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Abstract: By using various skill scores and spatial characteristics of spatial verification methods and
traditional techniques of the model evaluation tool, the gridded precipitation observation, known
as Climate Prediction Center Morphing Technique, gauge observation and three datasets that were
derived from local, Shanghai, and Grapes models, respectively, were conducted to assess the 3 lead
day rainfall forecast with 0.5 day intervals during the summer of 2020 over Central East China.
Results have shown that the local model generally outperforms the other two for the most skill
scores but usually with relatively larger uncertainties than the Shanghai model, and it has the least
displacement errors for moderate rainfall among the three datasets. However, the rainfall of the
Grapes model has been heavily underestimated and is accompanied with a large displacement
error. Both the local and Shanghai model can effectively forecast the large-scale convection and
rainstorms but over forecast the local convection, while the local model likely over forecasts the local
rainstorms. In addition, the Shanghai model slightly favors over forecasting on a broad scale range
and a broad threshold range, and the local model slightly misses the rainfall exceeding 100 mm.
Generally, for a broadly comparative evaluation on rainfall, the popular dichotomous methods should
be recommended when considering reasonable classification of thresholds if the accuracy is highly
demanding. In addition, most spatial methods are suggested to conduct with proper pre-handling of
non-rainfall event cases. Especially, the verification metrics including spatial characteristic difference
information should be recommended to emphasize rewarding the severe events forecast under a
global warming background.

Keywords: rainfall verification; rainstorm; skill scores; spatial characteristics; model evaluation

1. Background

Burning of fossil fuels causes extreme weather events and has damaged the production
systems [1–5]. Therefore, it is required to accurately predict the extreme weather events. In
particular, rainfall is a highly distinguished aspect of numerical prediction, and its evalua-
tion is not only an essential part of the numerical weather prediction system development,
but also serves as an objective basis for practical decision-making [6–10]. Due to the quite
complex model physics and forecasting methods [11–13], rainfall prediction capabilities are
of great uncertainty [14–17]. As the complex forecasts with finer spatial scales have been
developed in recent years [18–20], it has become an essential means for both research and
application to obtain their specific attributes and performances through evaluations and
comparisons [21,22].

The contingency table based on event occurrence (“yes or no”; dichotomous) count,
and a general framework based on joint distributions (called the distributions-oriented
approach) have been established successively [23], and further intends to satisfy broader
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forecast verification. While for the multi-threshold precipitation verification, no classifica-
tion of thresholds is perfect and there are many overlaps that cannot be excluded between
different thresholds [24]. The equitable scores for categorical forecasts [25] have been
furtherly proposed that embody almost all the desirable attributes various works have
highlighted [26–28]. Following, several quite popular methods based on paired forecast–
observation point comparisons for rainfall verification have been proposed under a proper
hypothesis on threshold, occurrence rate, confidence, and others [29], and the complexity
and dimensionality of dichotomous verification have been discussed [30,31].

Spatial verification has drawn attention accordingly in recent years. The well-known
spatial verification methods intercomparison project (ICP) stage I [32] and stage II [33],
which are mostly based on a meta-analysis of ideal precipitation events with several
spatial classifications, have been carried out successively to develop verification methods
that are directly against various spatial characteristic differences. In addition, the Model
Evaluation Tool (MET) has been developed with the addition of the multiple ongoing
mentioned verification methods over a decade [34]. MET has integrated broad spatial
verification techniques, such as the neighborhood [35], gradient [36], distance-map [37–40],
wavelet [41], and model object diagnosis and evaluation (MODE) methods [42,43], and
intends to diagnose various spatial measurements for broader datasets.

The high dimensionality problem (defined as the number of probabilities that must
be specified to reconstruct the basic distribution of forecasts and observations) [21] is one
of the key factors during comparative evaluations in dichotomous methods. This can
be reduced by using the threshold or categorical value to divide the rainfall values into
binary bins (its value is 1 or 0) [44], which can simplify the complexes in skill comparison
among datasets to some extent. Moreover, the sampling uncertainty is another key factor
during comparative evaluation of dichotomous methods, because the sample number
is always limited in real-world applications. Confidence should be estimated to ensure
that apparent differences in skill are real, and not just due to random fluctuations. A
measurement without some indication of precision has little meaning [45]. Usually, under
the assumptions of stationarity and independence, the confidence interval that indicates
lower bounds on the uncertainty in skill is taken as a basic measure on reliability of skill [46].
Furthermore, a nonparametric method, such as resampling (also known as bootstrap), is
proposed to be appropriate for estimating the confidence interval of skill scores [47,48].

The dimensionality of rainfall verification is too great when compared to the size of
the data set available, e.g., the observed rainfall is usually local and intermittent. Especially,
spatial verification demands spatially regular to ensure equitable evaluation on the basis
that connections between points are straight. Meanwhile, the characteristics of most
spatial methods and the events of dichotomous methods can be of great variation between
cases or at different lead times, which can make the resampling strategy too complex
to conduct. Therefore, comparative verification studies on the spatial characteristics or
events of rainfall forecast peremptorily demand the joint analysis on various measurements
under identical spatial conditions or equitable occurrence bases to hopefully address these
ongoing mentioned unaccountable issues [35–43].

The limitations of regional rainfall products in an application that should be attributed
to either blindness skill scores or biased data can be quite an open problem, and this can
be investigated by using the comparative evaluation between skills or datasets [32–34].
Especially, most spatial verification metrics lack a comparison to identify their abilities in
verifying regional rainfall under the background of increasingly severe weather events.
To fill this gap, this study has evaluated the local precipitation products using various
verification methods of MET (Version 10.0.0), and further analyzed the advantages and
weaknesses of the methods and products by comparing the uncertainties of skill scores and
related characteristics of spatial measurements, which aims at providing better ideas for
the inspection and evaluation of the local rainfall products.
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2. Datasets and Methods
2.1. Datasets

The Central East China area covers from 30◦ N to 38◦ N, and from 109◦ E to 118◦ E,
and it is located on the south side of the Southern Taihang Mountains (Figure 1a), where
frequent rainstorm occurs in local summer. This study uses the ISO-meridional coordinates
with an interval of 0.1◦ to re-grid both the raw forecast and observation product over our
study area, which intends to generate paired forecast–observation fields with identical
grids for hopefully equitable verification.
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Moreover, the 3 lead day accumulation precipitation (APCP) forecast products with a
9 km resolution and a 3 h interval over our study area are assembled into three datasets with
a 0.5 day interval (Table 1). Note that the APCP products are derived from the local model
of Henan province (LOC) [25], the CMA Grapes model (GRA) [23], and the model of CMA
Shanghai meteorological bureau (SHA) [24]. The three datasets are further re-gridded into
three forecast fields with identical grids. Meanwhile, the merged precipitation observations,
known as Climate Prediction Center Morphing Technique and gauge observations (CMPA,
Version 2.0) [49], have a high spatial and temporal resolution (5 km and 1 h interval), and
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are collected and further re-gridded into observation fields (OBS hereafter) with the grids
identical to the forecast field.

Table 1. Description of datasets.

Datasets Fields
(Resolution; Period Range) Description Raw Resolution

LOC (0.1◦/0.5 day; 3 days) The APCP products derived from
the local model of Henan province 9 km/3 h

GRA (0.1◦/0.5 day; 3 days) The APCP products derived from
CMA Grapes model forecasts 9 km/3 h

SHA (0.1◦/0.5 day; 3 days)
The APCP products derived from
the local model of CMA Shanghai

meteorological bureau
9 km/3 h

OBS (0.1◦/0.5 day; 3 days) The gridded APCP observational
product known as CMPA (V2.0) 5 km/1 h

APCP = accumulative precipitation, h = hour.

These APCP products are referenced by forecasters for the local weather forecast
service, and the products at local 08:00 and 20:00 time (00:00 and 12:00 UTC) are most
frequently used for rainfall event decisions. Therefore, in this study, the daily 00 and
12 (UTC) forecast and observation fields during summertime in 2020 are collected for the
expected synoptic insights. As seen from Figure 1b, the records of the overall forecast and
observation fields are 1104, and the integrity rate of LOC, GRA, SHA, and OBS fields are
100%, 94%, 86%, and 85%, respectively. The integrity rate can be defined as:

1
nt

∑nt
i

li
L

(1)

In Equation (1), L is total number of all 3 lead day forecast fields, which represents the
expected length of forecast fields or the forecast length, l is number of the available forecast
fields in the forecast length, i represents for the i verification at the same initial time (00 or
12), and nt is the total number of verifications during the whole period of this comparative
evaluation. Therefore, integrity here represents for one basis that the number of datasets
used for calculations during comparative evaluation, which is usually 100% to make sure
every forecast can be verified.

2.2. Methods

This study here has taken two popular verification schemes, labeled dichotomous and
neighborhood, and three spatial verification schemes, labeled displaced, decomposed, and
featured, to emphasize on assessment of APCP forecast quality and possible insights into
verification method differences (Table 2).

The dichotomous scheme includes three widely used skill scores, CSI, GSS, and FBIAS,
which labeled the 2× 2 contingency table, and four skill scores, ACC, HK, HSS, and GER,
which labeled the N× 2 contingency table, which each usually measured at one point
in the paired forecast–observation field [25–28]. The 2 × 2 contingency table methods
are measured with one-threshold-based categories, while the N × 2 contingency table
methods are measured with multi-threshold-based categories [29]. The neighborhood
scheme includes popular skills, such as FSS and FBS, and two special cases of FSS, AFSS
and UFSS, respectively [35]. The neighborhood window of FSS and AFSS is set to 1 in the
entire domain, respectively.
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Table 2. Description of skill scores.

Short Name Full Name Reference Formula * Perfect Limit
No Skill Limit Description Type

ACC Accuracy rate ACC = ∑K
i=1 pii

=1
=0 The N× 2

contingency table
Dichotomous

HK Hanssen–Kuipers
discriminant HK =

(
∑K

i=1 pii−∑K
i=1 pi

ˆ
pi

)
(

1−∑K
i=1 pi

ˆ
pi

) =1
=0

HSS Heidegger skill score HSS =

(
∑K

i=1 pii−∑K
i=1 pi

ˆ
pi

)
(1−∑K

i=1 pi pi)

=1
~−∞

GER Gerrity score GER = ∑K
i=1 ∑K

j=1 pijsij
=1
=0

CSI Critical success
index CSI = a

a+b+c
=1
=0 The 2× 2

contingency tableGSS Gilbert skill score GSS =
a−C1

a+b+c−C1
, C1 = (a+b)·(a+c)

t
=1
=0

FBIAS Frequency bias
score FBIAS = a+b

a+c
=1
~

FBS Fractions brier
score FBS = 1

n ∑n

[〈
Pf
〉

s − 〈Po〉s
]2 =0

=1
The neighborhood

method
Neighborhood

FSS Fractions skill score FSS = 1− FBS
1
n

[
∑n
〈

Pf
〉2

s
+∑n 〈Po 〉2s

] =1
=0

AFSS Asymptotic
fractions skill score AFSS = FSS(n = 1) =1

=0

UFSS Uniform fractions
skill score UFSS = 1+ fo

2
~
~

S1 S1 score
S1 = 100

∑n
i=1(wi(eg))

∑n
i=1(wi(GL))i

, eg =
∣∣∣ δ

δx ( f − o)
∣∣∣+∣∣∣ δ

δy ( f − o) |
)

,GL =

max
(∣∣∣ δ f

δx

∣∣∣ ,
∣∣ δo

δx

∣∣)+ max
(∣∣∣ δ f

δy

∣∣∣, ∣∣∣ δo
δy

∣∣∣), wi = 1

=0
~+∞

The gradient
method

Displaced

BM Baddeley’s ∆
Metric BM = ∆p,ω(A, B) =

[ 1
n ∑s∈D |ω(d(s, A))−ω(d(s, B))|

] 1
P

=0
~+∞ The distance map

methodHD Hausdorff Distance HD = BM(p = ∞)
=0

~+∞

MZM Mean of Zhu’s
Measure MZM = λ

√
1
n ∑s∈D(IF(s)− IO(s))

2 + (1− λ) ·MED(A, B)
=0

~+∞

ISC Intensity scale skill
score ISC = SS(t, j) = 1−MSE(t, j)· n+1

MSE(t)random

≥0
<0

The wavelet
analysis method Decomposed

TIN Total of total
interest TIN = median(T(α)k ≥ 0.7, k ∈ (1, . . . , m))

=1
NULL MODE Featured

* Dichotomous. For the N× 2 contingency table, i and j represent for the forecast and observation category

respectively, K is the total category number, p and
ˆ
p are the relative frequency and the estimated probability

function, respectively, and s represents for the corrected score matric. For the 2× 2 contingency table, the count
a,b,c, and d represent for Hit, False alarm, Miss, and Anti hit, respectively; t = a + b + c + d. Neighborhood. n
is the number of neighborhoods;

〈
Pf
〉

s and 〈Po〉s represent for the proportion of grid boxes that have forecast
and observed events, respectively; fo is the observation rate. Displaced. For S1, f and o represent for forecast
and observations respectively; δx and δy are set to 1; n is the domain size; w is a weight. For HD, BM, and MZM,
n is the total number of events, d is the distance map for the respective event ( A

B ) area, and D is its vector; ω is
the concave function; and s is the event set. p is a corresponding parameter; p = 2 is for BM, and p = ∞ is
for HD; MED(A, B) is as in the mean error distance. IF(s)(IO(s)) is the binary field derived from the forecast
(observation); λ is a weight. Decomposed. t and j represent for threshold and scale component, respectively. n is
the wavelet component index; MSE(t)random is the MSE for the random binary forecast and observation fields.
Featured. T represents the total interest; k represent the object index, and m is the total number of objects; α is the
entire attribute vector.

The displaced scheme includes S1 scores labeled with the gradient method [36], and
three skills HD, MZM [37,38], and BM [39] scores labeled with the distance map method [40];
their perfect score is 0. The decomposed scheme includes the ISC skill labeled with the
wavelet analysis (Haar wavelet) [41]; its score varies between −1 and 1. The featured
scheme includes TIN skill labeled as a method for object-based diagnostic evaluation
(MODE) [42,43]; its score varies between 0.7 and 1. The convolution radius in MODE is set
to 6 km in this study, which is slightly larger than the raw observation resolution (Table 1).

For the skill score over the one paired forecast–observation field of the dichotomous
methods, MET takes the predefined significance level-based parameter (p; the value of
which is usually set to 5%) of the resampling strategy (or bootstrap) to estimate the sampling
uncertainty. Since the overall paired forecast–observation fields for different lead times
or valid times are of a large quantity, the sampling uncertainties in skill of those overall
fields that owns the significance level (usually smaller than 0.05) or the confidence levels
(usually larger than 0.95) have been noted along with the skill, and this intends to indicate
the overall evaluation on the reliability of one dichotomous skill.



Atmosphere 2023, 14, 992 6 of 25

Moreover, the uncertainty difference among verification methods for one dataset
is compared to account for the skill sharpness difference, while the skill performance
uncertainty among datasets is compared to evaluate the reliability of data quality indicated
by the skills.

In addition, since most verification schemes are conducted on the threshold-based
categories, the thresholds as 0.1, 1, 5, 10, 25, 50, and 100 mm have been used to define
the category of rainfall events. Usually, rainfall between 0.1 and 1 mm, between 1 and 5
mm, between 10 and 25 mm, between 25 and 50 mm, and that between 50 and 100 mm
have been related to the drizzle (rainfall or not), light rain, moderate rain, heavy rain, and
rainstorm, respectively.

3. Experiments

The experiment of this study is illustrated in Figure 2. The observation and different
kinds of APCP forecast products are assembled into forecast–observation pairs with an iden-
tical lead day range (3) and interval (0.5), and were further interpolated into the identical
grids by using the bi-linear interpolation method. The following calculations distinguished
by dichotomous, neighborhood, displaced, decomposed, and featured schemes that are
based on MET are conducted to obtain the verification information about skill scores
and spatial characteristics of these paired forecast–observation fields. Finally, the overall
comparative evaluation among datasets and verification methods are finally conducted to
achieve the insights of datasets and methods.
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Moreover, the main eleven rainfall cases of summer 2020 over Middle East China are
collected (Table 3) to fulfill the additional synoptic insights of datasets. Except in case 6,
which is mainly strong convection, other processes are mixed precipitation of continuity
systems and organized convection. Furthermore, except in cases 4 and 7, the rainfall events
all occur at local night. It should be noted that each case (usually observation based) is
verified with forecasts that has the same valid time but different initial times. This is another
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basis that every case can be sufficiently verified during comparative verification, which is
usually desired by forecasters.

Table 3. The main rainfall events during summer of 2020 over Central East China.

Index Periods (mmdd hh) Falling Area; Convection Location Description

1 0609 12–0610 00 large; central southern process and strong convection
2 0611 12–0612 00 large; central eastern process and strong convection
3 0616 12–0617 00 large; local central eastern process and strong convection
4 0622 00–0622 12 local; local southern process edge
5 0627 12–0628 00 large; southern process and strong convection
6 0704 12–0705 00 local; local northern strong convection
7 0711 00–0711 12 large; central southern process and strong convection
8 0718 12–0719 00 large; local southern process edge
9 0721 12–0722 00 large; central southern process and strong convection

10 0803 12–0804 00 local; local central eastern process edge and strong convection
11 0806 12–0807 00 large; local central northern process and strong convection

The cases are derived from local Precipitation Log Table of Henan meteorological observatory.

4. Results
4.1. Skill Scores

To assess the skill of different forecasts and the skill difference among different meth-
ods, the representative skills of the ongoing described methods and their uncertainties are
further compared, and this is conducted on the basis that every forecast can be verified.

4.1.1. Dichotomous

As seen in Figure 3a, the categorical samples of LOC and SHA datasets have shown
comparatively similar frequencies for almost all threshold-based categories, while for GRA,
much more samples than the others can be observed for the threshold less than 0.1 mm.
GRA has gained the highest ACC scores on averaged statistics at a confidence level of 95%,
but with much more uncertainties, followed by LOC, and SHA is the worst (Figure 3b).
Obviously, LOC has shown more skill in the mean statistics than SHA for HK, HSS, and
GER, but with more uncertainties, while GRA has no skill (Figure 3c–e).

As GRA has much more weak rainfall samples than the other two and less strong
rainfall samples, and ACC has clearly been affected by the large amounts of overlapped
anti hits between different thresholds, which could be misleading. This indicates the
careful usage of those non-equitable skill scores with multi-categorical values because they
are quite sensitive to the forecast frequency [24]. Meanwhile, the no confidence levels of
the other three measurements (Figure 3c–e) indicate unreliable skill; if the confidence is
not considered, more outliers accompanied with less uncertainties in HK and HSS than
GER indicate that GER skill is relatively sharper than the other two during this work.
Meanwhile, the measurements, such as HK, HSS, and GER, could favor samples that are
evenly distributed at given threshold so that they give a strict penalty on the overlapped
anti hits to GRA when compared to ACC.

Moreover, as seen in Figure 4, LOC showed more skill on averaged values (CSI, GSS,
and FBIAS) than SHA for different thresholds (0.1, 10, and 50 mm) at a confidence level
of 95%, but with more uncertainties, while GRA had no skill. The increased outliers in
FBIAS than in CSI and GSS indicate that the immeasurable information in skill uncertainties
of the latter could not be ignored (Figure 4c,f,i). In addition, much more uncertainties
in all skills for the 50 mm threshold than those for the small thresholds indicate the
significant sensitivities of skills to threshold difference (Figure 4g–i). Furthermore, the
2 × 2 contingency table skills could be generally in favor of a field that has small threshold
with large sample numbers.
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Figure 3. The categorical frequency and multi-category contingency table skills. (a) Frequency
of different categories for all kinds of data fields; (b–e) represent ACC, HK, HSS, and GER skills,
respectively, as a function of the lead day for different forecast fields. The t represents for the
corresponding threshold (units: mm), K represents for the multi-categories, p represents for the
significance level that can be obtained from all the available fields, and the red cross symbol (+) of
box plot represents for outlier.

The strict penalty on GRA, and the complete confidence on different datasets for
those single categorical skills (CSI, GSS, and FBIAS), indicate they are threshold sensitive
but reliable. Meanwhile, for all thresholds, the large number of outliers that are far from
1 in FBIAS indicates the immeasurable information that the frequently forecast events are
heavily biased. In addition, the significant counts of outliers in both CSI and GSS for the
threshold 50 mm indicate that their scores are possibly less informative for the field that
has a large threshold with limited samples during the comparative evaluation.
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Overall, the LOC is more skillful than the other two, and the SHA has the least un-
certainties in skills, while GRA has possibly captured the best signal for rainfall or not.
Especially, the sharpness of different contingency table skills can be affected by the cat-
egorical value, and it also favors one threshold with a large sample number (or optimal
threshold). However, the optimal threshold can be small because heavy rainfall is usually a
rare event in the real-world. Additionally, these inherent sampling and categorical deficits,
called the “double penalties problem” [32,33], have resulted in the dichotomous measure-
ments not to be sharply self-explained for broader application during the comparative
evaluation.

4.1.2. Neighborhood

As seen from Figure 5, the LOC has more FSS and AFSS skills on the mean statistics
than SHA for both the 0.1 mm and the 10 mm thresholds, while the GRA has no skill. The
LOC has no obvious UFSS skill advantage on the mean statistics among the three datasets,
while the GRA has the largest FBS mean values at the 0.1 mm threshold but the smallest at
the 10 mm threshold. Moreover, more outliers accompanied with less uncertainties of FSS
and AFSS for the 0.1 mm threshold than those for the 10 mm threshold can be observed
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(Figure 5a,b), which indicates that they are threshold sensitive. In addition, this means
that they are sharp for verification of heavier rainfall events. Usually, the discrete small
rainfall of the forecast has little chance to be overlapped by the discrete small rainfall of the
observation when compared to the continuously neighbored organized rainfall events.
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The neighborhood window used in FSS and AFSS is one grid in length 0.1◦ (narrow)
and the entire domain (broad), respectively. Better skill performance with less uncertainties
can be found in FSS for LOC than that for SHA at the 0.1 mm threshold, and this also
can be found in AFSS. This is quite distinguished from the generality of the dichotomous
skill, which could give a better performance accompanied with larger uncertainties. This
indicates that FSS skill could be less sharp than the dichotomous method to some extent,
and the spatial advantages in LOC indicated by AFSS are not robust. Therefore, the choice
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of a narrow or broad window size could never be determined for the spatially discrete
rainfall during the comparative evaluation.

The zero FSS and AFSS values for GRA usually indicate zero overlaps between forecast
and observation on a quite broad neighborhood domain (Figure 5a,b,e,f); however, this is
accompanied with no zero FBS values and an equitable observation rate (UFSS). According
to the definitions in Table 2, FBS is taken as a correspondence factor of FSS and AFSS. This
indicates more possibly unrecognized events in one neighborhood domain, which could be
prevalent for FSS. Recall the fact that the GRA has produced extremely weak rainfall but
comparatively rainfall events with when compared to the other two datasets (Figure 3a);
therefore, the zero FSS and AFSS values could be meaningless.

Overall, LOC outperforms the other two (GRA and SHA) in FSS and AFSS on the
averaged skill. Furthermore, FSS favors more the small-value rainfall with non-discrete
distributions, and it is possibly less sharp than the dichotomous method. However, a zero
FSS value could be possibly meaningless and misleading during the comparative evaluation
among distinguished datasets, because no events of both the forecast and observation (or
anti hit) in the same verification space defined by the fuzzy neighborhood window is taken
as zero skill. This is also mentioned in a nearby study [50]. Thus, FSS is likely unsuitable
for the verification of the datasets where highly discrete rainfall frequently occurs during
the comparative evaluation.

4.1.3. Displaced

As seen from Figure 6, SHA has larger S1 values on mean statistics than LOC across
all the lead days. Furthermore, the S1 values in LOC show more uncertainties than SHA.
This indicates that the overall rainfall in LOC is slightly less displaced from the observation
when compared to SHA, but mostly during the lead time from 0.5 to 2.5 days. Nevertheless,
GRA has no skill.
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Note that S1 only measures the difference in two fields; those higher values (close to
100) than that reported in the previous work [36] indicates that the overall deviation degree
from forecast to observation is quite large. Especially, the 100 S1 skill of GRA indicates that
the event gradients of the neighbor grid in the forecast or observation field are possibly
immeasurable (see Table 2 notes). This should attribute to the large amount of great discrete
rainfall event in datasets. Obviously, S1 skill is significantly affected by the high frequency
of null rainfall events.

As seen in Figure 7, the whole distance map skills have shown lots of uncertainties.
SHA has produced smaller mean HD values than LOC for the 0.1 mm threshold (Figure 7a),
while a larger mean HD value of SHA than that of LOC for the 10 mm threshold can be
observed (Figure 7b). Meanwhile, LOC has produced smaller mean MZM values than SHA
at both 0.1 and 10 mm thresholds (Figure 7c,d). While GRA has no/null HD and MZM
skill. The BM skill value of LOC and SHA behave similarly to HD, and GRA has large BM
values, which are far from the other two (Figure 7e,f). Obviously, both HD and BM give an
opposite skill score estimation for SHA and LOC at the two given thresholds, while MZM
insists that LOC has a better performance than SHA at both given thresholds.
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Moreover, for the 0.1 mm threshold, HD uncertainties of LOC are larger than those
of SHA, but for the 10 mm threshold, those of LOC are likely equitable with those of
SHA. Clearly, HD uncertainty performance seems to have nothing to do with HD skill
performance in this study. This is similar to BM’s behavior; for the 0.1 mm threshold, the
least BM uncertainties in GRA is accompanied with the worst skill performance (Figure 7e),
which indicates that GRA is the largest displacement deviated with the most confidence
among all datasets, while for the 10 mm threshold, this collaborative change phenomenon
between uncertainties and skill performance shows the opposite. However, these multipo-
lar differentiation performances related to multi-thresholds in the comparative evaluation
can be non-robust because that one data set cannot surely win other datasets in one single
skill when the reliability is considered. In contrast, a better MZM performance with less
uncertainties indicates that the skill advantage of LOC is more robust than the other two
during this study.

Overall, rainfall in LOC is likely to be less displaced from the observation when
compared to SHA. This is generally pronounced at 0.5 lead days, indicated by S1 skill
(Figure 6), and at the 10 mm threshold, indicated by the distance map skill (Figure 7b,d,f).
The prevalent large number outliers of every skill in displaced schemes indicates that they
are more easily affected by case differences when compared to FSS or dichotomous skill.
This should be attributed to the overstrict distance metrics [34]. However, careful usage
should be promoted because unlike MZM and S1 skill, the HD and BM skill uncertainties
are quite sensitive to the threshold.

4.1.4. Decomposed

As seen in Figure 8, except for the 50 mm threshold at scale 0.4◦ (Figure 8f), positive
ISC values can be observed. For the 0.1 mm threshold, GRA outperforms the other two
at the scale 0.4◦ and 1.6◦, but with largest uncertainties, followed by LOC, and then SHA
(Figure 8b,c). Nevertheless, GRA has no/null skill at scale 0.1◦ and 6.4◦ (Figure 8a,j).
Meanwhile, for the 10 mm threshold, LOC has shown the best ISC skill, followed by SHA,
and then GRA. Clearly, GRA has larger uncertainties than the other two (Figure 8b,e,h,k).
Moreover, for the 50 mm threshold, great outliers can be observed at scales 0.1◦ and 6.4◦

(Figure 8c,i), and the ISC skill advantages in LOC is slight, and only pronounced at the
scale 6.4◦ (Figure 8i).

In the 10 mm threshold at almost all scales, LOC has larger positive ISC values than
the other two datasets, which indicates that the convective rainfall events in LOC is the
best forecast at almost all scales among the three datasets. GRA can be properly evaluated
by using ISC; it shows notable skill advantages for the drizzle events at a broad scale range
(from 0.4◦ to 1.6◦), but it could be greatly displaced when compared to the others for the
threshold exceeding 10 mm. For the 50 mm threshold, the totally negative skill of all the
three datasets (Figure 8f) indicates that the scale of errors between forecast and observation
could be possibly larger than 0.4◦, while at large scales, such as 6.4◦, the general exhibition
of quite large positive skills indicates that the rainstorm events of large scales are well
forecast easily.

The notable outliers of ISC in both rainstorm and drizzle events indicate that their
errors of scales can be heavily changed by case differences. In addition, the uncertainties
of ISC are relatively larger for convective events than those for drizzle and rainstorm
events. This indicates that ISC rewards the moderate rain most but with sharp scale and
threshold discrimination. Generally, it should be noted that ISC can provide the errors of
scale that depended on intensity (or threshold), and it is not an accuracy measurement of
displacement when compared to the displaced scheme.
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Overall, LOC has predicted the best convective events at any scale, followed by SHA,
then GRA. Additionally, the notable ISC skill advantages of GRA for drizzle and rainstorm
events indicate that it can avoid the overstrict penalty regular in dichotomous methods,
the unrecognized events in neighborhood method, and the multipolar issue in displaced
methods. The scale of errors indicated by ISC can be easily related with synoptic systems,
and ISC is super suitable for rainfall verification if the accuracy of errors is the secondary
needs. However, ISC could be relatively expensive when it is applied to the comparative
evaluation because it is not only event-scale sharpened but also event-threshold sharpened.

4.1.5. Featured

As seen in Figure 9, GRA has no TIN skill. Recall the fact that the events in GRA
greater than 10 mm are rare and totally displaced, which has resulted in the object clustering
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between the forecast and observation having too large a distance difference, which can
further result in null total interest. This could be attributed to the small convolution radius
around 6 Km (about 0.06◦) to some extent. However, since too large convolution radius
can cause meaningless objects of MODE, TIN is likely not suitable for the highly discrete
event verification.
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For the 1 mm threshold, the mean TIN value of SHA is slightly larger than that of LOC
(Figure 9a) at all lead days except the lead day 1. However, for the 10 mm threshold, the
mean TIN value of LOC is slightly larger than that of SHA at all lead days except the lead
day 3 (Figure 9b). This indicates that the generally relative skill advantage in LOC or SHA
is slightly different between the drizzle and convection events, and to the point where this
can negligible.

Moreover, for both the 50 and 100 mm thresholds, LOC outperforms SHA at all lead
days except the lead day 1 and 2 (Figure 9c,d). This indicates that for the TIN skill of
rainstorm or larger threshold events, LOC and SHA have a winner or loser for each other.
While in fact, the two kinds of rainfall events possibly occur simultaneously.

The broad TIN uncertainties for both LOC and SHA indicate TIN is highly sensitive to
the total interest of different object clusters. For the 1 and 10 mm thresholds, the mean TIN
varies around 0.85 (Figure 9a,b), while for the 50 and 100 mm thresholds, it varies around
0.9 (Figure 9c,d). This indicates that TIN favors to reward large threshold events, which can
be related to rare rainstorms. Generally, the prevalent broad uncertainty in both LOC and
SHA for all thresholds indicate that TIN uncertainties are not sensitive to threshold and
event difference during comparative evaluation. Furthermore, the almost unchanged mean
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value of TIN in both LOC and SHA indicates that the two datasets have almost equitable
spatial characteristics.

Overall, LOC has shown a slight advantage of spatial similarity at most lead days for
the threshold exceeding 10 mm. Meanwhile, the lead 1~2 day rainstorm forecasts of SHA are
likely more similar with observations than LOC. TIN can provide the estimation of spatial
difference indicated by composited object attributes, and it is hopefully accurate because
the size of object could be reduced to one point in the limit condition. It can be promoted
to evaluate the datasets with seriate events, such as convection or rainstorms, which can be
easily related to the synoptic systems. Nevertheless, it is computationally expensive.

4.2. Spatial Characteristics

GRA is totally displacement deviated from the spatially continuous rainfall at a large
threshold. Thus, the main rainfall events during the summer of 2020 in both LOC and
SHA are further selected for comparison in a forecaster desired way or an observational
preferable way. Spatial characteristics as the object clusters and energy squared relative
difference (En2RD) that are derived from MODE and Wavelet Analysis, respectively, are
further compared to identify their synoptic insights.

4.2.1. The Object Clusters Comparison

It should be noted that clustering is conducted as a two-step technique (merging
and matching) in the fuzzy logic method of MODE. Merging refers to grouping together
objects in a single field, and matching refers to grouping together objects in different fields,
typically the forecast and observed fields [42,43]. In this work, since the initial fields derived
from different datasets have been interpolated into identical grids, and the objects clusters
of the observation field in one specific event case are mostly equal for different forecast
datasets at different leading days; therefore, here we take all matched or unmatched objects
clusters in the observation as one overall cluster for comparison convenience.

As seen in Figure 10, three kinds of object clusters including matched and unmatched
for the 10 mm threshold are compared between LOC and SHA. Matched clusters for both
LOC and SHA can be observed for all events. However, the observed arcuate cluster in case
1 has been clearly under forecast (Figure 10(Aa–Af)), while SHA is relatively less biased
than LOC at the 2 lead day (Figure 10(Ad)).

Meanwhile, for case 5, 6, and 10, isolated clusters in the middle north area of Henan
province can be observed, which should be related to convection. For case 5, LOC has
produced a similar northwest-biased convection when compared to the observation during
the lead day from 1 to 2.5, while SHA has totally missed (Figure 10(Ea–Ef)). Moreover, for
cases 6, 8, and 10, unmatched clusters mostly in LOC can be observed, while the much
larger convection area for both LOC and SHA indicate an over forecast.

As seen from Figure 11, except for case 4, both LOC and SHA can capture the observed
clusters for the 50 mm threshold, which should relate to rainstorms. Especially for case 5, 8,
and 9, LOC and SHA can well forecast the large area of rainstorms at a lead time from 2.5
up to 3 days. While for case 2, 3, 10, and 11, lots of unmatched cluster pairs in LOC and
SHA indicate that forecasts of the small area rainstorms have heavy displacement error
and are over forecasted.

In general, both LOC and SHA have shown almost equitable abilities in the 10 mm
threshold rainfall forecast, while unmatched pairs of isolated object clusters for both LOC
and SHA indicate an over forecast of local convection. Moreover, the well forecasted large
area of observed clusters indicates good abilities of both LOC and SHA in large-scale
rainstorms, while the unmatched pairs of small areas in LOC indicate an over forecast of
local rainstorms.
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Figure 10. The 10 mm object clusters in different cases. The eleven events are shown in line (A*–K*),
while the lead day forecasts are shown in row (*a–*f). OBSSC = Clusters of OBS; LOCC1 = Matched
cluster pair 1 of LOC, LOCC2 = Matched cluster pair 2 of LOC, and LOCUN = Unmatched cluster
pairs of LOC; SHAC1 = Matched cluster pair 1 of SHA, SHAC2 = Matched cluster pair 2 of SHA, and
SHAUN = Unmatched cluster pairs of SHA.
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However, these objects clusters are hopefully to recognize the similarity or small
difference of the overall geometry shape of events in two different fields, because the smaller
or isolated objects with large distance errors usually cause null interest. Therefore, it could
be not suitable for the largely displaced or non-event cases. In the contrast, these object
clusters can be easily related to the specific rainfall events if they are properly predefined,
and they can provide an intuitionistic comparison on spatial differences between the
forecast and observation. These differences in datasets should be directly attributed to the
meteorological systems related with different physical process [7,8,42,43]. This means they
are quite suitable for the physically systematic events verification, especially in convection
and rainstorm systems used in rainfall verification.

4.2.2. The En2 Relative Difference

It should be noted that the scale components are derived from the decomposition of
the wavelet analysis method for each individual threshold field, and are jointly displayed,
and so is En2RD [41]. The null scale components of the wavelet analysis could be negligible
if the samples for any given threshold are sufficient, e.g., the large area multi-scale precipi-
tation cases during this study. The mean En2RD of multi-scale rainfall cases can account
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for the overall difference between forecast and observation squared energies relative to
their magnitude.

As seen in Figure 12, the mean En2RD value has shown a distinguished scale and
threshold dependence between LOC and SHA. For LOC, the positive values vary between
the 1 and 25 mm threshold, and this is pronounced at the scale between 0.1◦ and 0.8◦ for
all the lead days (Figure 12a–f). This indicates that the LOC has shown an over forecast of
events when their thresholds ranged from 1 to 25 mm and scales ranged from 0.1◦ to 0.8◦,
and an under forecast of events when their thresholds are larger than 50 mm. Meanwhile,
for SHA, the values cover the whole scale and threshold axis. This indicates the SHA
forecasts exhibit over forecasts for all thresholds on all scales, pronounced during the lead
days among 1~3. Both the LOC and SHA have shown nearly perfect forecasts at the 0.5 lead
day. Moreover, it is noted that compared to a previous case, where the En2RD can have
a large variation range (−1~1) [41], the small range (−0.1~0.1) for both LOC and SHA
indicate that the under forecast and over forecast magnitude is relatively small.
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The abovementioned null scale components can be caused by the improper threshold
or non-event fields; therefore, En2RD may not be suitable for the cases with too little
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rainfall. Meanwhile, the relative magnitude indicated by En2RD could be sensitive to cases,
which could make the ranges of the mean En2RD value to be not so meaningful during the
multi-cases applications.

Overall, SHA favors over forecasting on a quite a broad scale range, and LOC likely
misses the rainfall exceeding 100 mm. The En2RD could provide very intuitive spatial
differences distinguished by scales or thresholds, but could be more informative on if
applied to the multi-scale rainfall events.

5. Summary

By using various skill scores and spatial characteristics, the gridded precipitation
observation CMPAV2.0 and three datasets derived from local (LOC), Shanghai (SHA), and
Grapes (GRA) models, respectively, are conducted to assess the 3 lead day and 0.5 day
interval rainfall forecasts during the summer of 2020 over Central East China. The results
are concluded as follows.

1. For dichotomous measurements, LOC is more skillful than the other two, and the SHA
has the least uncertainties in skills, while GRA has captured the best signal for rainfall
or not. For neighborhood measurements, LOC slightly outperforms SHA in FSS, AFSS,
and FBS skills, but relatively large uncertainties of FSS in LOC can be identified. This
indicates that both LOC and SHA forecasts can overlap the observation at a broad
neighborhood window, but LOC has more uncertainties.

2. LOC is generally less displaced than SHA for S1, and more pronounced on the lead
0.5 day. Less displacement errors of LOC than that of SHA also can be found for
MZM. This advantage of LOC can only be found at the 10 mm threshold for both
HD and BM. Moreover, LOC has more intensity scale skills than the other two for
the 10 mm threshold at almost all scales. GRA likely has large displacement errors
when compared to the other two datasets. In addition, LOC shows slight advantages
in spatial similarity with observations when compared to SHA.

3. Both LOC and SHA have shown almost equitable abilities in convection and rain-
storms forecast of the large areas but slightly over forecasts in the local convection,
while LOC likely over forecasts the local rainstorms. Moreover, the 1~2 lead day rain-
storm forecasts of SHA are more similar with observations than LOC. SHA slightly
favors over forecasting on a broad scale range and a broad threshold range, and LOC
slightly misses the rainfall exceeding 100 mm.

The popularly dichotomous and neighborhood skill advantages of LOC can be identi-
fied by using a collection of measurements, and that GRA has few popular skills should
be attributed to sampling errors related to its very little heavy rain and particularly heavy
drizzle. Moreover, the largely deviated rainfall forecast of GRA can be identified by using
different displace measurements, while LOC has slightly little advantage in displacement
when compared to SHA, which is pronounced on the lead 0.5 day and/or at the 10 mm
threshold. Furthermore, LOC is more spatially similar with the observations than SHA.
In addition, both LOC and SHA have shown almost equitable abilities in convection and
rainstorms forecast of the large area but with a slight over forecast.

The dichotomous methods are sharpened on the quality of datasets but could be blind
to model developers and datasets users because the overstrict penalty makes frequently
immeasurable zero or null values, but these are possibly meaningful for the comparative
evaluation. The spatial skills derived from the neighborhood, displaced, decomposed,
and featured schemes have clearly broadened the dimensionality of rainfall verification;
however, during this comparative study, the neighborhood and decomposed skills are
likely fuzzy, while the displaced skills behaviors multipolar differentiation performance,
and the featured skills are likely too sensitive to the spatial geometry of rainfall event
distribution. Especially, the abundant spatial characteristics derived from the decomposed
and featured schemes could be powerful assistance of subjective decisions for forecasters.

Nevertheless, except for the ISC and TIN skill, almost all other measurements give too
little reward on rainstorm forecast or even heavier rainstorm forecast of all models when
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compared to the lighter rainfall forecast during this work. This might indicate that the rare
events are too difficult to forecast, or more likely their poor abilities in verifying forecasts
with rainstorm or heavier rainstorm events. Since the severe rainfall events accompanied
with severe social influence frequently occur recently under a global warming background,
the rewards on model abilities in severe weather forecasting including rainfall should
be emphasized.

6. Discussion

Although comparative evaluation can map the overall performance of datasets and
methods, there are still limitations during this study that the basis of verification can be
varied, and/or the verification can be too broad. The event climatic occurrence background
could be quite varied in different study areas and time periods, e.g., the dry lands or tropics,
the wet or dry years, and so on. Therefore, the categorical values in this study should
be cautious in different regions. In addition, the application purpose should be quite
different, e.g., decision-making on public service of one event or a fundamental metric of
post-proceed training methods usually as a reference to narrow metric candidates and take
the possibly chanceful advantages of nearby forecasts to get their hopeful rewards, but not
broader skill advantages or differences, as in this study. Therefore, besides the dichotomous
metrics, other spatial metrics with their desired accuracy (e.g., displaced and/or featured)
could be taken as additional candidates for rewarding regular rainfall decisions, and other
metrics should be further studied.

For a fair or equitable comparative evaluation of distinguished rainfall datasets to
tell model performance over a specific area, one single skill of limited datasets can be far
from enough. Long time series (e.g., one year or more) datasets are usually desired in the
verification to identify robust model performance under a changed climatic background.
Furthermore, the model physics related to rainfall characteristics are usually temporal–
spatial scale issued and parameterized with hopefully solved empirical assumptions, and
the decomposed scheme can give a clear view of a decomposed spatial–scale dependent
estimate; this can simplify this spatial scale estimation issue of model physics to some extent.
More cases should be studied in future work to enhance the application of ISC metrics.

The generally notable skill uncertainties of datasets during this study, which should
be likely attributed to the model or method theory difference, indicate that the model
or method uncertainties in precipitation forecast can be great. This could be hopefully
addressed by the work considering the uncertainties of models or methods [51]. In general,
for a broadly comparative evaluation on rainfall, the popular dichotomous methods should
be recommended under considering reasonable classification of thresholds if the accuracy
is highly demanded. Most spatial methods are suggested to be conducted with proper
pre-handling of non-rainfall event cases. Especially, the spatial characteristic difference
information could be recommended in a computationally sufficient environment.
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