The Guiding Role of Rossby Wave Energy Dispersion Theory for Studying East Asian Monsoon System Dynamics
Abstract
:1. Introduction
2. The Guiding Role of the Theory of Rossby Wave Energy Dispersion in the Study on Quasi-Stationary Planetary Wave Propagation in a Three-Dimensional Spherical Atmosphere
2.1. Study on the Propagating Waveguides of Quasi-Stationary Planetary Waves in the Spherical Atmosphere during Boreal Winter
2.2. Waveguides of Quasi-Stationary Planetary Wave Propagation Characterized by the E-P Flux
2.3. Study on the Propagation of Quasi-Stationary Planetary Waves in the Three-Dimensional Atmosphere during Boreal Summer
3. The Guiding Role of Theory of Rossby Wave Energy Dispersion in the Study on the Dynamical Processes of the Variabilities of the East Asian Summer Monsoon System
3.1. The Guiding Role of the Theory of Rossby Wave Energy Dispersion in the Study on the Dynamical Processes of the Interannual Variability of the East Asian Summer Monsoon System
3.1.1. Dynamical Influence of the EAP Pattern Teleconnection Wave Train on the Interannual Variability of the East Asian Summer Monsoon System
3.1.2. Dynamical Influence of the “Silk Road” Pattern Teleconnection Wave Train on the Interannual Variability of the East Asian Summer Monsoon System
3.2. The Guiding Role of the Theory of Rossby Wave Energy Dispersion in the Study on the Dynamical Processes of the Interdecadal Variability of the East Asian Summer Monsoon System
4. The Guiding Role of the Theory of Rossby Wave Energy Dispersion in the Study on the Dynamic Processes of the Variability of the East Asian Winter Monsoon System
4.1. The Guiding Role of the Theory of Rossby Wave Dispersion in the Study on the Dynamical Processes of the Interannual Variability of the East Asian Winter Monsoon System
4.2. The Guiding Role of the Theory of Rossby Wave Energy Dispersion in the Study on the Dynamic Processes of the Interdecadal Variability of the East Asian Winter Monsoon System
4.3. Dynamic Effect of the Propagating Waveguide Oscillations of Quasi-Stationary Planetary Waves on the Variability of the East Asian Winter Monsoons
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeh, T.C. On energy dispersion in the atmosphere. J. Meteor. 1949, 6, 1–16. [Google Scholar] [CrossRef]
- Longuest-Higgins, M.S. On group velocity and energy flux in planetary wave motions. Deep-Sea Res. 1964, 11, 35–42. [Google Scholar]
- Longuest-Higgins, M.S. Planetary waves on a sphere. Proc. R. Soc. 1964, 279, 446–473. [Google Scholar]
- Longuest-Higgins, M.S. Planetary waves on a rotating sphere, Part I. Proc. R. Soc. 1965, 284, 40–68. [Google Scholar]
- Dickinson, R.E. Planetary Rossby waves propagating vertically through weak westerly wind wave guide. J. Atmos. Sci. 1968, 25, 981–1002. [Google Scholar] [CrossRef]
- Matsuno, T. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci. 1970, 27, 871–883. [Google Scholar] [CrossRef]
- Matsuno, T. A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. 1971, 28, 1479–1494. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Simmons, A.H.; Andrews, D.G. Energy dispersion in a barotropic atmosphere. Quart. J. R. Meteor. Soc. 1977, 103, 553–567. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Karoly, D.J. The steady linear response of a spherical atmsphere to thermal and orographic forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef]
- Huang, R.H.; Gambo, K. The response of a hemispheric multi-level model atmosphere to forcing by topography and stationary heat sources. Parts I, II. J. Meteor. Soc. Jpn. 1982, 60, 78–108. [Google Scholar] [CrossRef]
- Huang, R.H.; Gambo, K. On other wave guide in stationary planetary wave propagations in the winter Northern Hemisphere. Sci. China 1983, 26, 940–950. [Google Scholar]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 748–812. [Google Scholar] [CrossRef]
- Nitta, T.S. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Jpn. 1987, 64, 373–390. [Google Scholar] [CrossRef]
- Huang, R.H.; Li, W.J. Influence of the heat source anomaly over the western tropical Pacific on the subtropical high over East Asia. In Proceedings of the International Conference on the General Circulation of East Asia, Chengdu, China, 10–15 April 1987. [Google Scholar]
- Huang, R.H.; Li, W.J. Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism. Chin. J. Atmos. Sci. 1988, 14, 107–116. (In Chinese) [Google Scholar]
- Huang, R.H. The East/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. Acta Meteorol. Sin. 1992, 6, 25–37. [Google Scholar]
- Huang, R.H.; Sun, F.Y. Impact of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Jpn. 1992, 70, 243–256. [Google Scholar] [CrossRef]
- Lu, R.Y.; Oh, J.H.; Kim, B.J. A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus 2002, 54, 44–55. [Google Scholar] [CrossRef]
- Lin, Z.D.; Lu, R.Y. Interannual meridional displacement of the Asian upper-tropospheric jet stream in summer. Adv. Atmos. Sci. 2005, 22, 199–211. [Google Scholar]
- Kosaka, Y.; Nakamura, H. Structure and dynamics of the summertime Pacific-Japan teleconnection pattern. Quart. J. R. Meteor. Soc. 2006, 132, 2000–2030. [Google Scholar] [CrossRef]
- Lu, R.Y.; Kim, B.J. The climatological Rossby wave source over the STCZs in the summer Northern Hemisphere. J. Meteor. Soc. Jpn. 2004, 82, 657–669. [Google Scholar] [CrossRef]
- Chen, W.; Takahashi, M.; Graf, H.F. Interannual variations of stationary planetary waves activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J. Geophys. Res. 2003, 108, 4797. [Google Scholar] [CrossRef]
- Chen, W.; Yang, S.; Huang, R.H. Relationship between stationary planetary wave activity and the East Asian winter monsoon. J. Geophys. Res. 2005, 110, D14110. [Google Scholar] [CrossRef]
- Huang, R.H.; Wei, K.; Chen, J.L.; Chen, W. The East Asian winter monsoon anomalies in the winters of 2005 and 2006 and their relations to the quasi-stationary planetary wave activity in the Northern Hemisphere. Chin. J. Atmos. Sci. 2007, 31, 1033–1048. (In Chinese) [Google Scholar]
- Wang, L.; Huang, R.H.; Gu, L.; Chen, W.; Kang, L.H. Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Clim. 2009, 22, 4850–4872. [Google Scholar] [CrossRef]
- Charney, J.G.; Drazin, G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 1961, 66, 83–109. [Google Scholar] [CrossRef]
- Eliassen, A.; Palm, E. On the transfer of energy in stationary mountain waves. Geophys. Publ. 1961, 22, 1–23. [Google Scholar]
- Andrews, D.G.; McIntyre, M.E. Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 1976, 33, 2031–2048. [Google Scholar] [CrossRef]
- Edmon, M.J.; Hoskins, B.J.; McIntyre, M.E. Eliassen-Palm sections for the troposphere. J. Atmos. Sci. 1980, 37, 2600–2617. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Huang, R.H.; Gambo, K. The response of a hemispheric multi-level model atmosphere to forcing by topograph and stationary heat sources in summer. J. Meteor. Soc. Jpn. 1983, 61, 495–509. [Google Scholar] [CrossRef]
- Kosaka, Y.; Nakamura, H. Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific-Japan. J. Clim. 2010, 23, 5085–5108. [Google Scholar] [CrossRef]
- Huang, R.H.; Lu, L. Numerical simulation of the relationship between the anomaly of the subtropical high over East Asia and the convective activities in the western tropical Pacific. Adv. Atmos. Sci. 1989, 6, 202–214. [Google Scholar]
- Huang, R.H.; Chen, J.L.; Huang, G.; Zhang, Q.L. The quasi-biennial oscillation of summer monsoon rainfall in China and its cause. Chin. J. Atmos. Sci. 2006, 30, 545–560. (In Chinese) [Google Scholar]
- Huang, R.H.; Chen, J.L.; Huang, G. Characteristics and variations of the East Asian monsoon system and its impacts on climate di sasters in China. Adv. Atmos. Sci. 2007, 24, 993–1023. [Google Scholar] [CrossRef]
- Huang, G. An index measuring the interannual variation of the East Asian summer monsoon-The EAP index. Adv. Atmos. Sci. 2004, 21, 41–52. [Google Scholar] [CrossRef]
- Enomoto, T.; Hoskins, B.J.; Matsuda, Y. The formation mechanism of the Bonin high in August. Quart. J. R. Meteor. Soc. 2003, 129, 157–178. [Google Scholar] [CrossRef]
- Tao, S.Y.; Wei, J. The westward, northward advance of the subtropical high over the west Pacific in summer. J. Appl. Meteor. 2006, 17, 513–525. (In Chinese) [Google Scholar]
- Hsu, H.H.; Lin, S.M. Asymmetry of the tripole rainfall pattern during the East Asian summer. J. Clim. 2007, 20, 4443–4458. [Google Scholar] [CrossRef]
- Kosaka, Y.; Xie, S.P.; Nakamura, H. Dynamics of internannual variability in summer precipitation over East Asia. J. Clim. 2011, 24, 5435–5453. [Google Scholar] [CrossRef]
- Huang, R.H.; Liu, Y.; Feng, T. Interdecadal change of summer precipitation over eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes. Chin. Sci. Bull. 2013, 58, 1339–1349. [Google Scholar] [CrossRef]
- Huang, R.H.; Liu, Y.; Huangfu, J.L.; Feng, T. Characteristics and interanal dynamical causes of the interdecadal variability of East Asian winter monsoon near the late 1990s. Chin. J. Atmos. Sci. 2014, 38, 627–644. (In Chinese) [Google Scholar]
- Chen, W.; Huang, R.H. The three-dimensional propagation of quasi-stationary waves in the northern hemisphere winter and its interannual variations. Chin. J. Atmos. Sci. 2005, 29, 139–146. (In Chinese) [Google Scholar]
- Gong, D.Y.; Wang, S.W.; Zhu, J.H. East Asian winter monsoon and Arctic oscillation. Geophys. Res. Lett. 2001, 28, 2073–2076. [Google Scholar] [CrossRef]
- Wu, B.Y.; Wang, J. Winter Arctic Oscillation, Shiberian high and East Asian winter monsoon. Geophys. Res. Lett. 2002, 29, 1897. [Google Scholar] [CrossRef]
- Li, T.; Fu, B. Tropical Cyclogenesis Associated with Rossby Wave Energy Dispersion of a Preexisting Typhoon. Part I: Satellite Data Analyses. J. Atmos. Sci. 2006, 63, 1377–1389. [Google Scholar] [CrossRef]
- Ge, X.; Li, T.; Peng, M.S. Cyclogenesis Simulation of Typhoon Prapiroon (2000) Associated with Rossby Wave Energy Dispersion. Mon. Weather Rev. 2010, 138, 42–54. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, W. A Nonlinear Multiscale Theory of Atmospheric Blocking: Dynamical and Thermodynamic Effects of Meridional Potential Vorticity Gradient. J. Atmos. Sci. 2020, 77, 2471–2500. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Li, X.; Tan, Y.; Wu, Y.; Chen, X.; Xia, F. Association of the zonal migration of North Pacific storm track with the East Asian monsoon in boreal wintertime. J. Geophys. Res. 2021, 126, e2020JD033790. [Google Scholar] [CrossRef]
- Li, Y.; Chao, J.; Kang, Y. Variations in Amplitudes and Wave Energy along the Energy Dispersion Paths for Rossby Waves in the Quasigeostrophic Barotropic Model. Adv. Atmos. Sci. 2022, 39, 876–888. [Google Scholar] [CrossRef]
- Narinesingh, V.; Booth, J.F.; Ming, Y. Blocking and general circulation in GFDL comprehensive climate models. J. Clim. 2022, 35, 3687–3703. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Huangfu, J.; Liu, Y.; Lu, R. The Guiding Role of Rossby Wave Energy Dispersion Theory for Studying East Asian Monsoon System Dynamics. Atmosphere 2023, 14, 962. https://doi.org/10.3390/atmos14060962
Huang R, Huangfu J, Liu Y, Lu R. The Guiding Role of Rossby Wave Energy Dispersion Theory for Studying East Asian Monsoon System Dynamics. Atmosphere. 2023; 14(6):962. https://doi.org/10.3390/atmos14060962
Chicago/Turabian StyleHuang, Ronghui, Jingliang Huangfu, Yong Liu, and Riyu Lu. 2023. "The Guiding Role of Rossby Wave Energy Dispersion Theory for Studying East Asian Monsoon System Dynamics" Atmosphere 14, no. 6: 962. https://doi.org/10.3390/atmos14060962
APA StyleHuang, R., Huangfu, J., Liu, Y., & Lu, R. (2023). The Guiding Role of Rossby Wave Energy Dispersion Theory for Studying East Asian Monsoon System Dynamics. Atmosphere, 14(6), 962. https://doi.org/10.3390/atmos14060962