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Abstract: In this study, the local unscented transform Kalman filter (LUTKF) proposed in the previous
study estimates the state of the Weather Research and Forecasting (WRF) model through local
analysis. Real observations are assimilated to investigate the analysis performance of the WRF-LUTKF
system. The WRF model as a regional numerical weather prediction (NWP) model is widely used to
explain the atmospheric state for mesoscale meteorological fields, such as operational forecasting and
atmospheric research applications. For the LUTKF based on the sigma-point Kalman filter (SPKF), the
state of the nonlinear system is estimated by propagating ensemble members through the unscented
transformation (UT) without making any linearization assumptions for nonlinear models. The main
objective of this study is to examine the feasibility of mesoscale data assimilations for the LUTKF
algorithm using the WRF model and real observations. Similar to the local ensemble transform
Kalman filter (LETKF), by suppressing the impact of distant observations on model state variables
through localization schemes, the LUTKF can eliminate spurious long-distance correlations in the
background covariance, which are induced by the sampling error due to the finite ensemble size;
therefore, the LUTKF used in the WRF-LUTKF system can efficiently execute the data assimilation
with a small ensemble size. Data assimilation test results demonstrate that the LUTKF can provide
reliable analysis performance in estimating the WRF model state with real observations. Experiments
with various ensemble size show that the LETKF can provide better estimation results with a larger
ensemble size, while the LUTKF can achieve accurate and reliable assimilation results even with a
smaller ensemble size.

Keywords: regional numerical weather prediction model; ensemble-based Kalman filter; state
estimation; data assimilation

1. Introduction

The data assimilation is used to capture the observation information in an effective
manner and to offer accurate initial conditions when the state of the numerical weather
prediction (NWP) model is estimated. Currently, most data assimilation systems can be
classified into variational-based and ensemble-based schemes: variational-based methods
are divided into the three-dimensional variational (3DVAR) [1,2] and four-dimensional
variational (4DVAR) [3,4] data assimilation algorithms; and ensemble-based techniques are
organized into the ensemble Kalman filter (EnKF) [5] and its variants, such as the ensemble
square root filter (EnSRF) [6] and the local ensemble transform Kalman filter (LETKF) [7].

The ensemble-based schemes provide the following advantages over the variational-
based methods: (i) the forecast uncertainty (background error covariance) in ensemble-
based schemes is directly obtained by propagating ensemble members; (ii) unlike the
4DVAR, they can be easily implemented without the tangent linear and adjoint models
required for the 4DVAR; and (iii) they can be also computationally efficient due to the local
analysis and covariance inflation, especially for the LETKF in parallel computer architecture.
The ensemble variational (EnVAR) algorithm, which is a hybrid combination for both data
assimilation approaches, has been studied to improve the assimilation performance by
leveraging the advantages of both methods [8–10].
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Recently, the sigma-point Kalman filter (SPKF) was introduced to estimate the state of
atmospheric and oceanic models in the meteorological fields [11–13]. The SPKF and existing
ensemble-based Kalman filters (EBKFs), such as the EnKF and its variations, differ in the
ensemble sampling and ensemble size determination. For the L-dimensional system, the
ensemble sampling of the SPKF is executed by deterministically selecting 2L + 1 ensemble
members, which are also referred to as sigma points, through the unscented transformation
(UT) to enable them to have statistical properties of the system. The deterministically
chosen ensemble members are propagated to calculate the mean and covariance of the
nonlinear model state using model equations. Different from the existing EBKF methods,
the SPKF scheme also makes no linearization assumption for nonlinear prediction and
observation models; that is, it can compute statistical moments (mean and covariance) of
the nonlinear model state using fully nonlinear prediction and observation operators by
reinterpreting the analysis phase of the EBKFs, including the Kalman gain calculation.

However, since the SPKF approach estimates the model state with 2L + 1 ensemble
members for the L-dimensional system, it can require substantial computational resources
for high-dimensional systems. In addition, because the model state vector estimated in the
SPKF is augmented by the concatenation of the original model state variables, model noise,
and observation noise, its dimensionality is equal to the sum of the original model state,
model noise, and observation noise dimensional numbers. Thus, the SPKF can require
prohibitively computationally expensive costs when assimilating considerable observations
in a nonlinear model with high dimensionality.

Some solutions to the problem have been introduced. One method reduces the en-
semble size in order to use only effective ensemble members for the data assimilation; for
example, only the L + 1 ensemble members that have a great impact on the estimate of
the L-dimensional model state are used during every data assimilation cycle [14]. Another
scheme is to use the principal component analysis (PCA), which can infer the model state
with a smaller ensemble size in the principal component space while maintaining the main
characteristics in the full ensemble space [15]; that is, this scheme that uses fewer ensemble
members than are used in the full ensemble space can provide state estimation results
that are as accurate as the original SPKF. The other solution to the problem is to reduce
the ensemble size by truncating the error covariance matrix through the singular value
decomposition (SVD). As a result, this method can execute the state estimation with lower
computational times than those in the original SPKF. However, for the oceanic and atmo-
spheric system with a high dimensionality, the methods described above can still require
considerable computational costs when a large number of observations are assimilated to
the model state.

The localization approach can be used to solve the problem with the computational
difficulty for high-dimensional models. For high-dimensional models, it enables the EBKFs
to efficiently execute the local data assimilation with a small number of ensemble members
at each model grid point. However, the SPKF algorithm (known as a global filter) carries
out the data assimilation using the augmented state vector that consists of model state
variables, process noises, and measurement noises for all model grid points in the global
domain. For this reason, the SPKF that uses the augmented state vector can struggle to
perform the local analysis for high-dimensional models using the localization approach.

Unlike the SPKF scheme, the local unscented transform Kalman filter algorithm
proposed in the previous study (LUTKF) [13] is based on the non-augmented state vector;
thus, it can perform data assimilation using the state vector that is composed of only the
model state variables. This enables the localization scheme to be easily applied to the
LUTKF. The localization approach applied to the LUTKF is similar to that of the LETKF.
Therefore, the LUFKF can provide reliable local analysis results while using a moderate
number of ensemble members at each grid point of the high-dimensional model. Also, the
use of the non-augmented state vector and the localization method allows the LUTKF to
enhance the computational efficiency for high-dimensional models and to easily perform
parallelized local analysis calculations in the parallel computer architecture.
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Unlike the LUTKF method using the Lorenz 40-dimensional model and simulated
observations in the previous study [13], the LUTKF in this study is coupled with the
Weather Research and Forecasting (WRF) model, and real observations are assimilated to
estimate the state of the WRF model using the LUTKF. The WRF model is a mesoscale NWP
model, which contains two dynamic cores: the Non-hydrostatic Mesoscale Model (NMM)
core developed at the National Centers for Environmental Prediction (NCEP) and the
Advanced Research WRF (ARW) core developed at the National Center for Atmospheric
Research (NCAR) [16]. The WRF model provides various physics schemes responsible
for different components of the physical processes, including microphysics, radiation,
planetary boundary layer (PBL) physics, surface physics, and cumulus parameterization.
The physics schemes interact with each other during model simulations to emulate physical
processes in the atmosphere of the Earth [17]. The meteorological parameters from the
WRF model outputs are affected by the choice of the WRF physics scheme.

Also, the WRF model has been widely used for data assimilation studies using
variational-based and ensemble-based approaches [18], including the WRF-3DVAR [19],
WRF-4DVAR [20], and WRF-LETKF [21,22]. Many studies and applications to dynamical
models have shown that the LETKF has great potential to efficiently execute the local
analysis for realistic geophysical models, including global and regional atmosphere and
ocean models [23,24]; for example, the LETKF has been developed for research purposes
and operational implementations at the Japan Meteorological Agency (JMA) [25], the Eu-
ropean Center for Medium-Range Weather Forecasts (ECMWF) [26], and the Deutscher
Wetterdienst (DWD) [27].

Therefore, the data assimilation performance of the LUTKF in this study is evaluated
using the LETKF as a benchmark, which executes the local analysis at each model grid
point in a manner similar to the LUTKF. The results of data assimilation experiments show
promise of the LUTKF in assimilating real observations with a moderate ensemble size for
the regional atmosphere model.

The rest of this paper is composed as follows: the LUTKF algorithm using the non-
augmented state vector and the localization scheme is introduced in Section 2; Section 3
introduces the WRF-LUTKF system, where the LUTKF scheme is coupled with the WRF
model; Section 4 presents experiments to evaluate the data assimilation performance of
the LUTKF; and finally, Section 5 summarizes the experimental results and discusses the
validity of the LUTKF as a data assimilation method for the regional atmosphere model.

2. LUTKF Algorithm

The LUTKF algorithm estimates the state of the Lx-dimensional nonlinear system
denoted by the prediction model and the observation model with additive noise as follows:

xk = f (xk−1) (1)

zk = h(xk) + vk (2)

where xk and zk represent the system state vector and observation vector at time k, respec-
tively, and f (·) and h(·) denote the nonlinear function for the prediction of system state xk
and the nonlinear function for the relationship between system state xk and observation
zk, respectively. Observation noise vk is the white noise with zero-mean and covariance
matrix RRRk.

While the SPKF uses the augmented state vector that consists of model state variables,
process noises, and measurement noises for all model grid points in the global domain,
the LUTKF uses the non-augmented state vector that is composed of only the model state
variables, owing to the additive observation noise vk. This enables the LUTKF to enhance
the computational efficiency by using a smaller ensemble size and makes it easier to apply
the localization scheme for each model grid point to the LUTKF, compared to the SPKF [13].

The data assimilation of the LUTKF is performed by two phases: the ensemble sam-
pling and the state estimation using the spatial localization. These phases can be per-
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formed independently at each model grid point through a parallel programming in parallel
computer architecture since the LUTKF uses the non-augmented state vector and localiza-
tion scheme.

2.1. Ensemble Sampling (Ensemble Member Selection) with UT

For the Lx-dimensional nonlinear system, 2Lx + 1 analysis (a posteriori) ensemble
members {χi

k−1|k−1}
2Lx
i=0 in the LUTKF are obtained by the UT in order to allow them to

estimate statistical properties of the models [Equations (1) and (2)] as follows [28,29]:

χ0
k−1|k−1 = x̂k−1|k−1 (3)

χi
k−1|k−1 = x̂k−1|k−1 +

[√
(Lx + λ)PPPk−1|k−1

]
i

for i = 1, . . . , Lx (4)

χi
k−1|k−1 = x̂k−1|k−1 −

[√
(Lx + λ)PPPk−1|k−1

]
i

for i = Lx + 1, . . . , 2Lx (5)

where x̂k−1|k−1 and PPPk−1|k−1 denote the analysis (a posteriori) mean and covariance of the

model state xk−1 at time k− 1, respectively, and
[√

(Lx + λ)PPPk−1|k−1

]
i

is the i-th column

vector of the square root of the matrix (Lx + λ)PPPk−1|k−1 (the matrix square root in the SPKF
is generally calculated by the Cholesky factorization for the numerical stability [28]).

The scaling parameter λ can be calculated by

λ = α2(Lx + κ)− Lx (6)

where α (0 ≤ α ≤ 1) is used to vary the size of the ensemble spread centered on the mean
x̂k−1|k−1, and κ (κ ≥ 0) enables the error covariance PPPk−1|k−1 to be a positive semi-definite
matrix. Since the value of κ is not critical, its default value can be set to 0.

The weights ωi
m and ωi

c of the i-th ensemble member used to estimate the mean and
covariance of the model state xk are determined by

ω0
m =

λ

Lx + λ
(7)

ω0
c =

λ

Lx + λ
+ (1− α2 + β) (8)

ωi
m = ωi

c =
1

2(Lx + λ)
for i = 1, . . . , 2Lx (9)

where β (β ≥ 0) deals with the error in the kurtosis (the fourth moment) that denotes a
measure of the heaviness of the tails of the state distribution. When the state distribution is
Gaussian, the optimal value of β is 2 [29–31].

2.2. State Estimation with Spatial Localization

The analysis ensemble members {χi
k−1|k−1}

2Lx
i=0 obtained from Equations (3)–(5) are

transformed by the nonlinear functions (Equations (1) and (2)) with no linearization as-
sumption (i.e., by fully nonlinear prediction operators):

χi
k|k−1 = f

(
χi

k−1|k−1

)
for i = 0, . . . , 2Lx (10)

zi
k = h

(
χi

k|k−1

)
for i = 0, . . . , 2Lx (11)

where χi
k|k−1 is the i-th background (a priori) ensemble member obtained by the nonlinear

function f (·) for the prediction of the system state at time k, and zi
k is the i-th background

ensemble member in the observation space.
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The background mean x̂k|k−1 for the system model, its covariance PPPk|k−1, the back-
ground mean ẑk in the observation space, and its covariance SSSk at time k can be determined
using the background ensemble members {χi

k|k−1}
2Lx
i=0 obtained from Equations (10) and (11)

as follows:

x̂k|k−1 =
2Lx

∑
i=0

ωi
mχi

k|k−1 (12)

PPPk|k−1 =
2Lx

∑
i=0

ωi
c

(
χi

k|k−1 − x̂k|k−1

)(
χi

k|k−1 − x̂k|k−1

)T
(13)

ẑk =
2Lx

∑
i=0

ωi
mzi

k (14)

SSSk =
2Lx

∑
i=0

ωi
c

(
zi

k − ẑk

)(
zi

k − ẑk

)T
+RRRk. (15)

The localization in the observation space can be applied to the LUTKF by dividing the
diagonal elements of RRRk in Equation (15) by the Gaussian localization function:

G(d, L) = exp
[
−0.5(d/L)2

]
(16)

where L is the localization distance, and d is the distance between the observation and
the model grid point, where the local analysis is executed. Actually, the polynomial
approximation of the Gaussian localization function given by Equation (4.10) in [32] can be
used for the localization in the LUTKF. By implementing the localization using the equation
in the LUTKF, observations only within the cutoff distance c = 2× (0.3)−0.5L centered on
the model grid point are used for the local analysis at the model grid point.

The covariance PPPxz between x̂k|k−1 and ẑk, the Kalman gain KKKk, the analysis mean x̂k|k
for the system model, and its covariance PPPk|k at time k can be calculated by

PPPxz =
2Lx

∑
i=0

ωi
c

(
χi

k|k−1 − x̂k|k−1

)(
zi

k − ẑk

)T
(17)

KKKk = PPPxzSSS
−1
k (18)

x̂k|k = x̂k|k−1 +KKKk(zk − ẑk) (19)

PPPk|k = PPPk|k−1 −KKKkSSSkKKK
T
k . (20)

More details on the ensemble sampling and the state estimation of the LUTKF can be
found in [13].

3. WRF-LUTKF System

Figure 1 shows the WRF-LUTKF system developed to examine the feasibility of the
mesoscale data assimilation of the LTUKF in this study. The WRF-LUTKF system is based
on the advanced research version of the WRF model (ARW; version 4.3) [17], which has
been used for the atmospheric research and operational forecasting applications.

For each ensemble member, the geographical data {χi
(g),k−1}

2Lx
i=0 and the global meteo-

rological data {χi
(m),k−1}

2Lx
i=0 obtained from Global Forecast System (GFS) ensemble data

provided by the Global Ensemble Forecast System (GEFS) of the NCEP are converted to
data in the netCDF format {χi

(n),k−1}
2Lx
i=0 using the WRF preprocessing system (WPS), which

are used as inputs for the WRF model at time k− 1.
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Figure 1. The flowchart of the WRF-LUTKF system. The vectors χi
(g),k−1 and χi

(m),k−1 represent
the geographical data and global meteorological data of the i-th ensemble member at time k − 1,
respectively, which are converted to data in the netCDF format χi

(n),k−1 and then are used to generate

the initial condition χi
(i),k−1 and boundary condition χi

(b),k−1 of the WRF model. Vector χi
k|k−1 denotes

the hourly background data of the i-th ensemble member generated by the 9 h ensemble forecast
of the WRF model. Vector χi

k|k indicates the analysis data of the i-th ensemble member at time k,
which are obtained by assimilating the real observation zk from the NCEP PREPBUFR data to the
background state vector χi

k|k−1.

For each ensemble member, the converted data by the WPS are used to generate initial
conditions {χi

(i),k−1}
2Lx
i=0 and boundary conditions {χi

(b),k−1}
2Lx
i=0 for the WRF model at time

k− 1. Then, the WRF model as the nonlinear system f (·) in Equation (10) executes the 9 h
ensemble forecast using the initial and boundary conditions, generating the hourly WRF
output for each ensemble member (i.e., hourly background ensemble {χi

k|k−1}
2Lx
i=0 given by

Equation (10)).
The real observations used in the WRF-LUTKF system for this study are obtained from

the prepared or quality-controlled data in Binary Universal Form for the Representation
of Meteorological Data (PREPBUFR) data provided by the NCEP [33], which are from ra-
diosondes, surface stations, aircrafts, ships, wind profilers, and satellites, such as Advanced
Scatterometer (ASCAT) and Geostationary Operational Environmental Satellite (GOES).

For each grid point, the local analysis mean x̂k|k and its covariance PPPk|k given by Equa-
tions (19) and (20) are estimated by the local background ensemble {χi

k|k−1}
2Lx
i=0 generated

by the WRF model as well as the local observations zk within a certain cutoff distance
c centered on each model grid point using Equations (10)–(18). Then, the local analysis
ensemble {χi

k|k}
2Lx
i=0 at each grid point can be determined by the ensemble sampling process

using the local analysis mean x̂k|k and covariance PPPk|k as introduced in Section 2.1.
To provide accurate initial conditions for the data assimilation at time k + 1, several

variables in the initial conditions {χi
(i),k}

2Lx
i=0 of ensemble members for the 9 h ensemble

forecast in the WRF model are substituted with their corresponding variables in analysis
ensemble members {χi

k|k}
2Lx
i=0 obtained by the ensemble sampling process at time k. In

addition to the cycling data assimilation, more details on this procedure are described in
Figure 2.

The forecast and analysis cycle of the WRF-LUTKF system are performed as shown
in Figure 2. Since the NCEP PREPBUFR data are used for the analysis (data assimilation)
every 6 h (i.e., at 0000, 0600, 1200 and 1800 UTC) in the NCEP operational Global Data As-
similation System (GDAS), they are available every 6 h and include the hourly observations
within seven time slots centered at the analysis time (i.e., 0000, 0600, 1200 and 1800 UTC).
Therefore, the data assimilation cycle interval of the WRF-LUTKF system using the NCEP
PREPBUFR data is the same 6 h as the NCEP GDAS. During the 9 h ensemble forecast using
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the WRF model, the first-guess (background) ensemble {χi
k|k−1}

2Lx
i=0 given by Equation (10)

is generated hourly to assimilate observations included in the NCEP PREPBUFR data. This
is because the background ensemble corresponding to the hourly observation within seven
time slots is required to generate the background ensemble in the observation space {zi

k}
2Lx
i=0

through an interpolation operator h(·) using Equation (11).
The hourly observations within seven time slots centered at analysis time k (i.e., at

0000, 0600, 1200 or 1800 UTC) denoted by the yellow star symbol in Figure 2 are assimilated
to compute the analysis ensemble {χi

k|k}
2Lx
i=0 using Equations (3)–(5) in the LUTKF.

00 01 02 03 04 05 06 07 08 09 UTC

analysis
hourly observations

9-h ensemble forecast

06 07 08 09 10 11 12 13 14 15 UTC

9-h ensemble forecast

hourly observations
analysis

and so on ...

Figure 2. Schematic design of the forecast and analysis cycle for the WRF-LUTKF system. Yellow star
symbols represents the analysis time used for the data assimilation every 6 h (i.e., at 0000, 0600, 1200 or
1800 UTC). To perform the data assimilation at analysis time k (e.g., 0600 UTC) denoted by the yellow
star symbol, the 9 h ensemble forecast using the WRF model generates the background ensemble
{χi

k|k−1}
2Lx
i=0 every hour. The LUTKF computes the analysis ensemble {χi

k|k}
2Lx
i=0 by assimilating

the hourly observations within seven time slots centered at analysis time k. To conduct the data
assimilation at analysis time k+ 1 (e.g., 1200 UTC), several variables in the initial conditions {χi

(i),k}
2Lx
i=0

for the 9 h ensemble forecast are substituted with their corresponding variables in analysis ensemble
members {χi

k|k}
2Lx
i=0.

For the WRF-LUTKF system, several variables in output files obtained by the WRF
model are used as input variables of the LUTKF, including zonal wind (U), meridional
wind (V), potential temperature perturbation (θ′), pressure perturbation (p′), pressure base
(pb), water vapor mixing ratio (qv), surface pressure (ps), 2 m temperature (T2), and 2 m
water vapor mixing ratio (q2). By assimilating NCEP PREPBUFR observations, the LUTKF
analysis variables have an impact on the ensemble forecast in the WRF model, including
three-dimensional ones (U, V, θ′, and qv) and two-dimensional ones (ps, T2, and q2).

To offer accurate initial conditions for the data assimilation at time k+ 1 (e.g., 1200 UTC
in Figure 2), the variables U, V, θ′, qv, ps, T2, and q2 in initial conditions {χi

(i),k}
2Lx
i=0 for the

9 h ensemble forecast, which are generated in the WRF model, are replaced with their
corresponding analyzed variables included in the analysis ensemble members {χi

k|k}
2Lx
i=0

obtained by the LUTKF at time k (e.g., 0600 UTC in Figure 2).
Since the LUTKF estimates the error statistics (mean and covariance) of the analysis

variables (U, V, θ′, qv, ps, T2, and q2) in this study, it uses only 15 (2Lx + 1, where Lx is
the number of the analysis variables) ensemble members, which are determined by the
ensemble sampling (Section 2.1) using the mean and covariance for the variables to provide
a stable filtering solution at each model grid point.

For the WRF-LUTKF system, both the ensemble forecast using the WRF model and
data assimilation using the localization approach in the LUTKF can be executed indepen-
dently for each ensemble member at each model grid point in parallel; therefore, their
calculations with a parallel computational environment can be parallelized with processor
compute cores in computational nodes. For the efficient parallel input/output interface,
the LUTKF can access forecast and analysis data for ensemble members simultaneously,
then scattering and gathering them among all processes where the data assimilation is
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executed. For the WRF-LUTKF system, data assimilation methods of the LUTKF are imple-
mented with the Fortran90 codes, which are parallelized by the Message Passing Interface
(MPI) library.

4. Experiments with Real Observations
4.1. Experimental Setup

The WRF model domain used in this study is shown in Figure 8, which covers the
region of Northeast Asia surrounded by the 20◦ N, 53◦ N, 100◦ E, and 160◦ E using the
Mercator projection, a horizontal grid spacing of 60 km at 22.5◦ N (102 × 72 grid points),
and 40 vertical levels. The selected domain denotes a regional-synoptic-resolution domain
appropriate to investigate the data assimilation performance of the WRF-LUTKF over
Northeast Asia. The Arakawa-C staggered grid is used for the horizontal resolution in the
WRF model; therefore, U, V, and variables other than U and V have 102 × 71, 101 × 72, and
101 × 71 grid points, respectively. For the vertical resolution, the vertical staggered grid
introduced in [34] is used with the model top at 50 hPa.

For experiments executed in this study, the tunable parameter (localization distance)
for the localization scheme (the L in Equation (16)) of the LUTKF is set to a value of 400 km
for the horizontal localization and a value of 0.4 ln p for the vertical localization. Since
the LUTKF executes the localization approach using the Gaussian localization function
given by Equation (4.10) in [32], local observations within the localization length scale
c = 2× (0.3)−0.5L (i.e., approximately 1460 km for the horizontal localization and approxi-
mately 1.46 ln p for the vertical localization) centered on the model grid point are used for
the local analysis at the model grid point in this study.

For the LUTKF algorithm, the choice of parameters α, β, and κ addressed in Section 2.1
has an impact on the data assimilation performance. Data assimilation cycle experiments
(not reported here) showed that the LUTKF with α = 1, β = 2, and κ = 0 can provide
accurate and reliable estimation results in this study. A more detailed description of
sensitivities to the tunable parameters is beyond the scope of this study.

The 16-day test period from 1200 UTC 3 September 2008 to 1200 UTC 19 September
2008 is used to examine the performance of the LUTKF algorithm as an assimilation
method. The main objective of the cycling data assimilation experiments is to investigate
data assimilation results over the region of Northeast Asia shown in Figure 8. Another
objective of the experiments is to examine the data assimilation performance for Typhoon
Sinlaku, which was formed at 0000 UTC 8 September 2008 east of the Philippines and
was dissipated on 25 September 2008 east of the Japan. Sinlaku moved very slowly to
the northwest toward Taiwan with a translation speed of about 1.9 m/s and a maximum
intensity of 935 hPa at 12 UTC 10 September 2008. It struck Taiwan with its intensity
of 950 hPa at 1200 UTC 13 September 2008. After passing through Northern Taiwan, it
gradually turned to the northeast toward Japan.

The initial conditions at 1200 UTC 3 September 2008 for the 16-day data assimilation
cycle experiments are obtained by spinning up the states of ensemble members through
6-day ensemble forecasts from 1200 UTC 28 August to 1200 UTC 3 September using the
initial conditions and boundary conditions for ensemble members obtained from the GFS
ensemble data of the GEFS. For the spin-up, all ensemble members also use different initial
conditions and boundary conditions.

4.2. Cycling Data Assimilation Experiments

As described in Section 2, the LUTKF can assimilate real observations with a small en-
semble size Ne at each model grid point by using the local analysis and the non-augmented
state vector, just as it is used for the low-dimensional model. For this experiment, the
LUTKF in the WRF-LUTKF system executes the data assimilation with Ne = 15 (2Lx + 1,
where Lx = 7) at each model grid point, owing to the use of the UT as well as both the
spatial localization method and the non-augmented form as mentioned in Section 3.
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To analyze the assimilation performance of the LETKF in this experiment, the LUTKF
in the WRF-LUTKF system shown in Figure 1 is replaced with the LETKF. For this ex-
periment, the LETKF carries out the state estimation with 15 and 21 ensemble members
(Ne = 15 and Ne = 21) to provide satisfactory data assimilation results. Data assimilation
cycle experiments (not reported here) with the same experimental setup (Section 4.1) as
this experiment showed that the LETKF can offer a stable filtering solution when Ne ≥ 10.

Both the LUTKF and LETKF in this experiment assimilate real observations obtained
from the NCEP PREPBUFR data and use no covariance inflation methods, such as the
relaxation to prior perturbation (RTPP) [35] and relaxation to prior spread (RTPS) [36].

Figure 3 shows the time series of the domain-averaged root-mean-square error (RMSE)
relative to the NCEP analysis for the zonal wind component (U), meridional wind compo-
nent (V), temperature (T), and specific humidity (Q), which is calculated using 6 h ensemble
forecasts initiated by the analysis of three different EBKF algorithms (the LETKF with
Ne = 21, LETKF with Ne = 15, and LUTKF with Ne = 15) at 500 hPa during 16 days from
1200 UTC 3 September 2008 to 1200 UTC 19 September 2008.

( (

((

Figure 3. Time series of prior domain-averaged RMSEs from the NCEP analysis for (a) 500 hPa zonal
wind component (U500), (b) 500 hPa meridional wind component (V500), (c) 500 hPa temperature
(T500), and (d) 500 hPa specific humidity (Q500) using the LETKF with Ne = 21, LETKF with Ne = 15,
and LUTKF with Ne = 15. The blue shading represents that the LUTKF with a small ensemble size
can provide better analysis results than the LEKTF, while the gray shading shows marginal estimation
accuracy improvements of the LUTKF over the LETKF.

For the LETKF and LUTKF, prior RMSEs for all variables (U, V, T, and Q) decrease
abruptly in the first 24 h, likely due to the effect of the data assimilation, as shown in
Figure 3. Smaller RMSE values denote that state estimation results obtained by the LETKF
and LUTKF are closer to the NCEP analysis by assimilating real observations. From
Figure 3, we can see that the LETKF with a larger ensemble size can offer more accurate
estimation results (i.e., smaller prior RMSEs). This is because the LETKF that uses the
random sampling results in an inaccurate estimation for the error distribution of the true
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state when a small ensemble size is used, due to the sampling error by the finite ensemble
size [36,37].

On average, the LUTKF with Ne = 15 offers significantly smaller prior RMSEs than
LETKF with Ne = 15 and Ne = 21 after about a 7-day cycle for the U and V winds (see blue
shading in Figure 3a,b). Since the LETKF is accurate to the first-order term of the Taylor
series, even for the strongly nonlinear function h(·), it is suboptimal in assimilating highly
nonlinear observations obtained by remotely sensed data from satellites, such as the NCEP
PREPBUFR data. On the contrary, the LUTKF using the UT that makes no linearization
assumption for h(·) is accurate to the second-order term of the Taylor expansion for the
nonlinear function h(·) (more details on the estimation accuracy of the UT can be found
in [30,31]).

For the T in this experiment, the LUTKF provides slightly more accurate assimilation
results than the LETKF, owing to a smaller number of observations related to the T com-
pared to the U and V winds; that is, it yields no significant benefits over the LETKF for
the T, as shown in Figure 3c. Overall, the prior RMSE of the Q of the LUTKF are larger
than that of the LETKF during the 16-day test period, as shown in Figure 3d. This means
that the LUTKF cannot capture real observation information related to the Q in an effective
manner, when compared to the LETKF. The assimilation performance of the LETKF and
LUTKF is discussed further in the next subsections.

4.3. Evaluation with EBKF Analysis against NECP Analysis

This subsection compares the bias, RMSE, and spread of three different EBKF algo-
rithms, which are calculated by assimilating the real observation obtained from the NCEP
PREPBUFR data at the vertical pressure levels from 50 to 1000 hPa.

Figures 4 and 5 show the posterior mean bias, RMSE, and spread of the U, V, T, and
Q for three different EBKF algorithms, which are calculated from the analysis ensemble
of each EBKF algorithm by assimilating real observations during 13 days from 1200 UTC
6 September 2008 to 1200 UTC 19 September 2008. From Figure 4a, we can see that the
LUTKF with Ne = 15 can achieve a smaller posterior bias of the U wind at most pressure
levels, while it indicates a larger posterior bias of the U wind at pressure levels both from
100 to 300 hPa and from 50 to 80 hPa, when compared to the LETKF with Ne = 15 and
Ne = 21.

Consistent with the posterior bias of the U wind in Figure 4a, the posterior RMSE of
the U wind of the LUTKF using Ne = 15 is smaller than that of the LETKF with Ne = 15
and Ne = 21 at most vertical levels, except from 200 to 300 hPa as shown in Figure 5a.
Although the posterior RMSE of the U wind of the LETKF with Ne = 21 is smaller than
that of the LETKF using Ne = 15 at lower to middle levels, it is still larger than the LUTKF
using Ne = 15 as shown in Figure 5a.

As seen in Figure 5a, the ensemble spread (i.e., estimated uncertainty) of the U wind
of the LUTKF using Ne = 15 is closer to the RMSE (i.e., actual uncertainty) than the LETKF
with Ne = 15 and Ne = 21. While the LETKF with Ne = 21 can offer a larger posterior
ensemble spread of the U wind compared to the LETKF with Ne = 15, the LUTKF using as
few as Ne = 15 can yield a larger spread of the U wind than the LETKF with Ne = 21 due
to the ensemble sampling (Equations (3) and (5)) of the UT used in the LUTKF.

Figure 4b shows that the posterior bias of the V wind of the LUTKF with Ne = 15
is slightly smaller at lower to middle levels and slightly larger at upper to middle levels,
when compared to that of the LETKF using Ne = 15 and Ne = 21. Figure 5b demonstrates
that the posterior RMSE and spread of the V wind for the LETKF and LUTKF have a feature
analogous to those of the U wind in Figure 5a at most levels; for example, the LUTKF using
Ne = 15 can provide a smaller posterior RMSE of the V wind except at vertical levels from
200 to 300 hPa and a larger posterior spread of the V wind that is closer to the RMSE at all
vertical levels, compared to the LETKF with Ne = 15 and Ne = 21.
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Figure 4. Vertical profiles of the posterior mean bias relative to the NCEP analysis for (a) U, (b) V,
(c) T, and (d) Q using LETKF with Ne = 21, LETKF with Ne = 15, and LUTKF with Ne = 15. The bias
values are averaged over 13 days from 1200 UTC 6 September 2008 to 1200 UTC 19 September 2008.

Figures 4c and 5c represent that the LUTKF using Ne = 15 can offer a smaller posterior
bias (especially from 200 to 700 hPa) and a slightly smaller posterior RMSE for T than the
LETKF with Ne = 15 and Ne = 21. Also, the LETKF with Ne = 21 indicates a slightly
smaller RMSE of the T than the LETKF with Ne = 15 as shown in Figure 5c. As seen in
Figure 5c, the posterior spread of the T of the LUTKF with Ne = 15 is larger and closer to the
RMSE than that of the LETKF using Ne = 15 and Ne = 21. However, the underestimated
spread of the T for both the LUTKF and the LETKF is still away from the RMSE of the T,
particularly at lower pressure levels.

From Figures 4d and 5d, we can see that the posterior bias, RMSE, and spread of
the Q of the LUTKF are larger than those of LETKF at lower to middle levels. This
suggests that although the LUTKF has a larger spread than the LETKF, it cannot capture
real observation information in an effective manner. To solve this problem, the analysis
configurations of the WRF-LUTKF need to be improved by applying adaptive covariance
inflation methods [35,36].
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Figure 5. As in Figure 4 but for the posterior mean spread and RMSE relative to the NCEP analysis.
Solid lines represent the RMSE of the analysis ensemble mean for the LETKF and LUTKF against the
NECP analysis. Dashed lines denote the spread of the analysis ensemble for the LETKF and LUTKF.

From Figure 5, we can see that the LETKF with more ensemble members can provide a
smaller RMSE and a larger ensemble spread, particularly for the U, V, and T. This is because
the LETKF using a smaller number of ensemble members can induce more inaccurate
assimilation results and underestimated ensemble spreads for the true state, due to the
sampling error by the finite ensemble size in the LETKF based on the random sampling.
However, we can see from Figures 4 and 5 that the LUTKF with a smaller ensemble size
can achieve smaller RMSEs and biases as well as larger ensemble spreads that are closer to
RMSE than the LETKF with a larger ensemble size generally, except for the Q; that is, the
LUTKF with as few as fifteen ensemble members, which is based on the UT (Section 2), can
accomplish assimilation results that are as accurate as the LETKF with Ne = 21 and can
outperform the LETKF with Ne = 15. These results suggest that the LUTKF can perform
the data assimilation well by capturing the observation information effectively, even when
estimating the true state with a small ensemble size.

Nonetheless, the LUTKF using Ne = 15 exhibited larger posterior biases and RMSEs of
Q at lower to middle levels and yielded no significant estimation accuracy improvements
for T when compared to the LETKF using Ne = 15 and Ne = 21 as shown in Figures 4 and 5.
As future work, we will improve the estimation performance for T and Q by assimilating
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satellite radiance observations that can provide information about the temperature and
moisture in an atmospheric column [38,39].

4.4. Evaluation with EBKF Short-Term Ensemble Forecast against NECP Analysis

Figures 6 and 7 show the prior mean bias, RMSE, and spread of U, V, T, and Q for
6 h ensemble forecasts initiated by the analysis of three different EBKF algorithms during
13 days from 1200 UTC 6 September 2008 to 1200 UTC 19 September 2008.

( (

((

Figure 6. As in Figure 4, but for the prior mean bias relative to the NCEP analysis for short-term (6 h)
ensemble forecasts during 13 days from 1200 UTC 6 September 2008 to 1200 UTC 19 September 2008.

Similar to the posterior bias of the U in Figure 4a, the prior bias of the U of the LUTKF
with Ne = 15 is smaller than the LETKF with Ne = 15 and Ne = 21, except at vertical
levels both from 50 to 80 hPa and from 100 to 300 hPa, as shown in Figure 6a. However,
unlike the posterior bias of the V in Figure 4b, the prior bias of the V of the LUTKF is much
smaller than that of the LETKF with Ne = 15 and Ne = 21, as shown in Figure 6b. This
means that the LUTKF with a small number of ensemble members has a more superior
ability to capture real observation information for the V wind effectively, when compared
to the LETKF.
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Figure 7. As in Figure 5 but for the prior mean RMSE and spread of short-term (6 h) ensemble
forecasts during 13 days from 1200 UTC 6 September 2008 to 1200 UTC 19 September 2008.

Comparing Figures 4b and 6b reveals that the prior bias of V of the LUTKF with
Ne = 15 is much smaller than the corresponding posterior bias at most pressure levels,
and the LETKF with Ne = 15 and Ne = 21 indicates a smaller prior bias of V than the
corresponding posterior bias between 90 and 300 hPa. In contrast, the prior biases of U, T,
and Q (Figure 6a,c,d) for three different EBKF algorithms have an analogous shape to their
posterior biases (Figure 4a,c,d).

From Figures 5 and 7, we can see that the prior RMSEs of U, V, T, and Q (Figure 7) for
three EBKF methods have similar features to corresponding posterior RMSEs (Figure 5).
For example, the LUTKF offers a smaller prior RMSE for U, V, and T than the LETKF at
most vertical levels, except for Q. Similar to the assimilation results in Figure 5, we can
also observe in Figure 7 that the LETKF using more ensemble members can offer a smaller
posterior RMSE, especially for U, V, and T; that is, it can achieve more reliable assimilation
results with a larger ensemble size.

For the LUTKF with Ne = 15, 6 h ensemble forecasts from posterior ensemble members
provide a significant improvement in the prior spread of U, V, and T (Figure 7) at all
vertical levels, compared to their posterior spread (Figure 5). That is, the LUTKF with
Ne = 15 can provide larger prior spreads for U, V, and T (Figure 7) that are closer to the
RMSE than corresponding posterior spreads (Figure 5) as well as prior/posterior spreads
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(Figures 5 and 7) of the LETKF with Ne = 15 and Ne = 21. This is likely due to the
advantage of the LUTKF using ensemble sampling [Equations (3)–(5)] of the UT.

Nonetheless, the underestimated prior/posterior spreads of U, V, T, and Q for the
LUTKF are still far away from RMSEs at most pressure levels. As future work, we will
enhance the estimation accuracy for the actual uncertainty by applying adaptive and
additive covariance inflation approaches to the LUTKF.

Figures 8 and 9 represent that the LUTKF can assimilate real observations successfully.
Figure 8 shows the horizontal map of the mean sea level pressure (hPa) obtained from the
NCEP analysis and the 6 h ensemble forecasts initiated by the analysis of three different
EBKF algorithms on 1200 UTC 12 September 2008. It also shows that Typhoon Sinlaku
estimated by the LUTKF using Ne = 15 is similar to that in the NCEP analysis, but the
typhoon estimated by the LETKF using Ne = 15 and Ne = 21 is far away from the eastern
offshore of Taiwan, where the typhoon in the NCEP analysis is located.

Figure 9 shows the horizontal map of the wind speed (m/s) obtained from the NCEP
analysis and the 6 h ensemble forecasts of three EBKF approaches on 1200 UTC 12 Septem-
ber 2008. From Figure 9, we can see that the wind speeds related to Typhoon Sinlaku and
near the northeastern boundary of the model domain are better represented by the LUTKF
with Ne = 15, compared to the LETKF with Ne = 15 and Ne = 21.

( (

((

Figure 8. Horizontal map of the mean sea level pressure (hPa) obtained from (a) NCEP analysis
and the 6 h ensemble forecast initiated by the analysis of (b) LETKF with Ne = 21, (c) LETKF with
Ne = 15, or (d) LUTKF with Ne = 15 on 1200 UTC 12 September 2008.
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Figure 9. As in Figure 8 but for the wind speed (m/s) at 850 hPa.

To further examine the assimilation performance of the three EBKF approaches, the
horizontal patterns of 6 h forecast improvements for U, V, T, and Q by the LUTKF relative
to the LETKF using Ne = 21 (Figure 10) and Ne = 15 (Figure 11) were investigated.

Figure 10 represents the horizontal map of the difference of the 6 h forecast RMSE
between the LETKF with Ne = 21 and LUTKF with Ne = 15 for U, V, T, and Q at 500 hPa
during 13 days from 1200 UTC 6 September 2008 to 1200 UTC 19 September 2008. In
Figure 10, red areas indicate that the LUTKF provides smaller RMSEs than the LETKF,
while blue areas denote that the LETKF offers better assimilation performance than the
LUTKF. As seen in Figure 10, the LUTKF using Ne = 15 generally shows smaller RMSEs
than the LETKF using Ne = 21 (red areas in Figure 10), especially over the moving route of
Typhoon Sinlaku; that is, the LUTKF indicates better forecast results for U and V southeast
of Taiwan and for T and Q northeast of Taiwan compared to the LETKF. However, the
forecast results for Q in most areas over the model domain indicate the disadvantage of the
LUTKF (blue areas in Figure 10d).

Figure 11 represents the horizontal map of the difference of the 6 h forecast RMSE
between the LETKF with Ne = 15 and LUTKF with Ne = 15 for U, V, T, and Q at 500 hPa
during 13 days from 1200 UTC 6 September 2008 to 1200 UTC 19 September 2008. Similar
to Figure 10, the 6 h forecast RMSE difference between the LETKF with Ne = 15 and LUTKF
with Ne = 15 is generally larger over the moving route of Typhoon Sinlaku as shown in
Figure 11. From Figure 11, we can also see that the LUTKF can provide better assimilation
results for the U, V, and T than the LETKF on average (red areas in Figure 11a–c).
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Figure 10. Horizontal map of the difference of the 6 h forecast RMSE against the NCEP analysis
between the LETKF with Ne = 21 and LUTKF with Ne = 15 for (a) zonal wind component (U500),
(b) meridional wind component (V500), (c) temperature (T500), and (d) specific humidity (Q500) at
500 hPa during 13 days from 1200 UTC 6 September 2008 to 1200 UTC 19 September 2008. Red (blue)
areas denote that the RMSEs of the LUTKF are smaller (larger) than those of the LETKF.
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Figure 11. As in Figure 10 but for the difference of the 6 h forecast RMSE between the LETKF with
Ne = 15 and LUTKF with Ne = 15.
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Table 1 shows the prior mean RMSEs of U, V, T, and Q relative to observations for
6 h ensemble forecasts initiated by the analysis of three different EBKF algorithms during
13 days from 1200 UTC 6 September 2008 to 1200 UTC 19 September 2008. Table 2 shows
the posterior mean RMSEs of U, V, T, and Q relative to observations for three different
EBKF algorithms, which are calculated from the analysis ensemble of each EBKF algorithm
by assimilating observations. From Tables 1 and 2, we can see that the LUTKF with Ne = 15
can provide smaller RMSEs than the LETKF with Ne = 15 and similar RMSEs to the LETKF
with Ne = 21 for U, V, and T. We can also see that the posterior mean RMSEs of three
different EBKF algorithms are smaller than their corresponding prior mean RMSEs. These
results indicate that state estimation results obtained by three different EBKF algorithms
are closer to observations by assimilating them.

Table 1. Prior mean RMSEs relative to observations for U, V, T, and Q using the LETKF with Ne = 21,
LETKF with Ne = 15, and LUTKF with Ne = 15. The RMSE values are averaged over 13 days from
1200 UTC 6 September 2008 to 1200 UTC 19 September 2008.

Assimilation Method U (m/s) V (m/s) T (K) Q (kg/kg)

LETKF (Ne = 21) 3.86 3.86 1.95 174.56
LETKF (Ne = 15) 3.91 3.93 1.99 179.47
LUTKF (Ne = 15) 3.84 3.88 1.89 180.94

Table 2. As in Table 1 but for posterior mean RMSEs relative to observations.

Assimilation Method U (m/s) V (m/s) T (K) Q (kg/kg)

LETKF (Ne = 21) 3.38 3.34 1.75 124.03
LETKF (Ne = 15) 3.48 3.45 1.80 129.19
LUTKF (Ne = 15) 3.38 3.33 1.69 130.24

4.5. Computational Time

The assimilation experiments in this study were conducted on the Korea Meteorologi-
cal Administration (KMA) operational supercomputing system called Duru that consists
of 426 dual-processor nodes, each of which is equipped with a powerful supercomputing
server, ThinkSystem SD530 (available online from Lenovo Group Ltd., Beijing, China, at
https://lenovopress.lenovo.com/servers/thinksystem/sd530 (accessed on 9 April 2023)).
Each server is equipped with 768 GB of random access memory and a 2.9 GHz Intel
Xeon Platinum 8268 Processor with 24 CPU cores, running on CentOS Linux. Twenty
computational nodes on the supercomputer system were used for the verification of the
computational efficiency of the LUTKF and the LETKF.

The computational time of the LETKF and LUTKF algorithms used in this study
is shown in Table 3. It is the average value of the wall-clock time in seconds required
to perform the forecast and analysis (i.e., data assimilation) cycle in each assimilation
method during the 16-day test period from 1200 UTC 3 September 2008 to 1200 UTC 19
September 2008.

Table 3. Computational time(s) of each assimilation method.

Assimilation Method 9 h Ensemble Forecast for the First Guess Data Assimilation Total

LETKF (Ne = 21) 148.45 17.36 165.81
LETKF (Ne = 15) 75.68 14.58 90.26
LUTKF (Ne = 15) 77.81 46.47 124.28

In the model forecast phase, the LUTKF with Ne = 15 consumes less computational
time compared to the LETKF with Ne = 21, while it requires a similar computational time
to the LETKF with Ne = 15. This is because a larger ensemble size requires more com-
putational time in the EBKF algorithms on average. During the analysis phase, however,

https://lenovopress.lenovo.com/servers/thinksystem/sd530


Atmosphere 2023, 14, 1143 19 of 22

the LUTKF with Ne = 15 requires about 167.69% and 218.73% more computational time
than the LETKF with Ne = 15 and LETKF with Ne = 21, respectively. This is because
the computational time of the LUTKF is sensitive to the number of observations to be
assimilated, while that of the LETKF scales nearly linearly to the number of observations.
Most of the time during the analysis step in the LUTKF is spent computing the Kalman gain
KKKk in Equation (18) described in Section 2.2. The matrix inversion portion in Equation (18),
which requires floating point operations of O(m3) complexity for m observations, is a sig-
nificant component of the computation time. Since the matrix inversion requires substantial
computation time and can lead to incorrect results, we calculate KKKT

k by solving the linear
system SSSkKKK

T
k = PPPxz rather than inverting SSSk. Solving the system of linear equations is more

efficient and more accurate, and requires all operations of O(m2) complexity. Nevertheless,
it still requires more computational time than the LETKF with Ne = 21 as shown in Table 3.
Better ways to compute the Kalman gain will appear in a future publication.

The “total” shown in the right-most column of Table 3 refers to the overall compu-
tational time required to perform all the phases (forecast and analysis). Compared to
the LETKF using Ne = 21, the LUTKF using Ne = 15 consumes about 25.05% less total
computational time, although it requires more computational time when carrying out
only the analysis phase. The results show the LUTKF algorithm with as few as fifteen
ensemble members can perform the state estimation for the regional NWP model with
higher computational efficiency than the LETKF with Ne = 21, providing assimilation
results that are as accurate as the LETKF with Ne = 21 as discussed in Sections 4.2–4.4.

5. Conclusions

Unlike the previous study that examined the analysis performance of the LUTKF
method using the Lorenz 40-dimensional model and simulated observations [13], this
paper presents the feasibility of the LUTKF as a data assimilation method for the WRF
model using real observations.

Since the LETKF uses the random sampling and makes linearization assumptions
for the nonlinear function, it provides a first-order accuracy of the Taylor expansion, even
for the highly nonlinear observation function. On the contrary, the LUTKF estimates the
model state through the UT that makes no linearization assumptions for the nonlinear
function and uses deterministically chosen ensemble members, therefore providing a
second-order accuracy of the Taylor expansion for the nonlinear function [29–31]. Similar to
the LETKF, the LUTKF can use a small number of ensemble members and local observations
within a certain cutoff distance centered on each model grid point due to the spatial local
analysis. As a result, the use of the localization method enables the LUTKF to offer better
computational efficiency and to easily perform parallelized calculations in the parallel
computer architecture.

Data assimilation cycle experiments show that the LUTKF with a smaller ensemble
size can offer smaller RMSEs and biases and larger ensemble spreads that are closer to
RMSE than the LETKF with a larger ensemble size over the region of Northeast Asia,
although the assimilation results for the Q in most areas over the model domain indicate
the disadvantage of the LUTKF. The LUTKF especially provided substantial benefits over
the LETKF when performing the data assimilation for Typhoon Sinlaku. Compared to the
LETKF using Ne = 21, the LUTKF using Ne = 15 consumes less overall computational time
for all the phases, including ensemble forecast and data assimilation, although it requires
more computational time when carrying out only the analysis phase.

Experimental results indicate that the LUTKF with a moderate ensemble size has
the potential to become an effective method to assimilate real observations into the WRF
model by providing high computational efficiency and accurate analysis results that are
comparable to those of the LETKF.

Nonetheless, the underestimated ensemble spreads of U, V, T, and Q for the LUTKF
are still far away from RMSEs at most pressure levels. This suggests that although the
LUTKF has a larger spread than the LETKF, it cannot capture real observation information
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in an effective manner. To solve this problem, the analysis configurations of the LUTKF will
be improved by applying adaptive and additive covariance inflation approaches [35,36] to
the data assimilation in future work.

Furthermore, results from the cycling data assimilation experiments show that the
LUTKF produces larger posterior biases and RMSEs of Q and yields no significant estima-
tion accuracy improvements for T, compared to the LETKF. As future work, the analysis
performance for T and Q will be improved by assimilating satellite radiance observations
that can provide information about the temperature and moisture [38,39].

Moreover, while the computational time of the LETKF scales nearly linearly to the
number of observations, that of the LUTKF is sensitive to the number of observations
to be assimilated, thereby requiring floating point operations of O(m2) complexity for m
observations. Improving the computational efficiency of the LUTKF will be an important
future issue. Also, assimilation experiments using the regional NWP model with a higher
spatial resolution will be the topic of future work that will examine the analysis performance
and computational efficiency of the LUTKF as a mesoscale data assimilation method.
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Abbreviations
The following abbreviations and acronyms are used in this manuscript:
NWP numerical weather prediction
NCEP National Centers for Environmental Prediction
NCAR National Center for Atmospheric Research
GFS Global Forecast System
GEFS Global Ensemble Forecast System
GDAS Global Data Assimilation System
WRF Weather Research and Forecasting
NMM Non-hydrostatic Mesoscale Model
ARW Advanced Research WRF
WPS WRF Preprocessing System
PBL planetary boundary layer
SPKF sigma-point Kalman filter
UT unscented transformation
LUTKF local unscented transform Kalman filter
LETKF local ensemble transform Kalman filter
EnKF ensemble Kalman filter
EnSRF ensemble square root filter
EBKF ensemble-based Kalman filter
3DVAR three-dimensional variational
4DVAR four-dimensional variational
EnVAR ensemble variational
PCA principal component analysis
SVD singular value decomposition
JMA Japan Meteorological Agency
KMA Korea Meteorological Administration
ECMWF European Center for Medium-Range Weather Forecasts
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DWD Deutscher Wetterdienst

PREPBUFR
prepared or quality-controlled data
in Binary Universal Form for the Representation of meteorological data

ASCAT Advanced Scatterometer
GOES Geostationary Operational Environmental Satellite
U zonal wind
V meridional wind
T temperature
Q specific humidity
U500 500 hPa zonal wind component
V500 500 hPa meridional wind component
T500 500 hPa temperature
Q500 500 hPa specific humidity
θ′ potential temperature perturbation
p′ pressure perturbation
pb pressure base
qv water vapor mixing ratio
ps surface pressure
T2 2-m temperature
q2 2-m water vapor mixing ratio
MPI message passing interface
RTPP relaxation to prior perturbation
RTPS relaxation to prior spread
RMSE root-mean-square error
Ne ensemble size (the number of ensemble members)
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