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Abstract: This study aimed to investigate the differences in the relationship between radon and
its progeny concentrations and particulate matter concentrations under varying pollution weather
conditions. Outdoor radon and its progeny concentrations were measured by a radon/thoron- and
radon/thoron progeny monitor (ERS-RDM-2S) during haze and dust storm weather in Beijing. Partic-
ulate matter concentrations and meteorological data were simultaneously recorded. Results showed
that radon and its progeny concentrations exhibited a diurnal variation pattern, with a minimum
in the late afternoon and a maximum in the early morning. The average radon concentrations were
similar under both pollution weather conditions, but significantly higher than the reported average
for Beijing. The equilibrium equivalent radon concentration during haze was about two times that
during a dust storm. PM10 concentrations were similar in both pollution weather conditions, but
PM2.5 concentrations during haze were approximately 2.6 times higher than that during dust storms.
A positive correlation was observed between radon and its progeny concentrations and particulate
matter concentrations, but the correlation was significantly higher during haze than during dust
storms. The higher PM2.5 concentration during haze significantly increased the correlation between
radon and its progeny concentrations and particulate matter concentrations. We recommended
protecting against radon exposure during pollutant weather, especially haze.

Keywords: radon and its progeny; particulate matter; haze; dust storm

1. Introduction

Radon and its progeny are classified as one of the major human carcinogens and are
the second most common cause of lung cancer after smoking [1,2]. The hazards of radon
mainly come from its progeny. In addition to natural radiation, the health effects caused by
air pollution have gained significant attention from the scientific community and society [3].
Numerous epidemiological studies have demonstrated that exposure to elevated concen-
trations of ambient particulate matter (PM) pollution is a risk factor for cardiopulmonary
diseases [4–6]. According to the World Health Organization (WHO), without reduction
measures, air pollution will be the largest environmental issue responsible for premature
death worldwide by 2050 [7]. Radon decay products easily combine with aerosol particles
in the air, forming attached radon progenies [8], which can increase the short-term and/or
long-term impacts on human health.

Air particulate matter monitoring commonly includes PM10 (mass of PM with an
aerodynamic diameter less than or equal to 10 µm) and fine PM2.5 (mass of PM with an
aerodynamic diameter less than or equal to 2.5 µm) [8]. Studies on the relationship between
outdoor radon and its progeny concentrations and particulate matter concentrations have
been reported both domestically and internationally. Chinese scholars have found that
there were seasonal variations in atmospheric aerosol radioactivity and the relationship
with total suspended particulate concentration was not simply linear [9,10]. Radon progeny
concentration and PM2.5 showed a clear positive correlation [11], but there were some
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differences, which may be related to meteorological factors, material sources, and mea-
surement locations [12]. Moreover, there was a correlation between the concentration of
attached radon progeny and both PM10 and PM2.5, but the correlation coefficient with
PM2.5 was larger than that with PM10 [13]. Relevant studies by abroad scientists found
that radon and PM10 have the highest concentration in winter and the lowest concentration
in summer [14–17]. The correlation between radon concentration, PM2.5, and PM10 varied
in different measurement environments, and the correlation coefficients also varied [18].
Meteorological parameters have significant impacts on radon concentration and air quality
index. The concentration of radon and PM2.5 and ambient pressure showed reverse and
direct correlation respectively. Increasing pressure and decreasing temperature caused all
PM to increase, but the temperature was more sensitive [19]. However, Adeoye’s research
did not find a correlation between radon and PM2.5 or PM10 [20].

Extreme weather events, particularly haze and dust storms, can significantly increase
particulate matter concentration in the air [21,22]. Due to the different formation mecha-
nisms of haze and dust storms, there were differences in the composition of particulate
pollutants in the air [23,24]. Previous studies have shown that the correlation between
radon and its progeny concentrations, particulate matter concentrations, and meteoro-
logical parameters varies across different regions and seasons. However, few reports
have investigated whether there are differences in the correlation between radon and its
progeny concentrations and particulate matter concentrations under haze and dust storm
weather. The frequent dust storms that occurred in Beijing during the spring of 2023 have
caused significant adverse effects on human daily life. Therefore, this study analyzed the
relationship between outdoor radon and its progeny concentrations, particulate matter con-
centrations, and meteorological parameters measured at the Radiation and Environment
Laboratory of China University of Geosciences (Beijing) from March to April 2023. The
results were compared with measurements taken during severe haze at the same location
from November 2015 to January 2016. Furthermore, by incorporating canonical correlation
analysis, we investigated the differences in the correlation between radon and its progeny
concentrations, particulate matter concentrations, and meteorological parameters under
haze and dust storm weather. In this study, we found that the impact of particulate matter
concentration on radon and its progeny concentrations was higher during haze weather
compared to dust storm weather. This can be primarily attributed to significantly higher
PM2.5 concentrations during haze weather as compared to dust storm weather.

2. Materials and Methods
2.1. Data Collection

The instrument used for radon and its progeny measurement was the ERS-RDM-2S
dual-channel radon/thoron and radon/thoron progeny monitor produced by Germany
TRACERLAB GmbH, Köeln, Germany. The detection efficiency of the device is 20%, and
the lower limits of detection of radon and equivalent radon are appr. 15 and 0.1 Bq·m−3,
respectively, at a 1 h counting interval [25]. The device was built with two silicon alpha-
sensitive detectors (Canberra PIPS Sensitive Detector) and two alpha spectroscopy systems,
MCA with 256 channels [25]. It is designed to collect the alpha particles of 218Po and 216Po
for the determination of the concentration of radon and thoron, using the diffusion mode
or pump mode. For the determination of the radon and thoron progeny concentration,
ambient air is sucked by the internal air-suction pump with an airflow rate of approx.
100 L·h−1 through the membrane filter (0.8 µm pore-size) of the removable progeny filter.
There is a collection of 218Po/214Po for the determination of the radon progeny and 212Po (a
decay product of 216Po) for the determination of the thoron progeny [25,26]. The instrument
was calibrated in Physikalilisch-Technische Bundesanstalt, Braunschweig, Germany, the
National Metrology Institute of Germany.

The measurement location selected for this study was a windowsill located south of
the Radiation and Environment Laboratory of China University of Geosciences (Beijing)
in Haidian District, Beijing, China. The windowsill is 2.16 m above the ground. The
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actual measurement diagram is shown in Figure 1. During the measurement period,
the instrument was placed indoors, while the radon/thoron detector and radon/thoron
progeny detector were positioned outside the window to ensure sufficient contact with the
outdoor atmosphere. Both detectors were placed in the same location, and the window was
tightly closed without compressing the connection pipes of the detectors. The instrument
operated in continuous measurement mode. The measurement time and mode were set as
1 h pump mode. The calculation of radon concentration and equilibrium equivalent radon
concentration followed the methods described by Sun, 2017 and Wang, 2020 [11,26]. This
study conducted measurements during two periods, with measurement periods from 22
March 2023, to 22 April 2023, and from 9 November 2015, to 9 January 2016, respectively.
A total of 2091 sets of data were obtained, including 754 sets of radon concentration
and equilibrium equivalent radon concentration data during 2023 and 1337 sets of data
during 2015–2016.
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Figure 1. Outdoor radon and its progeny concentration measurement.

Meteorological parameters and particulate matter concentrations were obtained from
the data published by the website of the China Meteorological Administration (http://www.
weather.com.cn (9 November 2015–9 January 2016, and 22 March 2023–22 April 2023))
and the Air + Ecological Environment Big Data Service Platform (https://www.dpt.daqi1
10.com/login.jsp (9 November 2015–9 January 2016, and 22 March 2023–22 April 2023)).
During the measurement period, we recorded real-time parameter data from the nearest
meteorological station at the Olympic Sports Center. These include atmospheric temper-
ature, relative humidity, precipitation, wind force, wind direction, and PM2.5 and PM10.
Among them, wind force represents the intensity of the wind and is commonly expressed
using wind scale in meteorology. There is a corresponding conversion relationship between
the wind scale and the internationally used Beaufort scale. For specific details, please refer
to “GB/T 28591-2012 Wind scale” [27].

2.2. Canonical Correlation Analysis

Canonical correlation analysis is a multivariate statistical analysis method that reflects
the overall correlation between two sets of indicators by using comprehensive variables to
represent their correlation. Its basic principle is to extract two representative comprehensive
variables from each set of variables to grasp the overall correlation between the two sets of
indicators. Then use the correlation between these two comprehensive variables to reflect
the overall correlation between the two sets of indicators [28]. In this study, canonical
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correlation analysis was performed using the canonical correlation function module in
SPSS (Statistical Package for Social Science, Version 26).

In this study, radon and its progeny concentrations were treated as one set of variables,
while particulate matter concentrations and meteorological parameters were treated as
another set of variables. Normality tests were performed on both data sets. If both sets of
data followed a normal distribution, canonical correlation analysis could be performed.
The output of canonical correlation analysis includes canonical correlation, standardized
canonical correlation coefficients, unstandardized canonical correlation coefficients, canoni-
cal loadings, cross-loadings, and the proportion of variance explained. By analyzing the
results of canonical correlation and canonical loadings, the impact of each variable in
particulate matter concentrations and meteorological parameters on radon and its progeny
concentrations can be evaluated.

3. Results
3.1. Characteristics of Radon and Its Progeny Concentration

Normality tests were performed on the measured radon concentration (CRn) and
equilibrium equivalent radon concentration (EEC-Rn) data, revealing that both CRn and
EEC-Rn followed or approximately followed a normal distribution during the two con-
secutive measurement periods. The daily averages of CRn and EEC-Rn over time are
shown in Figure 2. Both CRn and EEC-Rn exhibited large fluctuations with the change of
measurement time during the two consecutive measurement periods. Combining the box
plots of CRn and EEC-Rn (Figure 3), it can be seen that CRn was close with mean values of
19.77 ± 8.70 and 21.15 ± 9.72 Bq·m−3 during the two measurement periods from March
to April 2023 (spring) and from November 2015 to January 2016 (winter), respectively,
with ranges of 4–50 and 4–62 Bq·m−3, respectively. These values were significantly higher
than the average radon levels in Beijing reported by Cheng et al. [29] and Peng et al. [30],
which were 6.7 and 10.9 Bq·m−3, respectively. It cannot be ruled out that the differences in
the results were influenced by the variations in measurement methods, such as measure-
ment position, measurement height, etc. EEC-Rn exhibited distinct seasonal differences,
with higher values in winter ranging from 1.78 to 19.92 Bq·m−3 and an average concen-
tration of 9.06 ± 3.37 Bq·m−3. In contrast, the average concentration in spring was only
4.64 ± 2.53 Bq·m−3, with a range of 0.49–15.17 Bq·m−3. EEC-Rn in winter in this study
was significantly higher than the reported average outdoor EEC-Rn in Beijing by Peng
et al. (5.8 Bq·m−3) [30]. However, the results obtained in this study during the spring were
similar to the findings of Peng et al. [30].
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To evaluate the diurnal variation, the average concentrations of CRn and EEC-Rn at
the same time of day during the two consecutive measurement periods were calculated
and sinusoidal functions were fitted to the data using Origin software, as shown in Figure 4.
The diurnal variation pattern of CRn (Figure 4a) during the spring measurement period
exhibited a clear “sine” characteristic (R2 = 0.76), with the maximum value appearing
around 5:00 and the minimum value appearing around 16:00. However, the diurnal
variation pattern of CRn during the winter measurement period was not significant, with
a low goodness of fit (R2 = 0.38). The maximum and minimum values were observed
around 6:00 and 18:00, respectively, slightly later than in the spring measurement period.
Based on the fitted sinusoidal function of CRn, the amplitude of the fitted curve during the
spring measurement period (A = 2.54) was about 2.3 times greater than that during the
winter measurement period (A = 1.11). This indicates that the range and intensity of the
diurnal variation in CRn were significantly higher in the spring compared to winter, which
is consistent with the findings from the study conducted by Celikovic et al. [31].
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The diurnal variation pattern of EEC-Rn (Figure 4b) exhibited a significant “sine”
characteristic during both the spring and winter measurement periods, with goodness of
fit values of 0.89 and 0.79, respectively. The maximum and minimum values of EEC-Rn
appeared around 8:00 and 19:00, respectively, in both measurement periods. The range and
intensity of the diurnal variation in EEC-Rn were similar in both measurement periods,
with amplitudes (A) of 1.04 in spring and 1.11 in winter. Comparing the diurnal variation
patterns of CRn and EEC-Rn, it can be seen that the maximum and minimum values of
EEC-Rn appeared later than those of CRn in both measurement periods.

3.2. Characteristics of Particulate Matter Concentration and Meteorological Parameters

The air quality summary for the two consecutive measurement periods is presented in
Table 1. During the measurement period from March to April 2023 (spring), approximately
41% of the total measurement days were classified as polluted days. Out of the total
measurement days, 18 days were recorded as dust storm days, accounting for 56% of the
total measurement days. In the measurement period from November 2015 to January 2016
(winter), nearly 60% of the total measurement days were polluted days, with 30 recorded
haze days accounting for approximately 48% of the total measurement days.

Table 1. Air quality summary (days) during the two measurement periods.

Air Quality November 2015 to January
2016 (Winter) March to April 2023 (Spring)

Excellent 15 6
Good 10 13

Pollution 1 37 13
Proportion of polluted days 59.68% 40.63%

1 Pollution includes mild pollution, moderate pollution, heavy pollution, and severe pollution.

The variation in PM2.5 and PM10 concentrations over time is shown in Figure 5.
During both consecutive measurement periods, there was a significant positive correlation
between PM2.5 and PM10 concentrations, with correlation coefficients greater than 0.9. The
average concentration of PM2.5 during the spring measurement period was significantly
lower than that during the winter measurement period, with mean values of 53.65 and
139.84 µg·m−3, respectively. The range in variations during both periods was up to two
orders of magnitude, ranging from 4.88–186.50 and 5.94–507.30 µg·m−3, respectively. The
average concentration of PM10 during the spring and winter consecutive measurement
periods was close, with values of 148.20 and 182.83 µg·m−3, respectively. The range in
variation was 30.75–584.04 and 5.00–590.54 µg·m−3, respectively. Comparing the proportion
of PM2.5 to PM10 between the two measurement periods, it was found that the ratio of
PM2.5 to PM10 during the winter measurement period was significantly higher than that
during the spring measurement period, with values of 76.5% and 36.2%, respectively.

We have also collected data on the maximum PM2.5 concentrations and their per-
centages in PM10 recorded during dust storms in various countries/regions [32–36], as
presented in Table 2. During dust storms, the PM2.5 concentrations recorded in this study
were significantly higher than those reported in Rome, America, and Belgium, but signifi-
cantly lower than those recorded in Mongolia and Korea. As for the ratio of PM2.5 to PM10,
the results of this study were similar to those obtained in Rome, Mongolia, and Belgium,
and significantly higher than those in Korea and America.
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Table 2. Maximum PM2.5 concentrations (µg·m−3) and their percentage of PM10 in dust storms
observed in different countries/regions.

Location PM2.5 % of PM10 Reference

Beijing 186.5 36.2 Present study
Rome 86.0 47.3 [32]

Mongolia 700.0 36.3 [33]
Korea 294.0 10.0 [34]

America 55.7 13.1 [35]
Belgium 43.0 42.8 [36]

The daily mean values of atmospheric temperature (T), relative humidity (RH), and
wind force (W) recorded during the two consecutive measurement periods are shown in
Figure 6a. There were significant differences in T and RH between the spring and winter
consecutive measurement periods. The average values of T and RH during the spring were
13.79 ◦C and 40.07%, respectively, while during the winter, they were 0.24 ◦C and 65.91%,
respectively. The recorded values of W were similar during both the spring and winter
measurement periods, with average values of 1.65 and 1.58, respectively. Comparing the
diurnal variations in T, RH, and W (Figure 6b), it can be seen that the variations in T and
RH in the spring exhibited a “sine” characteristic, while in the winter, they showed a near
“single-peak” shape. The range in T and RH variation in the spring was significantly larger
than that in the winter. The variation pattern of W was consistent in both the spring and
winter, showing a “sine” shape, but with a larger range in variation in the spring than in
the winter. The diurnal extreme values of T, RH, and W appeared around 6:00 and 15:00,
respectively. Among them, the minimum values of T and W occurred around 6:00, while
the maximum values occurred around 15:00. RH exhibited the opposite trend, with around
6:00 showing the maximum value and around 15:00 showing the minimum value.
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3.3. Relationships between Radon and Its Progeny Concentrations and Particulate Matter
Concentrations and Meteorological Parameters

Pearson correlation analysis was performed to determine the correlations between
CRn, EEC-Rn, PM concentrations, and meteorological parameters, and the results are shown
in Figure 7. Due to variations in meteorological parameters recorded during two distinct
measurement periods, certain parameters, such as precipitation (P) during the period
from November 2015 to January 2016, and atmospheric pressure (AP) during the period
from March 2023 to April 2023, were not recorded. Consequently, there are differences
in the Pearson correlation analysis between these two distinct measurement periods for
individual parameters. During the two consecutive measurement periods, both CRn and
EEC-Rn exhibited positive correlations with relative humidity (RH), PM2.5, and PM10.
However, the correlation coefficients were significantly higher in the winter than in the
spring. To explore the influence of wind direction, the directions were digitized and shown
in Figure 8. The numbers increased sequentially in the clockwise direction. Both CRn and
EEC-Rn showed strong negative correlations with wind force (W) and wind direction (WD)
during the two measurement periods. CRn and EEC-Rn were positively correlated with
temperature (T) in the spring, but showed no correlation in the winter. Furthermore, CRn
and EEC-Rn were positively correlated with precipitation (P) in the spring, while being
negatively correlated with atmospheric pressure (AP) in the winter. Strong correlations
were also observed between PM concentrations and meteorological parameters.
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The Pearson correlation analysis results revealed that there were correlations between
radon and its progeny concentrations, PM concentrations, and meteorological parameters.
Moreover, significant correlations were observed between PM concentrations and meteoro-
logical parameters. This indicates that changes in radon and its progeny concentrations are
influenced by a combination of PM concentrations and meteorological parameters. It is
important to note that analyzing correlations between two parameters alone may not pro-
vide a comprehensive understanding of the situation. To further explore the relationships
between the variables, the parameters were divided into two groups: group A variables
included CRn and EEC-Rn, while group B variables included PM2.5, PM10, T, AP, RH,
W, and WD. It is crucial to emphasize that, to maintain comparability in the results of
the canonical correlation analysis between the two measurement periods, we specifically
chose meteorological parameters that were recorded during both measurement periods
as independent variables. What is more, during haze or dust storm weather, atmospheric
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precipitation is generally absent. Therefore, the variable P was not included in the canonical
correlation analysis. Canonical correlation analysis was conducted using SPSS software to
analyze the relationships between the A and B variables.

The results of the canonical correlation analysis are presented in Table 3. During the
two consecutive measurement periods, the correlation coefficients for the first canonical
variable were 0.80 and 0.81, respectively, with both being significant at the 0.01 level. The
significance of the second canonical variable was greater than 0.05, indicating that variables
A and B were significantly positively correlated only with the first canonical variable.

Table 3. Canonical correlation analysis results.

Canonical
Variation

Correlation Eigenvalue Wilks Statistic Sig.

November 2015 to January 2016 (Winter)

1 0.80 1.75 0.33 0.00
2 0.29 0.09 0.92 0.68

March to April 2023 (Spring)

1 0.81 1.85 0.32 0.00
2 0.31 0.11 0.90 0.74

H0 for Wilks test is that the correlations in the current and following rows are zero.

The canonical loading coefficients of variables A and B in the first canonical variable
during the two consecutive measurement periods are shown in Figure 9. During the winter
measurement period when haze frequently occurs (Figure 9a), the loading coefficients of
PM concentrations in variable B were significantly higher than those of meteorological
parameters. Specifically, the changes in T had almost no effect on variable B, as its loading
coefficient was close to 0. Combined with the significant positive influence between
variables A and B, it can be concluded that PM2.5, PM10, and RH had significant positive
effects on EEC-Rn and CRn, while W and WD had negative effects on EEC-Rn and CRn. The
degree of influence from high to low was PM2.5, PM10, RH, WD, and W. The impact of
each parameter on EEC-Rn was approximately twice as much as its impact on CRn.
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During the spring measurement period when dust storms frequently occur (Figure 9b),
the weights of the influence of EEC-Rn and CRn in variable A were similar, with loading
coefficients of −0.98 and −0.83, respectively. In variable B, the influences of each parameter
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were similar, except for the significantly lower influence of PM10. Based on the significant
positive influence between variables A and B, it can be concluded that T, PM2.5, and RH
had positive effects on EEC-Rn and CRn, while W and WD had negative effects on EEC-Rn
and CRn. The degree of influence of each parameter on EEC-Rn and CRn was from high to
low in the following order: T, PM2.5, W, RH, WD, and PM10.

4. Discussion

The diurnal variation pattern of CRn and EEC-Rn shows a maximum in the early
morning and a minimum in the late afternoon, which is related to the vertical distribution
of T at the ground level [37–39]. Combining the diurnal variation in T shown in Figure 6b, it
can be observed that the diurnal range and intensity of T in spring are significantly greater
than in winter. The diurnal variation pattern of T in winter is close to a “single peak” shape,
with T remaining relatively stable from 0:00 to 8:00 and gradually increasing thereafter.
This pattern is opposite to the diurnal variation pattern of CRn in winter, where CRn starts
to decrease from 8:00. T influences the mixing depth of the atmosphere [39]. During the
nighttime, a temperature inversion is formed between the ground and the atmosphere,
resulting in a decrease in the mixing depth of the atmosphere. At this time, the diffusion of
radon near the ground surface is limited, leading to the accumulation of CRn. As the sun
rises in the morning, the temperature inversion between the ground and the atmosphere is
disrupted. During the day, a large vertical temperature difference occurs, increasing the
mixing depth of the atmosphere and allowing radon near the ground surface to diffuse
more easily. The vertical temperature difference reaches its maximum in the late afternoon,
resulting in the lowest CRn at that time. The time difference in the occurrence of maximum
and minimum values in the diurnal variation pattern of CRn between spring and winter
is significantly related to the time when the T reaches its extreme values. The differences
in the range and intensity of diurnal CRn variation in winter and spring are related to
the intensity and duration of solar radiation. In comparison to spring, winter has longer
nighttime duration, leading to shorter sunlight exposure during the day. This results in a
greater diurnal variation intensity of CRn in spring than in winter.

When comparing the measurement results during dust storms period with other
countries/regions listed in Table 2, we found that, apart from Mongolia, the PM2.5 levels
obtained in this study and their percentage in PM10 were close to those of most coun-
tries/regions. In Mongolia, the maximum measured value of PM2.5 was 700 µg·m−3, at-
tributed to the measurement site located in the Gobi Desert. Mongolia is an arid–semi-arid
region, with most areas located in the Gobi and desert zones, which leads to significantly
higher particulate matter concentrations due to proximity to local sources [33,40]. Although
the PM2.5 concentrations obtained in this study were significantly lower than those in
Mongolia, the percentage of PM2.5 in PM10 was similar. By comprehensively comparing
the results of this study with those from other countries/regions, it can be concluded that
the notable difference in particulate matter concentration characteristics between dust
storm weather and haze weather is that the percentage of PM2.5 in PM10 is significantly
lower during dust storms compared to haze episodes.

Combining the results of both Pearson correlation analysis and canonical correlation
analysis of various parameters, it is clear that PM concentration is the primary influencing
factor of EEC-Rn in winter, followed by RH. This is attributed to the frequent occurrence of
haze weather during the winter measurement period, resulting in relatively high concentra-
tions of PM2.5 and PM10, which promote the increase of EEC-Rn. Additionally, relatively
high RH can enhance the attachment of radon progeny to aerosols [12]. The influence of
PM2.5 and PM10 on EEC-Rn is significantly greater than that on CRn due to the radon
not readily adhering to aerosols. In spring, both PM2.5 and PM10 exhibit positive correla-
tions with CRn and EEC-Rn, but the impact is significantly reduced compared to winter.
This is because the pollution during the spring measurement period is mainly from dust
storms. Due to different sources and formation processes of pollutants, the composition
of atmospheric pollutants differs between haze weather and dust storm weather [23,24].



Atmosphere 2023, 14, 1132 12 of 14

Consequently, the effect of PM2.5 and PM10 concentration on CRn and EEC-Rn differ signif-
icantly between the winter and spring measurement periods. This is further supported by
the significant difference in PM2.5 concentrations recorded between the two measurement
periods. In addition, the recorded PM10 concentrations were close between spring and
winter, but their correlations with CRn and EEC-Rn displayed significant differences. This
is because PM10 concentrations with an aerodynamic diameter of less than 10 µm include
the concentrations of PM2.5. When PM10 concentrations are close, the considerably lower
PM2.5 concentrations lead to a substantial reduction in the correlation between PM10
and CRn and EEC-Rn. Therefore, the correlations between PM concentration and CRn and
EEC-Rn are mainly manifested in the correlation between PM2.5 and CRn and EEC-Rn.

There are differences in the influence of meteorological parameters and PM concentra-
tions on CRn and EEC-Rn between haze and dust storm weather conditions. In dust storm
weather, where fine particles (PM2.5) concentrations are considerably lower than PM10
concentrations, the influence of meteorological parameters becomes more dominant. In
contrast, in haze weather characterized by significantly higher PM2.5 concentrations, the
impact of PM concentrations surpasses that of meteorological parameters. Therefore, it can
be concluded that when PM concentrations are significantly elevated, PM concentrations
serve as the primary influencing factor for CRn and EEC-Rn. However, when PM concen-
trations are relatively low, the impact of meteorological parameters on CRn and EEC-Rn
becomes more pronounced.

5. Conclusions

This study measured the concentrations of radon and its progeny in outdoor air
during the frequent haze period from November 2015 to January 2016 and the frequent
dust storm period from March 2023 to April 2023. Simultaneously, particulate matter
concentrations and various meteorological parameters were recorded. We analyzed the
correlations between radon and its progeny concentrations, particulate matter concentra-
tions, and meteorological parameters during these two measurement periods. Furthermore,
by incorporating canonical correlation analysis, the differences in the correlation between
radon and its progeny concentrations and particulate matter concentrations during the two
pollution weather periods were investigated. The following conclusions were drawn:

1. Outdoor radon and its progeny concentrations display a diurnal variation pattern
with a maximum in the early morning and a minimum in the late afternoon. The
diurnal variation intensity of radon concentration is significantly influenced by the
intensity of atmospheric temperature. Radon concentrations do not show significant
seasonal variations, but equilibrium equivalent radon concentrations are significantly
lower in spring than in winter. During dust storm weather, the concentration of
PM2.5 and the percentage of PM2.5 in PM10 in the air are notably lower compared to
haze weather.

2. Radon and its progeny concentrations are positively correlated with particulate matter
concentrations, but the correlation is significantly stronger during haze weather than
during dust storm weather. The disparity in the correlation between radon and
its progeny and particulate matter concentration during different types of polluted
weather is influenced by the concentration of PM2.5. Notably, a higher percentage of
PM2.5 in PM10 was observed during haze weather than during dust storm weather.

3. Particulate matter, mainly PM2.5, has a significant effect on the concentration of radon
and its progeny. When particulate matter concentrations are elevated, the influence of
meteorological parameters on radon and its progeny concentrations is less significant
compared to the influence of particulate matter concentrations. Wind level and wind
direction have significant negative impacts on radon and its progeny concentrations,
particularly during the winter when haze events are frequent.

Based on the conclusions drawn, it is recommended to strengthen the monitoring of
radon and its progeny concentrations, as well as particulate matter concentrations, during
pollution weather conditions. This would provide valuable data for assessing the extent
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of exposure and identifying areas of high risk, enabling effective mitigation strategies to
be implemented.
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