholar] [CrossRef]
- Chambers, S.D.; Podstawczyńska, A.; Pawlak, W.; Fortuniak, K.; Williams, A.G.; Griffiths, A.D. Characterizing the State of the Urban Surface Layer Using Radon-222. J. Geophys. Res. Atmos. 2019, 124, 770–788. [Google Scholar] [CrossRef]
- McGuire, B.; Kilburn, R.C.; Murray, J. (Eds.) Monitoring Active Volcanoes: Strategies, Procedures and Techniques; Taylor and Francis: Abingdon, UK, 2022. [Google Scholar]
- Lawson, S.L.; Feldman, W.C.; Lawrence, D.J.; Moore, K.R.; Elphic, R.C.; Belian, R.D.; Maurice, S. Recent outgassing from the lunar surface: The Lunar Prospector Alpha Particle Spectrometer. J. Geophys. Res. Planets 2005, 110, E9. [Google Scholar] [CrossRef]
- Gingrich, J.E. Radon as a geochemical exploration tool. J. Geochem. Explor. 1984, 21, 19–39. [Google Scholar] [CrossRef]
- Khattak, N.; Khan, M.; Ali, N.; Abbas, S. Radon Monitoring for geological exploration: A review. J. Himal. Earth Sci. 2011, 44, 91–102. [Google Scholar]
- Zhang, K.; Lin, N.; Wan, X.; Yang, J.; Wang, X.; Tian, G. An approach for predicting geothermal reservoirs distribution using wavelet transform and self-organizing neural network: A case study of radon and CSAMT data from Northern Jinan, China. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 156. [Google Scholar] [CrossRef]
- Kraemer, T.F. Radon in Unconventional Natural Gas from Gulf Coast Geopressured—Geothermal Reservoirs. Environ. Sci. Technol. 1986, 20, 939–942. [Google Scholar] [CrossRef]
- Pawlik-Sobecka, L.; Górka-Dynysiewicz, J.; Kuciel-Lewandowska, J. Balneotherapy with the use of radon-sulphide water: The mechanisms of therapeutic effect. Appl. Sci. 2021, 11, 2849. [Google Scholar] [CrossRef]
- Nagy, K.; Berhés, I.; Kovács, T.; Kávási, N.; Somlai, J.; Bender, T. Does balneotherapy with low radon concentration in water influence the endocrine system? A controlled non-randomized pilot study. Radiat. Environ. Biophys. 2009, 48, 311–315. [Google Scholar] [CrossRef]
- Winklmayr, M.; Kluge, C.; Winklmayr, W.; Küchenhoff, H.; Steiner, M.; Ritter, M.; Hartl, A. Radon balneotherapy and physical activity for osteoporosis prevention: A randomized, placebo-controlled intervention study. Radiat. Environ. Biophys. 2015, 54, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, E.Q.; Galhardi, J.A.; Bonotto, D.M. The use of radon (Rn-222) and volatile organic compounds in monitoring soil gas to localize NAPL contamination at a gas station in Rio Claro, São Paulo State, Brazil. Radiat. Meas. 2014, 66, 1–4. [Google Scholar] [CrossRef]
- Riudavets, M.; Garcia de Herreros, M.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.; Conde, C.; Peterson, C.; Nugent, K. Residential radon exposure and cancer. Oncol. Rev. 2022, 16, 558. [Google Scholar] [CrossRef]
- Chen, J.; Quayle, D. An Activity Concentration-Based Proposal for Radon Management in NORM Workplaces. Res. Sq. 2022, preprint, 1–8. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, Y.P.; Liu, Y.; Liu, J.C.; Guo, C.; Zhang, P.; Qiu, S.K.; Yang, C.G.; Tang, Q. A study on the radon removal performance of low background activated carbon. J. Instrum. 2022, 17, P02003. [Google Scholar] [CrossRef]
- EU; European Commission (EC). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, etc. Off. J. Eur. Union 2013, 57, 1–73. [Google Scholar]
- Cinelli, G.; De Cort, M.; Tollefsen, T.; Achatz, M.; Ajtić, J.; Ballabio, C.; Barnet, I.; Bochicchio, F.; Borelli, P.; Bossew, P.; et al. European Atlas of Natural Radiation; Technical Report; European Commission: Luxembourg, 2019. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Handbook on Indoor Radon: A Public Health Perspective; Technical Report 1; WHO: Paris, France, 2009.
- U.S. Environmental Protection Agency. Available online: https://www.epa.gov/radon (accessed on 1 February 2023).
- Health Canada. Guide for Radon Measurements in Residential Dwellings; Health Canada: Ottawa, ON, Canada, 2017; pp. 1–22.
- WHO Radon Database. Available online: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/gho-phe-radon-database (accessed on 1 February 2023).
- Yao, Y.; Chen, B.; Zhuo, W. Reanalysis of residential radon surveys in China from 1980 to 2019. Sci. Total. Environ. 2021, 757, 143767. [Google Scholar] [CrossRef]
- World Health Organization (WHO). National Radon Reference Levels. 2023. Available online: https://apps.who.int/gho/data/view.main.RADON03v (accessed on 1 February 2023).
- Kim, Y.; Chang, B.U.; Park, H.M.; Kim, C.K.; Tokonami, S. National radon survey in Korea. Radiat. Prot. Dosim. 2011, 146, 6–10. [Google Scholar] [CrossRef]
- Kim, S.T.; Yoo, J. Rational establishment of radon exposure standards for dwellings and workplaces. Int. J. Radiat. Res. 2020, 18, 359–368. [Google Scholar]
- Epstein, L.; Koch, J.; Riemer, T.; Orion, I.; Haquin, G. Radon concentrations in different types of dwellings in israel. Radiat. Prot. Dosim. 2014, 162, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Kobal, I.; Vaupotič, J.; Gregorič, A.; Uralbekov, B. Comparison of Approaches in Slovenia and Kazakhstan in Managing Exposure to Radon. In Uranium—Past and Future Challenges; Springer International Publishing: Cham, Switzerland, 2015; pp. 689–698. [Google Scholar] [CrossRef]
- UN M49; Standard Country or Area Codes for Statistical Use. United Nations: New York, NY, USA, 2022.
- Bossew, P.; Janik, M.; Cinelli, G.; Tollefsen, T.; De Cort, M. Radon Regulation and Research in Europe—Is It Relevant for the Asian-pacific Region? In Proceedings of the Annual Meeting, Asia Oceania Geosciences Society AOGS, Singapore, 28 July–2 August 2019; pp. 1–21. [Google Scholar]
- Tanha, M.R.; Vahlbruch, J.W.; Riebe, B.; Irlinger, J.; Rühm, W.; Khalid, F.R.; Storai, A.; Walther, C. Measurements in Afghanistan using an active radon exposure meter and assessment of related annual effective dose. Radiat. Prot. Dosim. 2018, 178, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Karinda, F.L.; Haider, B.; Rühm, W. A new electronic personal exposure meter for radon gas. Radiat. Meas. 2008, 43, 1170–1174. [Google Scholar] [CrossRef]
- Haroyan, K. National Radon Programme and Radon Action Plan. In Proceedings of the Regional WS on Experiences of Corrective and Protective Radon Measures, IAEA, RER/9/136-1701370, Yerevan, Armenia, 23–27 October 2017. [Google Scholar]
- Belyaeva, O.; Pyuskyulyan, K.; Movsisyan, N.; Sahakyan, L.; Saghatelyan, A. Radioecological Studies in Armenia: A Review. Electron. J. Nat. Sci. 2020, 1, 34–40. [Google Scholar]
- Langroo, M.K.; Wise, K.N.; Duggleby, J.C.; Kotler, L.H. A Nation-Wide Survey of Radon and Gamma Radiation Levels in Austarlian Homes; Technical Report; ARPANSA: Yallambie, Australia, 1990. [Google Scholar]
- Hoffmann, M.; Aliyev, C.S.; Feyzullayev, A.A.; Baghirli, R.J.; Veliyeva, F.F.; Pampuri, L.; Valsangiacomo, C.; Tollefsen, T.; Cinelli, G. First map of residential indoor radon measurements in Azerbaijan. Radiat. Prot. Dosim. 2017, 175, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Janik, M.; Sakoda, A.; Iimoto, T. Status of radon exposure in Bangladeshi locations and dwellings. Environ. Monit. Assess. 2021, 193, 770. [Google Scholar] [CrossRef]
- Hasan, M.M.; Janik, M.; Perwin, S.; Iimoto, T. Preliminary population exposure to indoor radon and thoron in Dhaka city, Bangladesh. Atmosphere 2023, under review. [Google Scholar]
- Sheng, T.K.; Jer, H.S. Indoor radon radioactivity at the University of Brunei Darussalam. Pure Appl. Geophys. 2003, 160, 75–80. [Google Scholar] [CrossRef]
- Su, C.; Pan, M.; Zhang, Y.; Kan, H.; Zhao, Z.; Deng, F.; Zhao, B.; Qian, H.; Zeng, X.; Sun, Y.; et al. Indoor exposure levels of radon in dwellings, schools, and offices in China from 2000 to 2020: A systematic review. Indoor Air 2022, 32, 1–14. [Google Scholar] [CrossRef]
- Kudo, H.; Tokonami, S.; Omori, Y.; Ishikawa, T.; Iwaoka, K.; Sahoo, S.K.; Akata, N.; Hosoda, M.; Wanabongse, P.; Pornnumpa, C.; et al. Comparative dosimetry for radon and thoron in high background radiation areas in China. Radiat. Prot. Dosim. 2015, 167, 155–159. [Google Scholar] [CrossRef]
- Bao-Ming, S.; Rui-Hua, C.; Qing-Zhi, W.; Xing, G. Application of CR-39 solid-state nuclear track detectors to radon survey in the mine cities of inner Mongolia. Nucl. Tracks Radiat. Meas. 1993, 22, 449–450. [Google Scholar] [CrossRef]
- Man, C.; Zheng, Y.; Yueng, H. Radon Surveys in the Hong Kong Area. Radiat. Prot. Dosim. 1994, 7, 37–72. [Google Scholar] [CrossRef]
- Yu, K.; Young, E.; Li, K. A Survey of Radon Properties for Dwellings for Hong Kong. Radiat. Prot. Dosim. 1996, 63, 55–62. [Google Scholar] [CrossRef]
- Yu, K.; Young, E.; Stokes, M.; Luo, D.; Zhang, C. Indoor Radon and Environmental Gamma Radiation in Hong Kong. Radiat. Prot. Dosim. 1992, 40, 259–263. [Google Scholar] [CrossRef]
- Lin, P.H.; Chen, C.J.; Lien, C.h.; Huang, C.C. Assessment of Population Dose Exposure in Taiwan. In Proceedings of the 10th IRPA Seminar on Radiation Safety, Hiroshima, Japan, 14–19 May 2000; p. P–1a–23. [Google Scholar]
- Stegnar, P.; Shishkov, I.; Burkitbayev, M.; Tolongutov, B.; Yunusov, M.; Radyuk, R.; Salbu, B. Assessment of the radiological impact of gamma and radon dose ratesat former U mining sites in Central Asia. J. Environ. Radioact. 2013, 123, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Pagava, S.; Rusetski, V.; Robakidze, Z.; Farfán, E.B.; Dunker, R.E.; Popp, J.L.; Avtandilashvili, M.; Wells, D.P.; Donnelly, E.H. Initial investigation of 222Rn in the Tbilisi urban environment. Health Phys. 2008, 95, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Dutt, S.; Joshi, V.; Sajwan, R.S.; Yadav, M.; Mishra, R.; Ramola, R.C. Study of indoor radon, thoron and their decay products level in residences of Udham Singh Nagar district of Uttarakhand, India. J. Radioanal. Nucl. Chem. 2021, 330, 1509–1515. [Google Scholar] [CrossRef]
- Jamir, S.; Sahoo, B.K.; Mishra, R.; Sinha, D. A Comprehensive Study on Indoor Radon, Thoron and Their Progeny Level in Dimapur District of Nagaland, India. Radiat. Prot. Dosim. 2022, 331, 21–30. [Google Scholar] [CrossRef]
- Panwar, P.; Prasad, M.; Ramola, R.C. Study of soil-gas and indoor radon concentration in a test village at Tehri Garhwal, India. J. Radioanal. Nucl. Chem. 2021, 330, 1383–1391. [Google Scholar] [CrossRef]
- Omori, Y.; Tokonami, S.; Sahoo, S.K.; Ishikawa, T.; Sorimachi, A.; Hosoda, M.; Kudo, H.; Pornnumpa, C.; Nair, R.R.K.; Jayalekshmi, P.A.; et al. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India. J. Radiol. Prot. 2017, 37, 111–126. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, A.; Mehra, R.; Mishra, R. Dose assessment from exposure to radon, thoron and their progeny concentrations in the dwellings of sub-mountainous region of Jammu and Kashmir, India. J. Radioanal. Nucl. Chem. 2018, 315, 75–88. [Google Scholar] [CrossRef]
- Verma, D.; Shakir Khan, M. Assessement of indoor radon, thoron and their progeny in dwellings of Bareilly city of Northern India using track etch detectors. Rom. J. Phys. 2014, 59, 172–182. [Google Scholar]
- Suman, G.; Vinay Kumar Reddy, K.; Sreenath Reddy, M.; Gopal Reddy, C.; Yadagiri Reddy, P. Indoor radon and thoron in the vicinity of proposed uranium mining site: A case study at Dasarlapally Village, Telangana State, India. Radiat. Prot. Dosim. 2021, 189, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, A.; Joshi, M.; Sarin, A.; Sharma, N. Dosimetry of indoor alpha flux belonging to seasonal radon, thoron and their EECs. Environ. Monit. Assess. 2022, 194, 119. [Google Scholar] [CrossRef] [PubMed]
- Rattanapongs, C.P.; Kranrod, C.; Jitpakdee, M.; Tokonami, S.; Chanyotha, S. Internal Exposure From Indoor Radon, Thoron and Their Progeny in Residence Around High Background Radiation Area, Phang Nga Province, Thailand. Radiat. Prot. Dosim. 2022, 198, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, Y.J.; Chang, B.U.; Kim, K.P. Detailed Indoor Radon Survey in Dwellings of Provisional Radon-Prone Areas in Korea. Radiat. Prot. Dosim. 2022, 198, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Pudjadi, E.; Warsona, W. Measurement of Indoor Radon-Thoron Concentration in Dwellings of Bali Island, Indonesia. In Proceedings of the 2nd International Conference on the Sources, Effects and Risks of Ionizing Radiation (SERIR2) and 14th Biennial Conference of the South Pacific Environmental Radioactivity Association, Bali, Indonesia, 5–9 September 2016; pp. 186–192. [Google Scholar]
- Nugraha, E.D.; Hosoda, M.; Kusdiana; Untara; Mellawati, J.; Nurokhim; Tamakuma, Y.; Ikram, A.; Syaifudin, M.; Yamada, R.; et al. Comprehensive exposure assessments from the viewpoint of health in a unique high natural background radiation area, Mamuju, Indonesia. Sci. Rep. 2021, 11, 14578. [Google Scholar] [CrossRef]
- Hosoda, M.; Nugraha, E.D.; Akata, N.; Yamada, R.; Tamakuma, Y.; Sasaki, M.; Kelleher, K.; Yoshinaga, S.; Suzuki, T.; Rattanapongs, C.P.; et al. A unique high natural background radiation area – Dose assessment and perspectives. Sci. Total. Environ. 2021, 750, 142346. [Google Scholar] [CrossRef]
- Sherafat, S.; Nemati Mansour, S.; Mosaferi, M.; Aminisani, N.; Yousefi, Z.; Maleki, S. First indoor radon mapping and assessment excess lifetime cancer risk in Iran. MethodsX 2019, 6, 2205–2216. [Google Scholar] [CrossRef]
- Hadad, K.; Doulatdar, R.; Mehdizadeh, S. Indoor radon monitoring in Northern Iran using passive and active measurements. J. Environ. Radioact. 2007, 95, 39–52. [Google Scholar] [CrossRef]
- Mortazavi, S.; Ghiassi-nejad, M.; Niroomand-rad, A.; Karam, P.; Cameron, J.R. How should governments address high levels of natural radiation and radon? Lessons from the Chernobyl nuclear accident and Ramsar, Iran. Risk Health Saf. Environ. 2002, 13, 31–45. [Google Scholar]
- Ali, M.J. Radon Concentration in Al-Gazalia City, Baghdad, Iraq. J. Al-Nahrain Univ. Sci. 2013, 16, 121–128. [Google Scholar] [CrossRef]
- Najam, L.A.; Hameed, T.K.; Farhan, A.O. Assessment of radon gas concentrations levels and hazards indices in houses of Wassit province-Iraq. Rasayan J. Chem. 2017, 10, 1311–1315. [Google Scholar] [CrossRef]
- Tsapalov, A.; Kovler, K.; Shpak, M.; Shafir, E.; Golumbic, Y.; Peri, A.; Ben-Zvi, D.; Baram-Tsabari, A.; Maslov, T.; Schrire, O. Involving schoolchildren in radon surveys by means of the “RadonTest” online system. J. Environ. Radioact. 2020, 217, 106215. [Google Scholar] [CrossRef]
- Iimoto, T.; Tokonami, S.; Yonehara, H.; Furuta, S.; Shimo, M. Researches and Activities on Radon/Thoron and NORM for Past 30 Years in Japan. Radiat. Environ. Med. 2021, 10, 55–66. [Google Scholar] [CrossRef]
- Fujimoto, K.; Kobayashi, S.; Uchiyama, M.; Doi, M.; Nakamura, Y. Nationwide Indoor Radon Survey in Japan. Jpn. J. Health Phys. 1997, 32, 41–51. [Google Scholar] [CrossRef]
- Sanada, T. Measurement of indoor thoron gas concentrations using a radon-thoron discriminative passive type monitor: Nationwide survey in Japan. Int. J. Environ. Res. Public Health 2021, 18, 1299. [Google Scholar] [CrossRef]
- Suzuki, G.; Yamaguchi, I.; Ogata, H.; Sugiyama, H.; Yonehara, H.; Kasagi, F.; Fujiwara, S.; Tatsukawa, Y.; Mori, I.; Kimura, S. A nation-wide survey on indoor radon from 2007 to 2010 in Japan. J. Radiat. Res. 2010, 51, 683–689. [Google Scholar] [CrossRef]
- Hosoda, M.; Sorimachi, A.; Ishikawa, T.; Nakamura, Y.; Tokonami, S. Influential Factors Affecting the Enhancement of Indoor Radon A Case Study on Kumamoto City. Jpn. J. Health Phys. 2008, 43, 349–353. [Google Scholar] [CrossRef]
- Hosoda, M.; Tokonami, S.; Omori, Y.; Ishikawa, T.; Iwaoka, K. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident. J. Radiat. Res. 2016, 57, 422–430. [Google Scholar] [CrossRef]
- Inoue, K.; Hosoda, M.; Tokonami, S.; Ishikawa, T.; Fukushi, M. Investigation of radon and thoron concentrations in a landmark skyscraper in Tokyo. J. Radioanal. Nucl. Chem. 2013, 298, 2009–2015. [Google Scholar] [CrossRef]
- Furukawa, M.; Omori, Y.; Masuda, N.; Tamakuma, Y.; Suzuki, T.; Obata, M.; Shingaki, R.; Nakasone, S.; Ishimine, A.; Nakamura, K.; et al. High Indoor Radon Concentration Observed in Yomitan-son, Okinawa Prefecture, Southwestern Part of Japan. Radiat. Environ. Med. 2022, 11, 16–20. [Google Scholar] [CrossRef]
- Sorimachi, A.; Kranrod, C.; Tokonami, S.; Ishikawa, T.; Hosoda, M.; Janik, M.; Shingaki, R.; Furukawa, M. Anomalously High Radon Concentrations in a Dwelling in Okinawa, Japan. Radioisotopes 2009, 58, 807–813. [Google Scholar] [CrossRef]
- Janik, M.; Bossew, P. Analysis of simultaneous time series of indoor, outdoor and soil air radon concentrations, meteorological and seismic data. Nukleonika 2016, 61, 295–302. [Google Scholar] [CrossRef]
- Abumurad, K.; Al-Bataina, B.; Ismail, A.; Kullab, M.; Al-Eloosy, A. A Survey of Radon Levels in Jordanian Dwellings During an Autumn Season. Radiat. Prot. Dosim. 1997, 69, 221–226. [Google Scholar] [CrossRef]
- Rabadi, D.R.; Abumurad, K.M. Radon surveys in Ajloun city using CR-39 detectors. Radiat. Meas. 2008, 43, 449–451. [Google Scholar] [CrossRef]
- Al-Khateeb, H.M.; Al-Qudah, A.A.; Alzoubi, F.Y.; Alqadi, M.K.; Aljarrah, K.M. Radon concentration and radon effective dose rate in dwellings of some villages in the district of Ajloun, Jordan. Appl. Radiat. Isot. 2012, 70, 1579–1582. [Google Scholar] [CrossRef] [PubMed]
- Soroka, Y.; Molchanov, A. Radiation and radon survey of Akchatau (Kazakhstan) and experience with radon remedial measures. Radiat. Prot. Dosim. 1998, 78, 231–236. [Google Scholar] [CrossRef]
- Al-Azmi, D.; Al-Abed, T.; Alnasari, M.S.; Borham, E.E.; Chekir, Z.; Khalifa, M.S.; Shweikani, R. Coordinated indoor radon surveys in some Arab countries. Radioprotection 2012, 47, 205–217. [Google Scholar] [CrossRef]
- Bem, H.; Domanski, T.; Bakir, Y.; Al-Zenki, S. Radon survey in Kuwait houses. In Proceedings of the IRPA9: 1996 International Congress on Radiation Protection, Vienna, Austria, 14–19 April 1996; International Radiation Protection Association: Seibersdorf, Austria, 1996; Volume 2. [Google Scholar]
- Al-Azmi, D.; Abu-Shady, A.I.; Sayed, A.M.; Al-Zayed, Y. Indoor Radon in Kuwait. Health Phys. 2008, 94, 49–56. [Google Scholar] [CrossRef]
- Janik, M.; Al-Azmi, D.; Sahoo, S.K. The Screening Indoor Radon and Preliminary Study of Indoor Thoron Concentration Levels in Kuwait. Radiat. Prot. Dosim. 2018, 181, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Lespukh, E.; Stegnar, P.; Usubalieva, A.; Solomatina, A.; Tolongutov, B.; Beishenkulova, R. Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Kyrgyzstan. J. Environ. Radioact. 2013, 123, 28–36. [Google Scholar] [CrossRef]
- Park, J.; Kim, Y.J.; Chang, B.U.; Kim, J.Y.; Kim, K.P. Assessment of indoor radon exposure in South Korea. J. Radiol. Prot. 2023, 10, 021506. [Google Scholar] [CrossRef]
- Kobeissi, M.A.; El Samad, O.; Zahraman, K.; Rachidi, I. Assessment of Indoor and Outdoor Radon Levels in South Lebanon. Int. J. Disaster Risk Sci. 2014, 5, 214–226. [Google Scholar] [CrossRef]
- Habib, R.R.; Nuwayhid, R.Y.; Hamdan, Z.; Alameddine, I.; Katul, G. Indoor and Outdoor Radon Concentration Levels in Lebanon. Health Phys. 2018, 115, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Khan, I.U.; ur Rehman, J.; Nasir, T. An overview of radon concentration in Malaysia. J. Radiat. Res. Appl. Sci. 2017, 10, 327–330. [Google Scholar] [CrossRef]
- Batjargal, E.; Bandisuren, M.; Battogtvor, E. Annual dose from radon in Mongolia. In Proceedings of the IRPA: 12 Conference Held in Buenos Aires, Buenos Aires, Argentina, 19–24 October 2008; International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- CHO, K.C.; LWIN, K.Y.; HTWE, T.; WIN, N.N. Assessment of Indoor Radon Concentrations in Homes and Workplaces in Yangon Region, Myanmar Using RAD7 Radon Detector. In Proceedings of the International Conference on Radiation Safety: Improving Radiation Protection in Practice, Virtual, 9–20 November 2020; pp. 511–513. [Google Scholar]
- Lwin, W.T.T.; Pwint, K.H.; Ko, M.M.; Han, M.M.; Aung, H.N.; Mon, S.; Than, N.N.; Naing, S.T.S.; Maw, N.N. Identification of the Potential Radiation Risk of Indoor Radon in Old Buildings of Pabedan Township, Yangon Region. Myanmar Health Sci. Res. J. 2020, 32, 2–4. Available online: https://mhsrj-moh.dmr.gov.mm/index.php?page=fulltext&id=Reg-000975#abstract (accessed on 1 February 2023).
- Thapa, D. Residential Radon Concentration in Dwellings of Kathmandu Valley Using Solid State Nuclear Track Detector. In Proceedings of the AARST International Radon Symposium, Charleston, SC, USA, 28 September–1 October 2014. [Google Scholar]
- Shah, B.R.; Thapa, D.; Mulmi, D.D.; Dahal, K.P. Indoor Radon Survey in Nepal Using Passive Technique Solid State Nuclear Track Detector. Int. J. Clin. Biomed. Res. 2015, 1, 64–71. [Google Scholar]
- Prakash, P.; Dinesh, T.; Buddha, R.S. Assessment of residential radon concentration in the dwellings near Sisdol Landfill Site using solid state nuclear track detector (SSNTD). Int. J. Appl. Res. 2016, 2, 425–427. [Google Scholar]
- Ardouin, C.; Wooding, S. Survey of Indoor Radon Concentrations in New Zealand Buildings; Technical Report April; National Centre for Radiation Science: Christchurch, New Zealand, 2016. [Google Scholar]
- Robertson, M.K.; Randle, M.W.; Tucker, L.J. Natural Radiation in New Zealand Homes; Technical Report NRL 1988/6; NRL: Christchurch, New Zealand, 1988. [Google Scholar]
- Jonathan, K.; Raju, P.S. A Study on Radon Gas and Lung Cancer Incidence in Indoor Environment in Oman. Int. J. Eng. Appl. Sci. 2016, 3, 17–21. [Google Scholar]
- Matiullah; Muhammad, W. Measurement of radon concentration levels in Pakistan: An overview. Indoor Built Environ. 2017, 26, 1319–1334. [Google Scholar] [CrossRef]
- Leghrouz, A.A.; Abu-Samreh, M.M.; Awawdah, K.M.; Abu-Taha, M.I.; Saleh, A.M.; Kitaneh, R.M.; Darwish, S.M. Indoor 222Rn concentration measurements in some buildings of Hebron province during the winter season of the year 2000. Radiat. Prot. Dosim. 2007, 123, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Leghrouz, A.A.; Abu-samreh, M.M.; Shehadeh, A.K. Seasonal variation of indoor radon-222 levels in dwellings in Ramallah province and East Jerusalem suburbs, Palestine. Radiat. Prot. Dosim. 2012, 148, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Leghrouz, A.A.; Abu-Samreh, M.M.; Shehadeh, A.K. Measurements of indoor radon concentration levels in dwellings in bethlehem, palestine. Health Phys. 2013, 104, 163–167. [Google Scholar] [CrossRef]
- Abu-Samreh, M.; Thabayneh, K.; Elayan, M. Assessment of indoor radon levels in some dwellings of Beit Fajjar city, Palestine. Hebron Univ. Res. J. 2012, 6, 47–60. [Google Scholar]
- Jojo, P.J.; Victor, P.E.; Pereira, F.B.; Anduwan, G. Radon in dwellings of Papua New Guinea: Observations of a preliminary study. Int. J. Environ. Sci. Dev. 2019, 10, 188–192. [Google Scholar] [CrossRef]
- Dela Cruz, F.M.; Garcia, T.Y.; Palad, L.J.H.; Cobar, M.L.C.; Duran, E.B. National indoor radon survey in Filipino homes. Philipp. Nucl. J. 2012, 17, 9–16. [Google Scholar]
- Arafa, W.; El-Karadawi, E. Radon concentration determination in some dwellings of Doha city of Qatar. Radiat. Meas. 1997, 28, 595–598. [Google Scholar] [CrossRef]
- Al-Jarallah, M.; ur Rehman, F.; Abu-Jarad, F.; Al-Shukri, A. Indoor radon measurements in dwellings of four Saudi Arabian cities. Radiat. Meas. 2003, 36, 445–448. [Google Scholar] [CrossRef]
- Al-Saleh, F.S. Measurements of indoor gamma radiation and radon concentrations in dwellings of Riyadh city, Saudi Arabia. Appl. Radiat. Isot. 2007, 65, 843–848. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Aleissa, K.A. Influences on indoor radon concentrations in Riyadh, Saudi Arabia. Radiat. Meas. 2014, 62, 35–40. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Aleissa, K.A.; Al-Hamarneh, I.F. Gamma radiation and indoor radon concentrations in the western and southwestern regions of Saudi Arabia. Heliyon 2019, 5, e01133. [Google Scholar] [CrossRef]
- Alenezy, M.D. Radon Concentrations Measurement in Aljouf, Saudi Arabia Using Active Detecting Method. Nat. Sci. 2014, 6, 886–896. [Google Scholar] [CrossRef]
- Abuelhia, E. Evaluation of annual effective dose from indoor radon concentration in Eastern Province, Dammam, Saudi Arabia. Radiat. Phys. Chem. 2017, 140, 137–140. [Google Scholar] [CrossRef]
- Joyce, A.W.L. Measuring Radon Level in Singapore; Technical Report; National University of Singapore: Singapore, 2016. [Google Scholar]
- Othman, I.; Hushari, M.; Raja, G.; Alsawaf, A. Radon in Syrian houses. J. Radiol. Prot. 1996, 16, 45–50. [Google Scholar] [CrossRef]
- Muminov, S.; Barotov, B.; Makhmudova, M.; Khamidov, F.; Akhmedov, M.; Mirsaidov, U. Radon survey in kindergartens and schools of Dushanbe, Republic of Tajikistan. Radiat. Hyg. 2021, 14, 124–132. [Google Scholar] [CrossRef]
- Somsunun, K.; Prapamontol, T.; Pothirat, C.; Liwsrisakun, C.; Pongnikorn, D.; Fongmoon, D.; Chantara, S.; Wongpoomchai, R.; Naksen, W.; Autsavapromporn, N.; et al. Estimation of lung cancer deaths attributable to indoor radon exposure in upper northern Thailand. Sci. Rep. 2022, 12, 5169. [Google Scholar] [CrossRef]
- Wanabongse, P.; Tokonami, S.; Bovornkitti, S. Current studies on radon gas in Thailand. Int. Congr. Ser. 2005, 1276, 208–209. [Google Scholar] [CrossRef]
- Autsavapromporn, N.; Krandrod, C.; Klunklin, P.; Kritsananuwat, R.; Jaikang, C.; Kittidachanan, K.; Chitapanarux, I.; Fugkeaw, S.; Hosoda, M.; Tokonami, S. Health Effects of Natural Environmental Radiation during Burning Season in Chiang Mai, Thailand. Life 2022, 12, 853. [Google Scholar] [CrossRef]
- Celebi, N.; Ataksor, B.; Taskin, H.; Albayrak Bingoldag, N. Indoor radon measurements in Turkey dwellings. Radiat. Prot. Dosim. 2015, 167, 626–632. [Google Scholar] [CrossRef]
- Elmehdi, H.M.; Rashed, B. Indoor Radon Concentration in the City of Sharjah, United Arab Emirates. In IFMBE Proceedings; Dössel, O., Schlegel, W.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 609–611. [Google Scholar]
- Dung, B.D.; Giap, T.V.; Kovács, T.; Cuong, L.D.; Quyet, N.H. Indoor radon concentration measurements at the locations of the first nuclear power plants of Vietnam. Rom. Rep. Phys. 2013, 58, S108–S114. [Google Scholar]
- Nhan, D.D.; Fernando, C.P.; Thu Ha, N.T.; Long, N.Q.; Thuan, D.D.; Fonseca, H. Radon ( 222Rn) concentration in indoor air near the coal mining area of Nui Beo, North of Vietnam. J. Environ. Radioact. 2012, 110, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Le, H.V. Measurement of Indoor Radon Concentration in Dalat area. Sci. Technol. Dev. J. 2018, 21, 71–76. [Google Scholar] [CrossRef]
- Nguyet, N.T.A.; Duong, N.T.; Schimmelmann, A.; Huong, N.V. Human exposure to radon radiation geohazard in Rong Cave, Dong Van Karst Plateau Geopark, Vietnam. Vietnam J. Earth Sci. 2018, 40, 117–125. [Google Scholar] [CrossRef]
- TCVN 7889:2008; Vietnamese Standards—Natural Radon Activity in Buildings—Levels and General Requirements of Measuring Methods. Ministry of Science and Technology and Ministry of Construction: Hanoi, Vietnam, 2008. (In Vietnamese)
- Tokonami, S. Why is 220Rn (thoron) measurement important? Radiat. Prot. Dosim. 2010, 141, 335–339. [Google Scholar] [CrossRef]
- Vasilyev, A.V.; Yarmoshenko, I.V.; Zhukovsky, M.V. Low air exchange rate causes high indoor radon concentration in energy-efficient buildings. Radiat. Prot. Dosim. 2015, 164, 601–605. [Google Scholar] [CrossRef]
- McCarron, B.; Meng, X.; Colclough, S. An investigation into indoor radon concentrations in certified passive house homes. Int. J. Environ. Res. Public Health 2020, 17, 4149. [Google Scholar] [CrossRef]
- IAEA. National and Regional Surveys of Radon Concentration in Dwellings; Technical Report 33; IAEA: Vienna, Austria, 2013. [Google Scholar]
- Chen, J. Assessment of thoron contribution to indoor radon exposure in Canada. Radiat. Environ. Biophys. 2022, 61, 161–167. [Google Scholar] [CrossRef]
- Saïdou; Tokonami, S.; Hosoda, M.; Simo, A.; Hell, J.V.; German, O.; Meless, E.G.O. From Radon and Thoron Measurements, Inhalation Dose Assessment to National Regulation and Radon Action Plan in Cameroon. J. Radiat. Prot. Res. 2022, 47, 237–245. [Google Scholar] [CrossRef]
- Kanse, S.; Sahoo, B.; Gaware, J.; Sapra, B. A novel method based on 220Rn (thoron) exhalation rate of indoor surfaces for robust estimates of 220Rn concentration and equilibrium factor to compute inhalation dose. Chemosphere 2021, 267, 128908. [Google Scholar] [CrossRef]
- Karunakara, N.; Shetty, T.; Sahoo, B.K.; Kumara, K.S.; Sapra, B.K.; Mayya, Y.S. An innovative technique of harvesting soil gas as a highly efficient source of 222Rn for calibration applications in a walk-in type chamber: Part-1. Sci. Rep. 2020, 10, 16547. [Google Scholar] [CrossRef]
- Janik, M.; Tokonami, S.; Iwaoka, K.; Karunakara, N.; Trilochana, S.; Mohan, M.P.; Kumara, S.; Yashodhara, I.; Zhuo, W.; Zhao, C.; et al. Comparison of Radon and Thoron Concentration Measuring Systems Among Asian Countries. Int. J. Environ. Res. Public Health 2019, 16, 5019. [Google Scholar] [CrossRef]
- George, A.C. State-of-the-art instruments for measuring radon thoron and their progeny in dwellings—A review. Health Phys. 1996, 70, 451–463. [Google Scholar] [CrossRef]
- Janik, M.; Ishikawa, T.; Omori, Y.; Kavasi, N. Invited Article: Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan. Rev. Sci. Instrum. 2014, 85, 022001. [Google Scholar] [CrossRef]
- Hassanpour, M.; Dehghanipour, P.; Rezaie, M.; Hassanpour, M.; Rashed Iqbal Faruque, M.; Khandaker, M.U. Study of alpha spectrometry for detection of radon and progeny using gas micro-strip detector. Appl. Radiat. Isot. 2022, 187, 110344. [Google Scholar] [CrossRef]
- Arsia, R.; Salem, M.K.; Negarestani, A.; Sari, A.H. A new approach to measure radon by Thick Gas Electron Multiplier. Radiat. Phys. Chem. 2022, 196, 110114. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Wang, Y.; Sun, C.; Guo, Q. New-designed in-situ measurement system for radon concentration in soil air and its application in vertical profile observation. J. Nucl. Sci. Technol. 2022, 59, 222–229. [Google Scholar] [CrossRef]
- Ma, Q.; Zhou, B.; Feng, Z.; Bai, J.; Zhang, L.; Liu, W. A preliminary study on soil radon anomaly and its formation mechanism in karst area of southwest China. J. Radioanal. Nucl. Chem. 2022, 331, 2045–2054. [Google Scholar] [CrossRef]
- Rafique, M.; Iqbal, J.; Ali Shah, S.A.; Alam, A.; Javed Lone, K.; Barkat, A.; Ali Shah, M.; Ahmad Qureshi, S.; Nikolopoulos, D. On fractal dimensions of soil radon gas time series. J. Atmos. Sol. Terr. Phys. 2022, 227, 105775. [Google Scholar] [CrossRef]
- Sayed, H.; Han, S. Investigation on Radon Awareness among the General Public in Bahrain. In Transactions of the Korean Nuclear Society Autumn Meeting; Korea Institute of Nuclear Safety: Daejeon, Republic of Korea, 2018; pp. 25–27. [Google Scholar]
- Yamaoka, K.; Kataoka, T. Confirmation of efficacy, elucidation of mechanism, and new search for indications of radon therapy. J. Clin. Biochem. Nutr. 2022, 70, 87–92. [Google Scholar] [CrossRef]
- George, A.C. The history, development and the present status of the radon measurement programme in the United States of America. Radiat. Prot. Dosim. 2015, 167, 8–14. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. ISO 3166 Country Codes. 2023. Available online: https://www.iso.org/iso-3166-country-codes.html (accessed on 1 February 2023).
- BfS. Radon Calibration Laboratory. Available online: https://www.bfs.de/EN/topics/ion/environment/laboratories/radon/radon_node.html (accessed on 1 February 2023).
- Otahal, P.P.; Fialova, E.; Vosahlik, J.; Wiedner, H.; Grossi, C.; Vargas, A.; Michielsen, N.; Turtiainen, T.; Luca, A.; Wołoszczuk, K.; et al. Low-Level Radon Activity Concentration—A MetroRADON International Intercomparison. Int. J. Environ. Res. Public Health 2022, 19, 5810. [Google Scholar] [CrossRef] [PubMed]
- Bossew, P.; Cinelli, G.; Ciotoli, G.; Elío, J.; Janik, M.; Kovler, K.; Petermann, E. Current topic discussions in radon research. In Proceedings of the RAP 2022 International Conference on Radiation Applications, Thessaloniki, Greece, 6–10 June 2022. [Google Scholar]
- Elío, J.; Petermann, E.; Bossew, P.; Janik, M. Machine learning in environmental radon science. Appl. Radiat. Isot. 2023, 194, 110684. [Google Scholar] [CrossRef]
- Alam, A.; Wang, N.; Petraki, E.; Barkat, A.; Huang, F.; Shah, M.A.; Cantzos, D.; Priniotakis, G.; Yannakopoulos, P.H.; Papoutsidakis, M.; et al. Fluctuation Dynamics of Radon in Groundwater Prior to the Gansu Earthquake, China. Investigation with DFA and MFDFA Methods. Pure Appl. Geophys. 2021, 178, 3375–3395. [Google Scholar] [CrossRef]
- Muto, J.; Yasuoka, Y.; Miura, N.; Iwata, D.; Nagahama, H.; Hirano, M.; Ohmomo, Y.; Mukai, T. Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake. Sci. Rep. 2021, 11, 7451. [Google Scholar] [CrossRef]
- Conti, L.; Picozza, P.; Sotgiu, A. A Critical Review of Ground Based Observations of Earthquake Precursors. Front. Earth Sci. 2021, 9, 676766. [Google Scholar] [CrossRef]
- Tareen, A.D.K.; Asim, K.M.; Kearfott, K.J.; Rafique, M.; Nadeem, M.S.A.; Iqbal, T.; Rahman, S.U. Automated anomalous behaviour detection in soil radon gas prior to earthquakes using computational intelligence techniques. J. Environ. Radioact. 2019, 203, 48–54. [Google Scholar] [CrossRef]
Positive Aspects | Negative Aspects |
---|---|
Country | RL | AM | Mitigation | Prevention | Reference |
---|---|---|---|---|---|
Australia | 200 | 10.5 | No | No | [46] |
Bahrain | 300 | - | - | - | [46] |
China | 300 | 40 | - | - | [46,47] |
Georgia | 300 | - | - | - | [46] |
Mongolia | 100 | - | - | - | [46] |
Turkey | 400 | 81 | Yes | No | [46] |
Turkmenistan | 200 | - | - | NA | [48] |
Korea | 200 | 62 | - | - | [49,50] |
Israel | 200 | 31 | - | - | [51] |
Kazakhstan | 100 (new), 200 (old) | - | - | - | [52] |
Country | Cancer Control Strategy | Lung Cancer Reporting/Screening Strategy | Indoor Air Quality Strategy | Energy Conservation Strategy |
---|---|---|---|---|
Australia | X | X | ||
China | X | X | X | X |
Iran | X | |||
Mongolia | X | |||
Turkey | X | X |
Country | ISO Code | Rn Survey Average (WAM) | Rn Max | Subregion | Number of Measurement Points |
---|---|---|---|---|---|
- | - | Bq m | Bq m | - | - |
Afghanistan | AF | 65 | 2064 | IV | 16 |
Armenia | AM | * | 400 | V | 800 |
Australia | AU | 12 | 423 | Oceania | 3413 |
Azerbaijan | AZ | 84 | 1100 | V | 2404 |
Bangladesh | BD | 113 | 2616 | IV | 308 |
Brunei | BN | ** | ** | III | 1 |
China | CN | 37 | 1244 | II | 144,937 |
Georgia | GE | 114 | 376 | V | 28 |
Hong Kong | HK | 155 | 700 | II | 1580 |
India | IN | 32 | 373 | IV | 895 |
Indonesia | ID | 96 | 1015 | III | 394 |
Iran | IR | 198 | 3700 | IV | 3194 |
Iraq | IQ | 38 | 239 | V | 175 |
Israel | IL | 90 | 200 | V | 45,415 |
Japan | JP | 18 | 1256 | II | 11,360 |
Jordan | JO | 70 | 1532 | V | 3904 |
Kazakhstan | KZ | 114 | 37,650 | I | 246 |
Korea | KR | 91 | 2810 | II | 11,106 |
Kuwait | KW | 33 | 595 | V | 1108 |
Kyrgyzstan | KG | 200 | 1996 | I | 68 |
Lebanon | LB | 39 | 343 | V | 65 |
Malaysia | MY | 22 | 196 | III | 183 |
Myanmar | MM | 17 | 84 | III | 65 |
Nepal | NP | 123 | 2206 | IV | 108 |
New Zealand | NZ | 21 | 302 | Oceania | 977 |
Oman | OM | 21 | 39 | V | 9 |
Pakistan | PK | 40 | 191 | IV | 3041 |
Palestine | PS | 98 | 984 | V | 88 |
Papua New Guinea | PG | 13 | 18 | Oceania | 60 |
Philippines | PH | 21 | 58 | III | 2626 |
Qatar | QA | 16 | 42 | V | 84 |
Saudi Arabia | SA | 26 | 195 | V | 2955 |
Singapore | SG | 15 | 80 | III | 10 |
Syria | SY | 44 | 524 | V | 1435 |
Taiwan | TW | 11 | 51 | II | 274 |
Tajikistan | TJ | 76 | 2000 | I | 70 |
Thailand | TH | 36 | 405 | III | 1541 |
Turkey | TR | 81 | 1400 | V | 7293 |
United Arab Emirates | AE | 40 | 71 | V | 61 |
Uzbekistan | UZ | 219 | 1050 | I | 25 |
Vietnam | VN | 79 | 634 | III | 142 |
Yemen | YE | 43 | 890 | V | 293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janik, M.; Bossew, P.; Hasan, M.M.; Cinelli, G. Indoor Radon Research in the Asia-Pacific Region. Atmosphere 2023, 14, 948. https://doi.org/10.3390/atmos14060948
Janik M, Bossew P, Hasan MM, Cinelli G. Indoor Radon Research in the Asia-Pacific Region. Atmosphere. 2023; 14(6):948. https://doi.org/10.3390/atmos14060948
Chicago/Turabian StyleJanik, Miroslaw, Peter Bossew, Md. Mahamudul Hasan, and Giorgia Cinelli. 2023. "Indoor Radon Research in the Asia-Pacific Region" Atmosphere 14, no. 6: 948. https://doi.org/10.3390/atmos14060948
APA StyleJanik, M., Bossew, P., Hasan, M. M., & Cinelli, G. (2023). Indoor Radon Research in the Asia-Pacific Region. Atmosphere, 14(6), 948. https://doi.org/10.3390/atmos14060948