Impact of Modern Vehicular Technologies and Emission Regulations on Improving Global Air Quality
Abstract
:1. Introduction
2. Emissions Regulations
2.1. Current Emission Limits
Stage | Year | CO | THC | NOx (Diesel) | NOx (Gasoline) | PM | NMHC |
---|---|---|---|---|---|---|---|
g/km | g/km | g/km | g/km | g/km | g/km | ||
Tier 1 (50,000 miles/5 years) | 1991 | 2.11 | 0.25 | 0.62 | 0.25 | 0.05 * | 0.16 |
Tier 1 (100,000 miles/10 years) | 1991 | 2.61 | - | 0.78 | 0.37 | 0.06 | 0.19 |
Tier 2 | 1999 | 1.3 | 0.06 | 0.04 | 0.04 | 0.01 | 0.06 |
Tier 3 | 2014 | 0.62 | 0.0342 | 0.018 | 0.018 | 0.003 | 0.024 |
Stage | Category | 50,000 m/5 Years | 100,000 m/10 Years | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NMOGa g/mi | CO g/mi | NOx g/mi | PM g/mi | HCHO mg/mi | NMOGa g/mi | CO g/mi | NOx g/mi | PM g/mi | HCHO mg/mi | ||
LEV I | Tier 1 | 0.25 | 3.4 | 0.4 | 0.08 | - | 0.31 | 4.2 | 0.6 | - | - |
TLEV | 0.125 | 3.4 | 0.4 | - | 0.015 | 0.156 | 4.2 | 0.6 | 0.08 | 0.018 | |
LEV | 0.075 | 3.4 | 0.2 | - | 0.015 | 0.09 | 4.2 | 0.3 | 0.08 | 0.018 | |
ULEV | 0.04 | 1.7 | 0.2 | - | 0.008 | 0.055 | 2.1 | 0.3 | 0.04 | 0.011 | |
LEV II | LEV | 0.075 | 3.4 | 0.05 | - | 0.015 | 0.09 | 4.2 | 0.07 | 0.01 | 0.018 |
ULEV | 0.04 | 1.7 | 0.05 | - | 0.008 | 0.055 | 2.1 | 0.07 | 0.01 | 0.011 | |
SULEV | - | - | - | - | - | 0.01 | 1 | 0.02 | 0.01 | 0.004 |
Stage | Emission Category | NMOG + NOx | CO | HCHO | PM |
---|---|---|---|---|---|
g/mi | g/mi | mg/mi | g/mi | ||
LEV III | LEV160 | 0.16 | 4.2 | 4 | 0.01 |
ULEV125 | 0.125 | 2.1 | 4 | 0.01 | |
ULEV70 | 0.07 | 1.7 | 4 | 0.01 | |
ULEV50 | 0.05 | 1.7 | 4 | 0.01 | |
SULEV30 | 0.03 | 1 | 4 | 0.01 | |
SULEV20 | 0.02 | 1 | 4 | 0.01 | |
ULEV125 | 0.125/0.160 | 4.2 | 0.01 | ||
LEV IV | ULEV70 | 0.070/0.105 | 2.1 | ||
ULEV60 | 0.060/0.090 | 1.7 | |||
ULEV50 | 0.050/0.070 | 1.7 | |||
ULEV40 | 0.040/0.060 | 1.7 | |||
SULEV30 | 0.030/0.050 | 1 | |||
SULEV25 | 0.025/0.050 | 1 | |||
SULEV20 | 0.020/0.030 | 1 | |||
SULEV15 | 0.015/0.030 | 1 |
2.2. Comments on the Proposed Euro 7 Regulations
3. Development of ICE Technologies for Emissions Mitigation
3.1. Three-Way Catalytic Converters with Gasoline Engines
3.2. Engine Downsizing
3.2.1. Downsizing in Spark Ignition Engines
3.2.2. Downsizing in Compression Ignition Engines
3.3. Engine Start-Stop Systems
3.4. Improvements with Injection Technologies
3.5. Hybridization of the Powertrain
3.6. Particulate Filters
3.7. Advanced Combustion Regimes
4. Recommendations and Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AES | Auxiliary Emission System |
CAFE | Corporate Average Fuel Economy |
CARB | Californian Air Resource Board |
CNG | Compressed Natural Gas |
CO | Carbon monoxide |
DPF | Diesel Particulate Filter |
EPA | Environmental Protection Agency |
EU | European Union |
FCM | Fuel Consumption Meter |
GHGs | Greenhouse gases |
HC | Hydrocarbons |
ICE | Internal Combustion Engine |
LDVs | Light Duty Vehicles |
LEV | Low Emission Vehicles |
MY | Model Year |
NEDC | New European Driving Cycle |
NHTSA | National Highway Traffic Safety Administration |
NOx | Oxides of Nitrogen |
OBFCM | On-board Fuel Consumption Monitor |
PMP | Particle Measurement Program |
PM | Particulate Matter |
PN | Particulate Number |
RDE | Real Driving Emissions |
SCR | Selective Catalytic Reduction |
SULEV | Super Ultra Low Emission Vehicle |
TWC | Three-way Catalytic converters |
ULEV | Ultra Low Emission Vehicle |
WLTC | Worldwide harmonized Light vehicles Test Cycles |
WLTP | Worldwide Harmonized Light Vehicles Test Procedure |
References
- Xue, Y.; Zhou, Z.; Nie, T.; Wang, K.; Nie, L.; Pan, T.; Wu, X.; Tian, H.; Zhong, L.; Li, J. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures. Atmos. Environ. 2016, 142, 303–312. [Google Scholar] [CrossRef]
- Gaffney, J.S.; Marley, N.A. The impacts of combustion emissions on air quality and climate—From coal to biofuels and beyond. Atmos. Environ. 2009, 43, 23–36. [Google Scholar] [CrossRef]
- Yim, S.H.; Barrett, S.R. Public health impacts of combustion emissions in the United Kingdom. Environ. Sci. Technol. 2012, 46, 4291–4296. [Google Scholar] [CrossRef] [PubMed]
- Préndez, M.; Nova, P.; Romero, H.; Mendes, F.; Fuentealba, R. Representativeness of the particulate matter pollution assessed by an official monitoring station of air quality in Santiago, Chile: Projection to human health. Environ. Geochem. Health 2023, 45, 2985–3001. [Google Scholar] [CrossRef]
- Megido, L.; Suárez-Peña, B.; Negral, L.; Castrillón, L.; Fernández-Nava, Y. Suburban air quality: Human health hazard assessment of potentially toxic elements in PM10. Chemosphere 2017, 177, 284–291. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Lv, Z.; He, T.; Zhao, J.; Wang, Y.; Gao, F.; Zhang, Z.; Liu, H. Impacts of vehicle emission on air quality and human health in China. Sci. Total Environ. 2022, 813, 152655. [Google Scholar] [CrossRef]
- An, F.; Sauer, A. Comparison of Passenger Vehicle Fuel Economy and Greenhouse Gas Emission Standards around the World; Pew Center on Global Climate Change: 2004; Volume 25. Available online: https://www.c2es.org/wp-content/uploads/2004/12/comparison-passenger-vehicle-fuel-economy-ghg-emission-standards-around-world.pdf (accessed on 20 February 2023).
- Li, X.; Nam, K.-M. Environmental regulations as industrial policy: Vehicle emission standards and automotive industry performance. Environ. Sci. Policy 2022, 131, 68–83. [Google Scholar] [CrossRef]
- Saxena, P.; Sonwani, S. Criteria Air Pollutants and Their Impact on Environmental Health; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1. [Google Scholar]
- Kritsanaviparkporn, E.; Baena-Moreno, F.M.; Reina, T. Catalytic converters for vehicle exhaust: Fundamental aspects and technology overview for newcomers to the field. Chemistry 2021, 3, 630–646. [Google Scholar] [CrossRef]
- European Exhaust Emissions Standard For Passenger Cars. 2017. Available online: https://www.theaa.com/driving-advice/fuels-environment/euro-emissions-standards (accessed on 20 February 2023).
- All EPA Emission Standards—Light-Duty Vehicles and Trucks and Motorcycles. 2022. Available online: https://www.epa.gov/emission-standards-reference-guide/all-epa-emission-standards (accessed on 20 February 2023).
- Final Rule for Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards. 2022. Available online: https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-control-air-pollution-motor-vehicles-tier-3 (accessed on 20 February 2023).
- CARB—Low-Emission Vehicle Program. 2022. Available online: https://ww2.arb.ca.gov/our-work/programs/low-emission-vehicle-program (accessed on 20 February 2023).
- CARB: Proposed Modifications to CA’s Zero Emission Vehicle Program. Available online: https://theicct.org/publication/carb-proposed-modifications-to-cas-zero-emission-vehicle-program/ (accessed on 20 February 2023).
- 2017 Global Update: Light-Duty Vehicle Greenhouse Gas and Fuel Economy Standards. 2017. Available online: https://theicct.org/publication/2017-global-update-light-duty-vehicle-greenhouse-gas-and-fuel-economy-standards/ (accessed on 20 February 2023).
- Air Data—Multiyear Tile Plot EPA. Available online: https://www.epa.gov/outdoor-air-quality-data/air-data-multiyear-tile-plot (accessed on 20 February 2023).
- Guttikunda, S.K.; Dammalapati, S.K.; Pradhan, G.; Krishna, B.; Jethva, H.T.; Jawahar, P. What Is Polluting Delhi’s Air? A Review from 1990 to 2022. Sustainability 2023, 15, 4209. [Google Scholar] [CrossRef]
- How Is Air Quality calculated—EPA. Available online: https://www.epa.gov/outdoor-air-quality-data/how-aqi-calculated (accessed on 13 April 2023).
- Cohen, A.J.; Anderson, H.R.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Künzli, N.; Gutschmidt, K.; Pope, C.A., III; Romieu, I.; Samet, J.M. Urban air pollution. Comp. Quantif. Health Risks Glob. Reg. Burd. Dis. Attrib. Sel. Major Risk Factors 2004, 2, 1353–1433. [Google Scholar]
- Cruz, I.S.; Katz-Gerro, T. Urban public transport companies and strategies to promote sustainable consumption practices. J. Clean. Prod. 2016, 123, 28–33. [Google Scholar] [CrossRef]
- Gendron-Carrier, N.; Gonzalez-Navarro, M.; Polloni, S.; Turner, M.A. Subways and urban air pollution. Am. Econ. J. Appl. Econ. 2022, 14, 164–196. [Google Scholar] [CrossRef]
- Marked Improvement in Europe’s Air Quality over Past Decade, Fewer Deaths Linked to Pollution. Available online: https://www.eea.europa.eu/highlights/marked-improvement-in-europes-air (accessed on 20 February 2023).
- Wolf, M.J.; Esty, D.C.; Kim, H.; Bell, M.L.; Brigham, S.; Nortonsmith, Q.; Zaharieva, S.; Wendling, Z.A.; de Sherbinin, A.; Emerson, J.W. New insights for tracking global and local trends in exposure to air pollutants. Environ. Sci. Technol. 2022, 56, 3984–3996. [Google Scholar] [CrossRef]
- Juginović, A.; Vuković, M.; Aranza, I.; Biloš, V. Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries. Sci. Rep. 2021, 11, 22516. [Google Scholar] [CrossRef]
- Cicala, S.; Holland, S.P.; Mansur, E.T.; Muller, N.Z.; Yates, A.J. Expected health effects of reduced air pollution from COVID-19 social distancing. Atmosphere 2021, 12, 951. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A.; Lelieveld, J. Human health risks in megacities due to air pollution. Atmos. Environ. 2010, 44, 4606–4613. [Google Scholar] [CrossRef]
- Agarwal, A.; Kaushik, A.; Kumar, S.; Mishra, R.K. Comparative study on air quality status in Indian and Chinese cities before and during the COVID-19 lockdown period. Air Qual. Atmos. Health 2020, 13, 1167–1178. [Google Scholar] [CrossRef]
- Badami, M.G. Transport and urban air pollution in India. Environ. Manag. 2005, 36, 195–204. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Kopakka, R.V. Source emissions and health impacts of urban air pollution in Hyderabad, India. Air Qual. Atmos. Health 2014, 7, 195–207. [Google Scholar] [CrossRef]
- Hosamane, S.; Desai, G. Urban air pollution trend in India-present scenario. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 3738–3747. [Google Scholar]
- Fan, Y.; Ding, X.; Hang, J.; Ge, J. Characteristics of urban air pollution in different regions of China between 2015 and 2019. Build. Environ. 2020, 180, 107048. [Google Scholar] [CrossRef]
- US: Light-Duty: Emissions. Available online: https://www.transportpolicy.net/standard/us-light-duty-emissions/ (accessed on 20 February 2023).
- EU: Cars and Light Trucks. Available online: https://dieselnet.com/standards/eu/ld.php (accessed on 20 February 2023).
- Blumberg, K.O.; Walsh, M.P.; Pera, C. Low-Sulfur Gasoline & Diesel: The Key to Lower Vehicle Emissions. Available online: http://www.theicct.org/documents/Low-Sulfur_Exec_Summ_ICCT_2003.pdf (accessed on 24 April 2023).
- Lin, L.; Zhang, Y.; Kong, Y. Recent advances in sulfur removal from gasoline by pervaporation. Fuel 2009, 88, 1799–1809. [Google Scholar] [CrossRef]
- Ravi, S.S.; Aziz, M. Utilization of electric vehicles for vehicle-to-grid services: Progress and perspectives. Energies 2022, 15, 589. [Google Scholar] [CrossRef]
- Hassan, S.T.; Khan, S.U.-D.; Xia, E.; Fatima, H. Role of institutions in correcting environmental pollution: An empirical investigation. Sustain. Cities Soc. 2020, 53, 101901. [Google Scholar] [CrossRef]
- Damma, D.; Ettireddy, P.R.; Reddy, B.M.; Smirniotis, P.G. A review of low temperature NH3-SCR for removal of NOx. Catalysts 2019, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Jo, S.; Kwon, S.; Lee, J.-T.; Park, S. NOX emission analysis according to after-treatment devices (SCR, LNT+ SCR, SDPF), and control strategies in Euro-6 light-duty diesel vehicles. Fuel 2022, 310, 122297. [Google Scholar] [CrossRef]
- Latha, H.; Prakash, K.; Veerangouda, M.; Maski, D.; Ramappa, K. A review on scr system for nox reduction in diesel engine. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1553–1559. [Google Scholar] [CrossRef]
- Lao, C.T.; Akroyd, J.; Kraft, M. Modelling treatment of deposits in particulate filters for internal combustion emissions. Prog. Energy Combust. Sci. 2023, 96, 101043. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, C.; Li, J.; Fang, J.; Tan, J.; Qin, Y.; Jiang, Y.; Qin, Z.; Bai, W.; Liang, K. Particle emission characteristics of DPF regeneration from DPF regeneration bench and diesel engine bench measurements. Fuel 2020, 262, 116589. [Google Scholar] [CrossRef]
- Prikhodko, V.Y.; Pihl, J.A.; Toops, T.J.; Parks, J.E. Passive SCR performance under pseudo-transient cycle: Challenges and opportunities for meeting Tier 3 emissions. Emiss. Control Sci. Technol. 2019, 5, 253–262. [Google Scholar] [CrossRef]
- Sellnau, M.; Hoyer, K.; Moore, W.; Foster, M.; Sinnamon, J.; Klemm, W. Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions; SAE Technical Paper. 2018. Available online: https://www.sae.org/publications/technical-papers/content/2018-01-0901/?utm_source=google&utm_medium=ppc&utm_campaign=gdthttps://www.sae.org/learn/professional-development/gdt?utm_source=google&utm_medium=ppc&utm_campaign=gdt&gclid=CjwKCAjw44mlBhAQEiwAqP3eVgCFdEMLDNitenYy7J9m2TQkb2736icPIeXijyqFR54wnGcu2JnAbhoCUBsQAvD_BwE (accessed on 23 February 2023).
- Wik, C.; Niemi, S. Low emission engine technologies for future tier 3 legislations-options and case studies. J. Shipp. Trade 2016, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Euro 6e: Changes to the European Union Light-Duty Vehicle Type-Approval Procedure. Available online: https://theicct.org/wp-content/uploads/2022/12/euro6e-type-approval-dec22.pdf (accessed on 23 February 2023).
- Low Emission Vehicle (LEV) Standards. Available online: https://afdc.energy.gov/laws/6493 (accessed on 23 February 2023).
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Lave, L.B.; Seskin, E.P. Air Pollution and Human Health; RFF Press: New York, NY, USA, 2013; Available online: https://www.taylorfrancis.com/books/mono/10.4324/9781315064451/air-pollution-human-health-lester-lave-eugene-seskin (accessed on 20 February 2023).
- Federal Standards (US EPA). Available online: https://dieselnet.com/standards/us/ld.php (accessed on 20 February 2023).
- United States: Cars and Light-Duty Trucks: California. Available online: https://dieselnet.com/standards/us/ld_ca.php#lev (accessed on 20 February 2023).
- Commission Proposal on the New Euro 7 Standards. 2022. Available online: https://ec.europa.eu/commission/presscorner/detail/en/qanda_22_6496 (accessed on 21 February 2023).
- Mulholland, E.; Miller, J.; Bernard, Y.; Lee, K.; Rodríguez, F. The role of NOx emission reductions in Euro 7/VII vehicle emission standards to reduce adverse health impacts in the EU27 through 2050. Transp. Eng. 2022, 9, 100133. [Google Scholar] [CrossRef]
- Börnhorst, M.; Deutschmann, O. Advances and challenges of ammonia delivery by urea-water sprays in SCR systems. Prog. Energy Combust. Sci. 2021, 87, 100949. [Google Scholar] [CrossRef]
- Koebel, M.; Elsener, M.; Madia, G. Recent Advances in the Development of Urea-SCR for Automotive Applications. 2001. Available online: https://www.sae.org/publications/technical-papers/content/2001-01-3625/ (accessed on 20 February 2023).
- Ravi, S.S.; Aziz, M. Clean hydrogen for mobility–Quo vadis? Int. J. Hydrogen Energy 2022, 47, 20632–20661. [Google Scholar] [CrossRef]
- Proposed Regulated Sales Targets for Zero-Emission Vehicles. Available online: https://www.canada.ca/en/environment-climate-change/news/2022/12/proposed-regulated-sales-targets-for-zero-emission-vehicles.html (accessed on 23 February 2023).
- Gu, B.; Zhang, L.; Van Dingenen, R.; Vieno, M.; Van Grinsven, H.J.; Zhang, X.; Zhang, S.; Chen, Y.; Wang, S.; Ren, C. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 2021, 374, 758–762. [Google Scholar] [CrossRef]
- BIELACZyC, P.; Szczotka, A.; PAJdOWSKI, P.; WOOdBURN, J. Development of automotive emissions testing equipment and test methods in response to legislative, technical and commercial requirements. Siln. Spalinowe 2013, 52, 28–41. [Google Scholar] [CrossRef]
- Lee, J.; Veloso, F.M.; Hounshell, D.A.; Rubin, E.S. Forcing technological change: A case of automobile emissions control technology development in the US. Technovation 2010, 30, 249–264. [Google Scholar] [CrossRef]
- Taylor, K.C. Automobile Catalytic Converters; Springer: Berlin/Heidelberg, Germany, 1984; Available online: https://books.google.rs/books?id=427tCAAAQBAJ&printsec=frontcover&hl=sr&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 20 February 2023).
- Farrauto, R.J.; Heck, R.M. Catalytic converters: State of the art and perspectives. Catal. Today 1999, 51, 351–360. [Google Scholar] [CrossRef]
- Kašpar, J.; Fornasiero, P.; Hickey, N. Automotive catalytic converters: Current status and some perspectives. Catal. Today 2003, 77, 419–449. [Google Scholar] [CrossRef]
- Santos, H.; Costa, M. Modelling transport phenomena and chemical reactions in automotive three-way catalytic converters. Chem. Eng. J. 2009, 148, 173–183. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Najafi, G.; Ghobadian, B.; Zakeri, A.; Nejat, M. Comparison of Aged and fresh Automotive Three-Way Catalyst in Driving Cycle. J. Engine Res. 2020, 57, 75–83. [Google Scholar]
- Mc Grane, L.; Douglas, R.; Irwin, K.; Stewart, J.; Woods, A.; Muehlstaedt, F. A Study of the Effect of Light-off Temperatures and Light-off Curve Shape on the Cumulative Emissions Performance of 3-Way Catalytic Converters; SAE Technical Paper. 2021. Available online: https://www.sae.org/publications/technical-papers/content/2021-01-0594/ (accessed on 23 February 2023).
- El-Sharkawy, A.; Arora, D.; Huxford, M.W. Optimization of Catalytic Converter Design to Improve under-Hood Thermal Management. SAE Int. J. Adv. Curr. Pract. Mobil. 2019, 1, 1325–1332. [Google Scholar] [CrossRef]
- Oh, S.H. Catalytic converter modeling for automotive emission control. In Computer-Aided Design of Catalysts; CRC Press: Boca Raton, FL, USA, 2020; pp. 259–296. [Google Scholar]
- Embiruçua, L.; Lealb, C. Catalytic Processes in the Automotive AREA, VII INTERNATIONAL SYMPOSIUM ON INNOVATION AND TECHNOLOGY (SIINTEC) One Planet, one Ocean and one Health-2021. Available online: https://doity.com.br/siintec-2021 (accessed on 22 February 2023).
- Yang, K.; Chen, P. Model-based predictive control and dithering control for an integrated gasoline engine and three-way catalytic converter system. J. Dyn. Syst. Meas. Control 2021, 143, 091007. [Google Scholar] [CrossRef]
- Air Pollutant Emissions Trends Data; Environmental Protection Agency—US. 2021. Available online: https://www.epa.gov/ (accessed on 22 February 2023).
- Timeline of Major Accomplishments in Transportation, Air Pollution, and Climate Change. 2022. Available online: https://www.epa.gov/transportation-air-pollution-and-climate-change/timeline-major-accomplishments-transportation-air (accessed on 22 February 2023).
- Clenci, A.; Berquez, J.; Stoica, R.; Niculescu, R.; Cioc, B.; Zaharia, C.; Iorga-Simăn, V. Experimental investigation of the effect of an afterburner on the light-off performance of an exhaust after-treatment system. Energy Rep. 2022, 8, 406–418. [Google Scholar] [CrossRef]
- Gumus, M. Reducing cold-start emission from internal combustion engines by means of thermal energy storage system. Appl. Therm. Eng. 2009, 29, 652–660. [Google Scholar] [CrossRef]
- Gao, J.; Tian, G.; Sorniotti, A.; Karci, A.E.; Di Palo, R. Review of thermal management of catalytic converters to decrease engine emissions during cold start and warm up. Appl. Therm. Eng. 2019, 147, 177–187. [Google Scholar] [CrossRef]
- Winkler, A.; Dimopoulos, P.; Hauert, R.; Bach, C.; Aguirre, M. Catalytic activity and aging phenomena of three-way catalysts in a compressed natural gas/gasoline powered passenger car. Appl. Catal. B Environ. 2008, 84, 162–169. [Google Scholar] [CrossRef]
- Scheidt, M.; Brands, C.; Kratzsch, M.; Günther, M. Combined Miller/Atkinson strategy for future downsizing concepts. MTZ Worldw. 2014, 75, 4–11. [Google Scholar] [CrossRef]
- Silva, L.; Silva, J.; Henríquez, J.; de Lira Junior, J. Numerical Analysis of Effects of Engine Downsizing and Turbocharging on the Parameters of Performance and Emissions of an Internal Combustion Engine. Arab. J. Sci. Eng. 2022, 48, 2795–2805. [Google Scholar] [CrossRef]
- Szałek, A.; Pielecha, I. The Influence of engine downsizing in hybrid powertrains on the energy flow indicators under actual traffic conditions. Energies 2021, 14, 2872. [Google Scholar] [CrossRef]
- Turner, J.; Popplewell, A.; Patel, R.; Johnson, T.; Darnton, N.; Richardson, S.; Bredda, S.; Tudor, R.; Bithell, C.; Jackson, R. Ultra boost for economy: Extending the limits of extreme engine downsizing. SAE Int. J. Engines 2014, 7, 387–417. [Google Scholar] [CrossRef]
- Ye, P.; Boehman, A.L. Investigation of the impact of engine injection strategy on the biodiesel NOx effect with a common-rail turbocharged direct injection diesel engine. Energy Fuels 2010, 24, 4215–4225. [Google Scholar] [CrossRef]
- Bonalumi, D. Considerations on CO2 and pollutants emissions of modern cars. AIP Conf. Proc. 2019, 2191, 020024. [Google Scholar]
- Scheider, W.-H. Plug-in hybrid vehicles—A key technology for CO2 reduction. MTZ Worldw. 2019, 80, 108. [Google Scholar] [CrossRef]
- Melaika, M.; Mamikoglu, S.; Dahlander, P. 48V Mild-Hybrid Architecture Types, Fuels and Power Levels Needed to Achieve 75g CO2/km; SAE Technical Paper. 2019. Available online: https://www.sae.org/publications/technical-papers/content/2019-01-0366/ (accessed on 22 February 2023).
- IEA. As Their Sales Continue to Rise, SUVs’ Global CO2 Emissions Are Nearing 1 Billion Tonnes. 2023. Available online: https://www.iea.org/commentaries/as-their-sales-continue-to-rise-suvs-global-co2-emissions-are-nearing-1-billion-tonnes (accessed on 22 February 2023).
- Kirsten, K.; Brands, C.; Kratzsch, M.; Günther, M. Selektive Umschaltung des Ventilhubs beim Ottomotor. MTZ-Mot. Z. 2012, 73, 834–839. [Google Scholar] [CrossRef]
- Cucchi, M.; Samuel, S. Influence of the exhaust gas turbocharger on nano-scale particulate matter emissions from a GDI spark ignition engine. Appl. Therm. Eng. 2015, 76, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Li, Z.; Yu, L.; Wang, X.; Lu, X. Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines. Appl. Energy 2019, 238, 1269–1298. [Google Scholar] [CrossRef]
- Golloch, R.; Merker, G. Internal combustion engine downsizing. Fundamentals, state of the art and future concepts; Downsizing bei Verbrennungsmotoren. Grundlagen, Stand der Technik und zukuenftige Konzepte. Mot. Z. 2005, 66, 126–131. [Google Scholar]
- Zhu, R.; Fu, Y.; Wang, L.; Hu, J.; He, L.; Wang, M.; Lai, Y.; Su, S. Effects of a start-stop system for gasoline direct injection vehicles on fuel consumption and particulate emissions in hot and cold environments. Environ. Pollut. 2022, 308, 119689. [Google Scholar] [CrossRef]
- Hung, C.C.; Martin, J.K.; Koo, J.-Y. Injection pressure effects upon droplet behavior in transient diesel sprays. SAE Trans. 1997, 106, 168–181. [Google Scholar]
- Pierpont, D.; Reitz, R.D. Effects of injection pressure and nozzle geometry on DI diesel emissions and performance. SAE Trans. 1995, 104, 1041–1050. [Google Scholar]
- Mohan, B.; Yang, W.; kiang Chou, S. Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renew. Sustain. Energy Rev. 2013, 28, 664–676. [Google Scholar] [CrossRef]
- Taghavifar, H. Experimental and numerical engine cycle setup for a dual fuel hydrogen, methane, and hythane with diesel to assess the effect of water injection and nozzle geometry. Environ. Prog. Sustain. Energy 2023, 42, e13936. [Google Scholar] [CrossRef]
- Luján, J.M.; Garcia, A.; Monsalve-Serrano, J.; Martínez-Boggio, S. Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Convers. Manag. 2019, 199, 111987. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J. Environ. Manag. 2015, 154, 225–258. [Google Scholar] [CrossRef]
- Khair, M.K. A Review of Diesel Particulate Filter Technologies. 2003. Available online: https://www.sae.org/publications/technical-papers/content/2003-01-2303/ (accessed on 22 February 2023).
- Stamatellou, A.-M.; Stamatelos, A. Overview of Diesel particulate filter systems sizing approaches. Appl. Therm. Eng. 2017, 121, 537–546. [Google Scholar] [CrossRef]
- Samaras, Z.; Rieker, M.; Papaioannou, E.; van Dorp, W.; Kousoulidou, M.; Ntziachristos, L.; Andersson, J.; Bergmann, A.; Hausberger, S.; Keskinen, J. Perspectives for regulating 10 nm particle number emissions based on novel measurement methodologies. J. Aerosol Sci. 2022, 162, 105957. [Google Scholar] [CrossRef]
- Tandon, P.; Heibel, A.; Whitmore, J.; Kekre, N.; Chithapragada, K. Measurement and prediction of filtration efficiency evolution of soot loaded diesel particulate filters. Chem. Eng. Sci. 2010, 65, 4751–4760. [Google Scholar] [CrossRef]
- Zhong, D.; He, S.; Tandon, P.; Moreno, M.; Boger, T. Measurement and Prediction of Filtration Efficiency Evolution of Soot Loaded Diesel Particulate Filters; SAE Technical Paper. 2012. Available online: https://www.researchgate.net/publication/260000063_Measurement_and_Prediction_of_Filtration_Efficiency_Evolution_of_Soot_Loaded_Diesel_Particulate_Filters (accessed on 22 February 2023).
- Chan, T.W.; Lax, D.; Gunter, G.C.; Hendren, J.; Kubsh, J.; Brezny, R. Assessment of the fuel composition impact on black carbon mass, particle number size distributions, solid particle number, organic materials, and regulated gaseous emissions from a light-duty gasoline direct injection truck and passenger car. Energy Fuels 2017, 31, 10452–10466. [Google Scholar] [CrossRef]
- Joshi, A.; Johnson, T.V. Gasoline particulate filters—A review. Emiss. Control Sci. Technol. 2018, 4, 219–239. [Google Scholar] [CrossRef]
- Mofijur, M.; Hasan, M.M.; Mahlia, T.; Rahman, S.A.; Silitonga, A.; Ong, H.C. Performance and emission parameters of homogeneous charge compression ignition (HCCI) engine: A review. Energies 2019, 12, 3557. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Liu, F.; Liu, Z.; Zhao, F. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions. Appl. Energy 2016, 181, 391–398. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Pan, J.; Wei, H.; Zhou, X.; Pan, M. Effects of different injection strategies on mixing, combustion and emission behavior of gasoline compression ignition (GCI) engines. Fuel 2022, 317, 123486. [Google Scholar] [CrossRef]
- CO2 Emission Performance Standards for Cars and Vans. Available online: https://climate.ec.europa.eu/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles/co2-emission-performance-standards-cars-and-vans_en (accessed on 22 February 2023).
- Fit for 55: Zero CO2 Emissions for New Cars and Vans in 2035. Available online: https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035#:~:text=The%20new%20legislation%20sets%20the,cars%20and%2050%25%20for%20vans (accessed on 22 February 2023).
- Improving the Sustainability of Passenger and Freight Transport. 2023. Available online: https://www.iea.org/topics/transport (accessed on 22 February 2023).
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; Zhu, B. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef]
- Farren, N.J.; Davison, J.; Rose, R.A.; Wagner, R.L.; Carslaw, D.C. Underestimated ammonia emissions from road vehicles. Environ. Sci. Technol. 2020, 54, 15689–15697. [Google Scholar] [CrossRef]
- Emissions of Air Pollutants from Transport. Available online: https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-air-pollutants-8/transport-emissions-of-air-pollutants-8 (accessed on 22 February 2023).
Stage | Year | CO | HCs | HCs + NOx | NOx | PM | PN |
---|---|---|---|---|---|---|---|
g/km | g/km | g/km | g/km | g/km | #/km | ||
Positive Ignition (Gasoline) | |||||||
Euro 1 | 1992 | 2.72 | - | 0.97 | - | - | - |
Euro 2 | 1996 | 2.2 | - | 0.5 | - | - | - |
Euro 3 | 2000 | 2.3 | 0.2 | - | 0.15 | - | - |
Euro 4 | 2005 | 1 | 0.1 | - | 0.08 | - | - |
Euro 5 | 2009 | 1 | 0.1 | - | 0.06 | 0.005 | - |
Euro 6 | 2014 | 1 | 0.1 | - | 0.06 | 0.005 | 6.0 × 1011 |
Compression Ignition (Diesel) | |||||||
Euro 1 | 1992 | 2.72 | - | 0.97 | - | 0.14 | - |
Euro 2, IDI | 1996 | 1 | - | 0.7 | - | 0.08 | - |
Euro 2, DI | 1996 | 1 | - | 0.9 | - | 0.1 | - |
Euro 3 | 2000 | 0.64 | - | 0.56 | 0.5 | 0.05 | - |
Euro 4 | 2005 | 0.5 | - | 0.3 | 0.25 | 0.025 | - |
Euro 5a | 2009 | 0.5 | - | 0.23 | 0.18 | 0.005 | - |
Euro 5b | 2011 | 0.5 | - | 0.23 | 0.18 | 0.005 | 6.0 × 1011 |
Euro 6 | 2014 | 0.5 | - | 0.17 | 0.08 | 0.005 | 6.0 × 1011 |
Euro Stage | Requirements |
---|---|
Euro 6a | Excludes PMP measurement procedure for PM, PN standard and flex fuel vehicle low temperature emission testing with biofuel (this stage applicable to vehicles that meet Euro 6 standards ahead of regulatory deadlines). |
Euro 6b | Euro 6 emission requirements including PMP measurement procedure for PM; PN standards (preliminary values for PI vehicles); and flex fuel vehicle low temperature emission testing with biofuels (E10 and B7). |
Euro 6c | Euro 6b requirements plus final PN standards for PI vehicles; RDE NOx testing for monitoring only; OBD Euro 6-2; use of E10 and B7 reference fuels. |
Euro 6c-EVAP | Euro 6c requirements plus revised evaporative emissions test procedure. |
Euro 6d-TEMP | Euro 6c requirements plus RDE type approval testing against ‘temporary’ conformity factors (NOx = 2.1, PN = 1.5). |
Euro 6d-TEMP-EVAP | Euro 6d-TEMP requirements plus revised evaporative emissions test procedure. |
Euro 6d-TEMP-ISC | Euro 6d-TEMP requirements plus new ISC procedure, including RDE ISC, type 4 and type 6 tests. |
Euro 6d | RDE testing against ‘final’ conformity factors (NOx = 1.43, PM = 1.5) plus revised evaporative emissions test procedure. |
Euro 6d-ISC | Euro 6d requirements plus 48 h evaporative emissions test procedure and new ISC procedure. |
Euro 6d-ISC-FCM | Euro 6d-ISC requirements plus on-board fuel/electric energy consumption monitoring (OBFCM or just FCM) requirements for M1 and N1 ICE-only, hybrid and plug-in hybrid vehicles. End of series flexibilities by member states allowed vehicles meeting earlier sub-stages to still be sold after Euro 6d-ISC-FCM requirements became effective to offset the impacts of the COVID-19 pandemic on the auto industry. |
Euro 6e | Euro 6d-ISC requirements plus RDE compliance considering updated PEMS error margins (NOx margin of 0.10, i.e., CF = 1.10; PN margin of 0.34, i.e., CF = 1.34); on-board FCM for category N2 vehicles. |
Euro 6e-bis | Euro 6e requirements plus increased extended ambient conditions for RDE compliance (the upper RDE temperature limit for moderate temperature changes to 35 °C from 30 °C and the upper limit for extended temperature to 38 °C from 35 °C), Auxiliary Emission System (AES) flag and updated utility factor for vehicles with off-vehicle charging using updated assumptions. |
Euro 6e-bis-FCM | Euro 6e-bis requirements plus updated utility factor for vehicles with off-vehicle charging using FCM data. |
Parameter | OEM | Hybrid | Improvement with Hybrid | |||
---|---|---|---|---|---|---|
NOx (g/km) | CO2 (g/km) | NOx (g/km) | CO2 (g/km) | NOx (%) | CO2 (%) | |
WLTC | 1.34 | 143 | 1.19 | 117 | 11.6 | 18.4 |
RDE | 1.03 | 136 | 0.99 | 113 | 3.7 | 17.1 |
Urban 1 | 1.17 | 239 | 1.18 | 121 | −0.6 | 49.2 |
Urban 2 | 1.05 | 201 | 1.09 | 117 | −4.1 | 41.9 |
Urban 3 | 0.67 | 201 | 0.88 | 107 | −31.6 | 46.8 |
Combined 1 | 1.22 | 142 | 1.28 | 128 | −4.7 | 9.8 |
Combined 2 | 1.49 | 142 | 1.53 | 131 | −2.5 | 7.7 |
Combined 3 | 1.12 | 123 | 1.11 | 110 | 0.5 | 10.5 |
Combined 4 | 1.64 | 138 | 1.61 | 132 | 1.9 | 4.2 |
Highway | 2.25 | 160 | 2.18 | 159 | 3.3 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi, S.S.; Osipov, S.; Turner, J.W.G. Impact of Modern Vehicular Technologies and Emission Regulations on Improving Global Air Quality. Atmosphere 2023, 14, 1164. https://doi.org/10.3390/atmos14071164
Ravi SS, Osipov S, Turner JWG. Impact of Modern Vehicular Technologies and Emission Regulations on Improving Global Air Quality. Atmosphere. 2023; 14(7):1164. https://doi.org/10.3390/atmos14071164
Chicago/Turabian StyleRavi, Sai Sudharshan, Sergey Osipov, and James W. G. Turner. 2023. "Impact of Modern Vehicular Technologies and Emission Regulations on Improving Global Air Quality" Atmosphere 14, no. 7: 1164. https://doi.org/10.3390/atmos14071164
APA StyleRavi, S. S., Osipov, S., & Turner, J. W. G. (2023). Impact of Modern Vehicular Technologies and Emission Regulations on Improving Global Air Quality. Atmosphere, 14(7), 1164. https://doi.org/10.3390/atmos14071164