Quantitative Reconstruction of Paleoclimatic Changes in the Late Miocene Eastern Zhejiang Based on Plant Fossils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Methods of Paleoclimatic Reconstruction
2.2.1. Leaf Margin Analysis (LMA)
2.2.2. Climate Leaf Analysis Multivariate Program (CLAMP)
3. Results
3.1. MAT Reconstruction Based on LMA
3.2. Paleoclimatic Reconstruction Based on CLAMP
4. Discussion
4.1. Comparison of Current Paleoclimatic Parameters with Previous Results
4.2. Comparison between the MAT Values Obtained Using LMA and CLAMP
4.3. Climatic Change Trends in Eastern Zhejiang during the Late Miocene
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zachos, J.; Pagani, M.; Sloan, L.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Steinthorsdottir, M.; Coxall, H.K.; De Boer, A.M.; Huber, M.; Barbolini, N.; Brashaw, C.D.; Burls, N.J.; Feakins, S.J.; Gasson, E.; Henderiks, J.; et al. The Miocene: The future of the past. Paleoceanogr. Paleoclimatology 2021, 36, e2020PA004037. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.F.; Spicer, R.A.; Mosbrugger, V.; Li, C.S.; Sun, Q.G. Climatic reconstruction at the Miocene Shanwang basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. Am. J. Bot. 2007, 94, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Berner, R.A. The rise of plants and their effect on weathering and atmospheric CO2. Science 1997, 276, 544–546. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Ferguson, D.K.; Li, C.S.; Xiao, Y.P.; Wang, Y.F. Alseodaphne (Lauraceae) from the Pliocene of China and its paleoclimatic significance. Rev. Palaeobot. Palynol. 2007, 146, 277–285. [Google Scholar] [CrossRef]
- Li, X.C.; Sun, B.N.; Xiao, L.; Wu, J.Y.; Lin, Z.C. Leaf macrofossils of Ilex protocornuta sp. nov.(Aquifoliaceae) from the Late Miocene of East China: Implications for palaeoecology. Rev. Palaeobot. Palynol. 2010, 161, 87–103. [Google Scholar] [CrossRef]
- Xiao, L.; Sun, B.N.; Li, X.C.; Ren, W.X.; Jia, H. Anatomical variations of living and fossil Liquidambar leaves: A proxy for paleoenvironmental reconstruction. Sci. China Earth Sci. 2011, 54, 493–508. [Google Scholar] [CrossRef]
- Du, B.X.; Yan, D.F.; Sun, B.N.; Li, X.C.; Dao, K.Q.; Li, X.Q. Cunninghamia praelanceolata sp. nov. with associated epiphyllous fungi from the upper Miocene of eastern Zhejiang, SE China and their palaeoecological implications. Rev. Palaeobot. Palynol. 2012, 182, 32–43. [Google Scholar] [CrossRef]
- He, W.L.; Sun, B.N.; Liu, Y.S. Fokienia shengxianensis sp. nov.(Cupressaceae) from the late Miocene of eastern China and its paleoecological implications. Rev. Palaeobot. Palynol. 2012, 176, 24–34. [Google Scholar] [CrossRef]
- Wang, Q.J.; Ma, F.J.; Yang, Y.; Dong, J.L.; Wang, H.F.; Li, R.Y.; Xiao, H.; Sun, B.N. Bamboo leaf and pollen fossils from the late Miocene of eastern Zhejiang, China and their phytogeological significance. Acta Geol. Sin. 2014, 88, 1066–1083. [Google Scholar] [CrossRef]
- Ding, S.T.; Wu, J.Y.; Chen, J.L.; Yang, Y.; Yan, D.F.; Sun, B.N. Needles and seed cones of Pinus premassoniana sp. nov., and associated pollen cone from the upper Miocene in East China. Rev. Palaeobot. Palynol. 2013, 197, 78–89. [Google Scholar] [CrossRef]
- Li, X.C.; Wang, H.F.; Leng, Q.; Xiao, L.; Guo, J.F.; He, W.L. Paliurus (Paliureae, Rhamnaceae) from the Miocene of East China and its macrofossil-based phylogenetic and phytogeographical history. Acta Geol. Sin. 2014, 88, 1364–1377. [Google Scholar] [CrossRef]
- Li, R.Y.; Sun, B.N.; Wang, Q.J.; Ma, F.J.; Wang, Y.F.; Jia, H. Two new Castanopsis (Fagaceae) species based on cupule and foliage from the upper Miocene of eastern Zhejiang, China. Plant Syst. Evol. 2015, 301, 25–39. [Google Scholar] [CrossRef]
- Li, X.C.; Ma, F.J.; Xiao, L.; He, W.L.; Sun, B.N.; Quan, C.; Yao, Y.Z.; Ren, D.; Wang, X.; Wang, Q.; et al. New records of Podocarpium A. Braun ex Stizenberger (Fabaceae) from the Oligocene to Miocene of China: Reappraisal of the phylogeographical history of the genus. Rev. Palaeobot. Palynol. 2019, 260, 38–50. [Google Scholar] [CrossRef]
- Jia, H.; Jin, P.H.; Wu, J.Y.; Wang, Z.X.; Sun, B.N. Quercus (subg. Cyclobalanopsis) leaf and cupule species in the late Miocene of eastern China and their paleoclimatic significance. Rev. Palaeobot. Palynol. 2015, 219, 132–146. [Google Scholar] [CrossRef]
- Jia, H.; Ferguson, D.K.; Sun, B.N.; Meng, X.N.; Hua, Y.F. Phytogeographic implications of a fossil endocarp of Diploclisia (Menispermaceae) from the Miocene of eastern China. Geol. J. 2021, 56, 758–767. [Google Scholar] [CrossRef]
- Xu, X.H.; Wang, Z.X.; Yang, G.L.; Wang, J.; Yang, Y.; Ma, F.J.; Wang, Q.J.; Li, R.Y.; Sun, B.N. Two Pinus species from the upper Miocene in Zhejiang, China and their palaeobiogeographic significance. Rev. Palaeobot. Palynol. 2015, 215, 68–75. [Google Scholar] [CrossRef]
- Xiao, L.; Wu, Z.L.; Guo, L.Y.; Li, X.C.; Ji, D.S.; Wang, J.N.; Liang, J.Q.; Sun, N. Late Miocene Leaves and Endocarps of Choerospondias (Anacardiaceae) from Zhejiang, Eastern China: Implications for Paleogeography and Paleoclimate. Biology 2022, 11, 1399. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, W.M.; Shu, J.W.; Chen, W. Miocene palynoflora from Shengxian Formation, Zhejiang Province, southeast China and its palaeovegetational and palaeoenvironmental implications. Rev. Palaeobot. Palynol. 2018, 259, 185–197. [Google Scholar] [CrossRef]
- Li, M.T. Microstructure of Three Angiosperms from Miocene in Eastern Zhejiang and Reconstruction of Palaeoclimate. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
- Ding, S.T. Reconstruction of Palevegetation and Paleoclimate of the Late Miocene Flora in Tiantai, Zhejiang, China. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
- Yang, Y.; Jin, P.H.; Dong, C.; Xu, X.H.; Li, R.Y.; Ma, F.J.; Wang, Q.J.; Miao, Y.F.; Sun, B.N. Palynological assemblage from the Late Miocene of Tiantai-Ninghai area, Zhejiang, China and its paleovegetation and paleoclimate. Quat. Sci. 2015, 35, 669–682. (In Chinese) [Google Scholar] [CrossRef]
- He, Y.L. Geologic Time and Ecological Environment of the Shengxian Formation Flora from Eastern Zhejiang and Volcanic Activity Influence. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2017. (In Chinese). [Google Scholar]
- Liu, Y.S.; Zheng, Y.H. Flora of the Late Tertiary period. In The Flora of China during Geological Time; Li, X.X., Zhou, Z.Y., Cai, C.Y., Sun, G., Ouyang, S., Deng, L.H., Eds.; Science and Technology of Guangdong Press: Guangzhou, China, 1995; pp. 383–416. ISBN 7-5359-1536-1. (In Chinese) [Google Scholar]
- Liu, Y.S.; Guo, S.; Ferguson, D.K. Catalogue of Cenozoic megafossil plants in China. Palaeontogr. Abt. B 1996, 238, 141–179. [Google Scholar]
- Wolfe, J.A. A Method for Obtaining Climate Parameters from Leaf Assemblages; Govemment Printing Office: Washington, DC, USA, 1993; Volume 2040, pp. 1–71. [Google Scholar]
- Wolfe, J.A.; Schorn, H.E.; Forest, C.E.; Molnar, P. Paleobotanical evidence for high altitudes in Nevada during the Miocene. Science 1997, 276, 1672–1675. [Google Scholar] [CrossRef] [Green Version]
- Ash, A. Manual of Leaf Architecture: Morphological Description and Categorization of Dicotyledonous and Net-Veined Monocotyledonous Angiosperms; Smithsonian Institution: Washington, DC, USA, 1999; ISBN 0-9677554-0-9. [Google Scholar]
- Su, T.; Xing, Y.W.; Liu, Y.S.; Jacqus, F.M.; Chen, W.Y.; Huang, Y.J.; Zhou, Z.K. Leaf margin analysis: A new equation from humid to mesic forests in China. Palaios 2010, 25, 234–238. [Google Scholar] [CrossRef]
- Wing, S.L.; Greenwood, D.R. Fossils and fossil climate: The case for equable continental interiors in the Eocene. Philosophical transactions of the royal society of London. Ser. B Biol. Sci. 1993, 341, 243–252. [Google Scholar] [CrossRef]
- Miller, I.M.; Brandon, M.T.; Hickey, L.J. Using leaf margin analysis to estimate the mid-Cretaceous (Albian) paleolatitude of the Baja BC block. Earth Planet. Sci. Lett. 2006, 245, 95–114. [Google Scholar] [CrossRef]
- Jacques, F.M.B.; Su, T.; Spicer, R.A.; Xing, Y.W.; Huang, Y.J.; Wang, W.M.; Zhou, Z.K. Leaf physiognomy and climate: Are monsoon systems different? Glob. Planet. Change 2011, 76, 56–62. [Google Scholar] [CrossRef]
- Khan, M.A.; Spicer, R.A.; Bera, S.; Ghosh, R.; Yang, J.; Spicer, T.E.V.; Guo, S.X.; Su, T.; Jacques, F.; Grote, P.J. Miocene to Pleistocene floras and climate of the Eastern Himalayan Siwaliks, and new palaeoelevation estimates for the Namling–Oiyug Basin, Tibet. Glob. Planet. Change 2014, 113, 1–10. [Google Scholar] [CrossRef]
- Kennedy, E.M.; Arens, N.C.; Reichgelt, T.; Spicer, R.A.; Spicer, T.E.V.; Stranks, L.; Yang, J. Deriving temperature estimates from Southern Hemisphere leaves. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 412, 80–90. [Google Scholar] [CrossRef]
- Yang, J.; Spicer, R.A.; Spicer, T.E.V.; Arens, N.C.; Jacques, F.M.B.; Su, T.; Kennedy, E.M.; Herman, A.B.; Steart, D.C.; Srivastava, G. Leaf form–climate relationships on the global stage: An ensemble of characters. Glob. Ecol. Biogeogr. 2015, 24, 1113–1125. [Google Scholar] [CrossRef]
- Xiao, L. Anatomic and Organic Geochemical Analysis of Fossil Plants from the Late Miocene in Eastern Zhejiang Province, China. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
- Li, X.C. The Late Cenozoic Floras from Eastern Zhejiang Province and Their Paleoclimatic Reconstruction. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
- He, W.L. Plant Fossils from the Miocene of Ninghai-Tiantai Region of Zhejiang Province and the Climatic Change. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
- Yang, Y. Palynoflora from the Shengxian Formation of Tiantai-Ninghai area, Zhejiang, China and Its Palaeoenvironment and Palaeoclimate. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2015. (In Chinese). [Google Scholar]
- Jia, G.D.; Peng, P.A.; Zhao, Q.H.; Jian, Z.M. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea. Geology 2003, 31, 1093–1096. [Google Scholar] [CrossRef]
- Ding, Z.L.; Yang, S.L.; Sun, J.M.; Liu, T.S. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth Planet. Sci. Lett. 2001, 185, 99–109. [Google Scholar] [CrossRef]
- Wan, S.M. Evolution of the East Asian Monsoon: Mineralogical and Sedimentologic Records in the South China Sea Since 20 Ma. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2011. (In Chinese). [Google Scholar]
- Guo, Z.T.; Ruddiman, W.F.; Hao, Q.Z.; Wu, H.B.; Qiao, Y.S.; Zhu, R.X.; Peng, S.Z.; Wei, J.J.; Yuan, B.Y.; Liu, T.S. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 2002, 416, 159–163. [Google Scholar] [CrossRef] [PubMed]
Fossil Collection Layer | Entire Leaf Species | Total Number Species | Entire Leaf Proportion (%) | East Asian MAT (°C) | East Asian SD (°C) | China MAT (°C) | China SD (°C) |
---|---|---|---|---|---|---|---|
JHU3 | 17 | 28 | 60.71 | 19.72 | 3.26 | 17.80 | 2.94 |
JHUW | 13 | 22 | 59.09 | 19.22 | 3.61 | 17.35 | 3.25 |
JHU1 | 12 | 20 | 60.00 | 19.50 | 3.73 | 17.60 | 3.36 |
DLX | 20 | 30 | 66.67 | 21.54 | 3.04 | 19.44 | 2.74 |
JHU0 | 16 | 24 | 66.67 | 21.54 | 3.31 | 19.44 | 2.99 |
Leaf Character | JHU0 | DLX | JHU1 | JHUW | JHU3 |
---|---|---|---|---|---|
Lobed | 5.71 | 3.57 | 6.45 | 5.56 | 2.04 |
No Teeth | 62.86 | 55.36 | 61.29 | 61.11 | 55.10 |
Regular teeth | 8.57 | 25.00 | 6.45 | 16.67 | 22.45 |
Close teeth | 11.43 | 25.00 | 6.45 | 16.67 | 20.41 |
Round teeth | 2.86 | 10.71 | 0.00 | 0.00 | 2.04 |
Acute teeth | 34.29 | 33.93 | 38.71 | 38.89 | 42.86 |
Compound teeth | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Nanophyll | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Leptophyll 1 | 0.00 | 1.79 | 0.00 | 0.00 | 0.00 |
Leptophyll 2 | 2.86 | 5.36 | 0.00 | 0.00 | 6.12 |
Microphyll 1 | 17.14 | 1.79 | 6.45 | 2.78 | 34.69 |
Microphyll 2 | 45.71 | 46.43 | 48.39 | 30.56 | 46.94 |
Microphyll 3 | 28.57 | 41.07 | 41.94 | 61.11 | 10.20 |
Mesophyll 1 | 0.00 | 3.57 | 0.00 | 5.56 | 2.04 |
Mesophyll 2 | 2.86 | 0.00 | 3.23 | 0.00 | 0.00 |
Mesophyll 3 | 2.86 | 0.00 | 0.00 | 0.00 | 0.00 |
Emarginate apex | 0.00 | 1.79 | 0.00 | 0.00 | 4.08 |
Round apex | 2.86 | 8.93 | 9.68 | 22.22 | 14.29 |
Acute apex | 91.43 | 80.36 | 64.52 | 75.00 | 77.55 |
Attenuate apex | 5.71 | 8.93 | 25.81 | 2.78 | 4.08 |
Cordate base | 0.00 | 1.79 | 0.00 | 0.00 | 0.00 |
Round base | 45.71 | 42.86 | 48.39 | 50.00 | 53.06 |
Acute base | 54.29 | 55.36 | 51.61 | 50.00 | 46.94 |
L:W < 1:1 | 0.00 | 0.00 | 0.00 | 0.00 | 2.04 |
L:W 1–2:1 | 17.14 | 30.36 | 32.26 | 36.11 | 34.69 |
L:W 2–3:1 | 42.86 | 46.43 | 38.71 | 33.33 | 34.69 |
L:W 3–4:1 | 22.86 | 8.93 | 22.58 | 25.00 | 16.33 |
L:W > 4:1 | 17.14 | 14.29 | 6.45 | 5.56 | 12.24 |
Shape obovate | 5.71 | 8.93 | 6.45 | 13.89 | 6.12 |
Shape elliptic | 71.43 | 58.93 | 58.06 | 50.00 | 61.22 |
Shape ovate | 22.86 | 32.14 | 35.48 | 36.11 | 32.65 |
Climatic Variable | JHU0 | DLX | JHU1 | JHUW | JHU3 |
---|---|---|---|---|---|
MAT (°C) | 14.05 | 13.01 | 14.53 | 14.13 | 12.7 |
WMMT (°C) | 24.56 | 23.58 | 24.33 | 23.51 | 23.24 |
CMMT (°C) | 4.95 | 4 | 5.88 | 6.13 | 4.16 |
GROWSEAS (month) | 8 | 7.49 | 8.18 | 7.88 | 7.23 |
GSP (cm) | 148.35 | 123.78 | 150.53 | 127.25 | 120.71 |
MMGSP (cm) | 15.15 | 14.26 | 15.25 | 14.03 | 13.64 |
3-WET (cm) | 80.58 | 73.27 | 82.37 | 74.94 | 73.39 |
3-DRY (cm) | 22.21 | 20.29 | 21.96 | 20.58 | 22.14 |
RH (%) | 63.94 | 65.87 | 67.55 | 68.4 | 62.47 |
SH (g/kg) | 6.29 | 6.34 | 7.02 | 7.16 | 5.78 |
ENTHAL (kJ/kg) | 31.16 | 31.1 | 31.52 | 31.55 | 30.83 |
Climatic Variable | JHU0 | DLX | JHU1 | JHUW | JHU3 |
---|---|---|---|---|---|
MAT (°C) | 18.05 | 16.03 | 17.96 | 16.57 | 15.52 |
WMMT (°C) | 28.07 | 27.31 | 27.97 | 26.97 | 27.05 |
CMMT (°C) | 5.93 | 3.91 | 5.9 | 5.61 | 3.68 |
GROWSEAS (month) | 10.34 | 9.43 | 10.31 | 9.55 | 9.18 |
GSP (cm) | 195.54 | 181.25 | 207.99 | 180.7 | 165.07 |
MMGSP (cm) | 20.05 | 18.71 | 21.65 | 18.09 | 16.87 |
3-WET (cm) | 83.68 | 78.52 | 87.88 | 77.5 | 70.74 |
3-DRY (cm) | 27.25 | 27.53 | 33.43 | 29.11 | 25.8 |
RH (%) | 68.08 | 68.3 | 70.77 | 70.09 | 66.1 |
SH (g/kg) | 9.39 | 8.39 | 9.71 | 9.02 | 7.66 |
ENTHAL (kJ/kg) | 32.84 | 32.23 | 32.94 | 32.53 | 31.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Wang, J.; Ji, D.; Guo, L.; Wang, X.; Liang, J.; Xia, X.; Ren, W.; Li, X. Quantitative Reconstruction of Paleoclimatic Changes in the Late Miocene Eastern Zhejiang Based on Plant Fossils. Atmosphere 2023, 14, 986. https://doi.org/10.3390/atmos14060986
Xiao L, Wang J, Ji D, Guo L, Wang X, Liang J, Xia X, Ren W, Li X. Quantitative Reconstruction of Paleoclimatic Changes in the Late Miocene Eastern Zhejiang Based on Plant Fossils. Atmosphere. 2023; 14(6):986. https://doi.org/10.3390/atmos14060986
Chicago/Turabian StyleXiao, Liang, Jian Wang, Deshuang Ji, Liyan Guo, Xing Wang, Jiaqi Liang, Xiaoyuan Xia, Wenxiu Ren, and Xiangchuan Li. 2023. "Quantitative Reconstruction of Paleoclimatic Changes in the Late Miocene Eastern Zhejiang Based on Plant Fossils" Atmosphere 14, no. 6: 986. https://doi.org/10.3390/atmos14060986
APA StyleXiao, L., Wang, J., Ji, D., Guo, L., Wang, X., Liang, J., Xia, X., Ren, W., & Li, X. (2023). Quantitative Reconstruction of Paleoclimatic Changes in the Late Miocene Eastern Zhejiang Based on Plant Fossils. Atmosphere, 14(6), 986. https://doi.org/10.3390/atmos14060986